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INTRODUCTION

Precise numerical modeling of wave propagation from the
deep ocean to a shoreline is quite important in coastal
engineering.  As waves travel over uneven topographies,
they undergo a number of transformations. The wave ray
method and linear gravity wave theory were used in the
early works of wave transformation. Since the wave ray
theory excludes wave diffraction, it is unable to predict the
wave characteristics near coastal structures such as
breakwaters.  The mild slope equation which was proposed
by BERKHOFF (1972) is applicable for computations of
refraction and diffraction of linear waves.   The mild slope
equation is usually expressed in an elliptic form, and it turns
to Helmholtz equation for uniform water depths. Since like
the full linear wave equation, the mild slope equation is
elliptic, it needs solution methods dealing with the whole
region of interest in space.  Comparisons with the solutions
for the full linear equations by BOOIJ (1983) give
confidence in the use of the mild slope equation for large
slopes in suitable situations. To reduce the computational
difficulties encountered in the solution of elliptic equation,
parabolic approximation method was developed and used to
study combined wave refraction and diffraction phenomena

in coastal regions (LIU and TSAY, 1984; KIRBY and
D A R LYMPLE, 1983; RADDER, 1979).  TANG and
QUELLET (1997) applied parabolic approximation method
to solve the proposed nonlinear equations of combined
refraction diffraction problem.  Two basic assumptions have
been made in the parabolic approximation; one is that the
wave field does not vary greatly from a unidirectional wave
train, so waves have a principal propagation direction.  The
other assumption is that reflected waves are neglected.
When the bottom contours are not straight and parallel as in
the case of complex bathymetries, the requirement that one
grid coordinate should follow the dominant wave direction
causes problems (EBERSOLE, 1985). 

In this paper, model equations similar to that proposed by
EBERSOLE (1985) are solved numerically to deal with the
combined refraction diffraction problem.  The mild slope
equation has been decomposed into three equations related
to wave phase function,wave amplitude and wave approach
angle that computes the wave field resulting from the
transformation of an incident, linear wave as they propagate
over irregular bottom configurations.  Proposed model does
not have the limitation that one coordinate should follow the
dominant wave direction.  Different wave approach angles
can be investigated on the same computational grid.  Finite
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difference approximations with variable mesh sizes are used
to solve governing equations. Finer grid resolution can be
generated in areas of complex bathymetry. The use of
variable grid sizes considerably reduces the overall
computational costs. Computationally, the numerical model
is quite efficient for simulating wave propagation over large
coastal areas subjected to varying wave conditions.

Model Equations

The complex velocity potential has been chosen as
(EBERSOLE, 1985) ;

(1)
in which, a: wave amplitude, s: scalar phase function of the
wave.
If Eqn (1) is inserted to the equation that describes the
propagation of harmonic linear waves in two horizontal
dimensions, the following equation can be derived; 

(2)

(3)

in which  —: horizontal gradient operator; C: wave celerity;
Cg: group velocity; k: wave number calculated by the
dispersion relation.
From vector analysis, the normal unit vector n to a scalar
function is related to the normal vector N, which is found by
taking the gradient of the function (DEAN and
DALRYMPLE, 1991);

(4)
The vector N points in the direction of the greatest change
of  phase function s, which is the wave propagation
direction. The wave number vector   is defined as;

(5)
It is clear that the wave number vector is nothing more than
the wave number oriented in the wave direction.
To account the effect of diffraction, the wave phase function
changes to consider any horizontal variation in the wave
height. By the use of irrotationality of the gradient of the
wave phase function following equations can be derived;

(6)

(7)
in which  , : unit vectors in the x and y directions,
respectively; q(x,y): angle of incidence defined as the angle
made between the bottom contour normal and the wave
direction.  q(x,y) can be found from the following
expression;

(8)

The following energy equation is used to determine wave
amplitude; 

(9)
Eqn (6) together with Eqn (2) and Eqn (7) result in the set
of three equations that will be solved in terms of three wave
parameters, wave height H,  local wave angle q and Ω—sΩ
(EBERSOLE, 1985).

(10)

(11)

Eqns (8),(10) and (11) describe the refraction and
diffraction phenomena.  The basic assumptions are that the
waves are linear, harmonic, irrotational, reflection is
neglected and bottom slopes are small.

Numerical Solution

Solution method is a finite difference method that uses a
mesh system in Cartesian coordinates. The finite difference
approximations can handle the variations in the horizontal
mesh sizes.  The horizontal mesh size ∆x in the x-coordinate
is orthogonal to the horizontal mesh size ∆y in the y-
coordinate.  The horizontal mesh sizes ∆x and ∆y can be
different from each other. Also, ∆x can vary along the x
coordinate and ∆y can vary along the y coordinate (BALAS
and INAN, 2001a; BALAS and INAN, 2001b).

Input model parameters are the deep water wave
parameters, wave height (H0), wave approach angle (q0) and
the wave period (T). Partial derivatives in the x-direction
are expressed by forward finite differences of order O(∆x),
and the partial derivatives in the y-direction are expressed
by central finite differences of order O(∆y2) in equation (8)
and in Equation (11), whereas partial derivatives in the x-
direction are approximated with backward finite differences
of order O(∆x), and partial derivatives in the y-direction are
expressed by central finite differences of order O(∆y2) in
Equation (10).   Wave breaking is controlled during the
computations.
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MODEL VERIFICATION

Semicircular Shoaling

Model predictions are compared with the results of a
laboratory experiment (WHALIN, 1971).  The wave tank
used in the experiments is shown in Figure 1.  Two different
combinations of wave height and wave period have been
simulated and compared with the experimental data.  Along
the lateral boundaries, the gradient of wave height
perpendicular to side walls is assumed to be zero, and wave
approach angles are assumed to be in the x direction.
Topography is symmetric about y=3.048m. Water depth
changes from 0.4572m to 0.1524m.  Two different mesh
sizes are used in the x-direction.  The mesh size used is
∆x=0.5 m and ∆y=0.762m, in the x and y directions
respectively.  Lineer waves were produced at the water
depth of 0.4572 m.   On the slope, there are semicircular
steps that result in strong wave convergence. Model
predictions are compared with the measured data along the
centerline of the wave tank for two different wave period
and wave height combinations. Comparisons are shown in
Figure 2 and in Figure 3 for a wave period of T=1.0 sec and
wave amplitude of a=0.0195 m, and of T=2 sec and
a=0.0075 m., respectively.  Results of study performed by
other researchers (LOZANO and LIU, 1980; LIU and
TSAY, 1984; MADSEN and SORENSEN, 1992) are also
presented in Figure 2 and in Figure 3 for comparison.
Model simulation reflects well the effect of diffraction
phenomenon and model predictions are in good agreement
with the experimental results. On the semicircular steps,
application of pure refraction theory results in crossing of
wave rays and wave heights can not be computed.
Consideration of diffraction prevents this phenomenon.
Therefore simulation of this experiment is a good indicator
of the model to predict the effects of diffraction.

Figure 1. The bathymetry of wave tank (water depths are in m)
(WHALIN, 1971).

Figure 2. Comparison of model predictions (T=1s, a=0.0195m
and q=00 ).

Figure 3. Comparison of model predictions (T=2s, a=0.0075m
and q=00 ).
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Elliptical Shoaling

In the second application, model predictions are
compared with the results of wave tank experiment done by
BERKHOFF et al. (1982). The wave period of incoming
waves is T=1s, and the wave height is H=0.01058 m. Wave
approach angle is 18.5°.   Water depths in the tank decreases
from 0.45m with a bottom slope of 1/50.  The bathymetry of
the wave tank is given in Figure (4). 

In the numerical model grid sizes are selected as ∆x=0.5m
and ∆y=0.5m. Numerical model predictions along the cross
section of x=15 m, x=19 m and y=8 m are compared with
the experimental data of  BERKHOFF et al.(1982), and
presented in Figure (5), in Figure (6) and in Figure (7)
respectively.  For comparison, numerical predictions of
KIRBY and DALRYMPLE (1984) are depicted in the
figures as well. Model predictions are in good agreement
with the measurements.  Model well reflects the
experimental results near the shoal area.

Figure 4. Wave tank bathymetry (water depths are in m)
(BERKOFF et al., 1982).

Figure 5. Variation of relative wave height at x=15m.

Figure 6. Variation of relative wave height at x=19m.

Figure 7. Variation of relative wave height at y=8m.
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Model Application to Obaköy

Model has been applied to Obaköy which is located at the
Mediterranean Sea coast of Turkey.  In the coastal waters of
Obaköy a sea outfall construction has been planned by the
authorities. The map of the coastal area is given in Figure
(8). The bathymetry for the area is shown in Figure (9).  For
the area, wave transformations from the dominant wave
directions, which are the S and SW directions, are
simulated.  The deep water wave parameters are used to
specify the offshore boundary conditions and zero gradient
boundary conditions are applied for wave heights and wave
angles along the lateral boundaries. Deep water parameters
are selected as, wave period T=10.3 s, wave height H=6.5
m.  Model predictions are presented in Figure (10)  and in
Figure (11) for waves approaching from S and SW
directions respectively. Model provides reasonable
estimations for the area.  Waves converge on the shoal,
conveyance of energy onto shoal results in the decrease of
wave heights.  Model can be used successfully for the areas
having complicated bathymetries.

Figure 8. Map of the coastal area.

Figure 9. Bathymetry of the computational area
(water depths are in m).

Figure 10. Wave heights(m) in the computational area for waves
approaching from S direction .

Figure 11. Wave heights(m) in the computational area for waves
approaching from SW direction .
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For waves approaching from S direction, waves are
refracted onto the shoals causing conveyance of energy and
that results in decrease of wave heights just outside the
shoals. For wave approaching from SW direction, waves
converge on the nearest shoal but also they refract around to
the far shoal. Less energy is propagated towards the shore
causing rather smaller wave heights.

CONCLUSIONS

A numerical model has been developed to simulate the
wave transformation of monochromatic linear waves as
they propagate over irregular bathymetries. Model can
simulate the effect of pure refraction or effect of refraction
together with diffraction which is important over complex
bathymetries. Model overcomes the limitation of the
parabolic approximation that one grid coordinate should
follow the dominant wave direction. There is no assumption
regarding the curvature of the wave height in any direction.
Only one computational domain is enough to simulate the
transformation of waves from different directions with
different approach angles.  The possibility of selection of
variable grid size allows to fit finer or coarser meshes to the
solution domain. Therefore computationally, the numerical
model is quite efficient for simulating wave propagation
over large coastal areas subjected to varying wave
conditions. 

Model predictions are compared with the experimental
results.  The agreement between the model predictions and
the experimental results is highly encouraging.   Model
successfull application to a real coastal water body has been
demonstrated.  Developed model is a reliable tool for
simulating the transformation of linear waves over
complicated bathymetries.
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