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Research in ecology and wildlife biology remains crucial for increasing our knowledge and improving species management 
and conservation in the midst of the current biodiversity crisis. However, obtaining information on population status often 
involves invasive sampling of a certain number of individual animals. Marking and sampling practices include taking blood 
and tissue samples, toe-clipping of amphibians and rodents, or using implants and radio-transmitters – techniques that can 
negatively affect the animal. Wildlife research may then result in a fundamental conflict between individual animal welfare 
and the welfare of the population or ecosystem, which could be significantly reduced if non-invasive research practices were 
more broadly implemented. Implementation of non-invasive methods could be guided by the so-called 3Rs principles for 
animal research (replace, reduce, refine), which were proposed by Russell and Burch 60 years ago and have become a part 
of many animal protection legislations worldwide. However, the process of incorporating the 3Rs principles into wildlife 
research has been unfortunately rather slow and their importance overlooked. In order to help alleviate this situation, here 
I provide an overview of the most common practices in wildlife research, discuss their potential impact on animal welfare, 
and present available non-invasive alternatives.

Keywords: 3Rs principles, animal welfare, ecology, reduction, refinement, replacement

Ecosystems worldwide are currently experiencing a dramatic 
species extinction process, which has been largely attributed 
to human activities (Harrop 2011, Ceballos  et  al. 2015). 
Recognizing the critical situation, several international con-
ventions have been implemented with the aim to halt the 
biodiversity crisis and support conservation measures (e.g. 
Convention on Biological Diversity, Bonn Convention on 
the Conservation of Migratory Species of Wild Animals, 
Bern Convention on the Conservation of European Wildlife 
and Natural Habitats, Convention on International Trade in 
Endangered Species of Wild Fauna and Flora). These conser-
vation efforts depend on accurate data on species distribu-
tion, population size and impact of global changes, and it is 
therefore necessary to continuously monitor populations of 
various plant and animal species.

In the noble pursuit of knowledge that is important 
for preserving wildlife populations, scientists can unfortu-
nately inflict distress on animals, because wildlife biodiver-

sity monitoring has traditionally employed some invasive 
or even destructive techniques (Vucetich and Nelson 2007, 
Minteer et al. 2014b, Field et al. 2019). Examples of research 
activities that might influence animal welfare are chasing, 
capturing, blood and tissue sampling, marking, attach-
ment of data loggers and lethal sampling (Donnelly  et  al. 
1994, Sutherland et al. 2004, Wilson and McMahon 2006, 
Walker et al. 2010). The impact on animal welfare is a prob-
lem not only for the affected animal but also for the reliabil-
ity of study results (Powell and Proulx 2003, Cattet 2013, 
Jewell 2013). It has been shown that pain negatively affects 
data quality through behavioural, physiological and neuro-
biological changes (Jirkof 2017, Sneddon 2017). Because 
sound information about wildlife is of uttermost impor-
tance for sound management decisions, it is crucial that the 
research procedures affect animal welfare as little as possible.

An important milestone in thinking about animal wel-
fare in research was achieved 60 years ago, when Russell 
and Burch proposed the 3Rs principles (replace, reduce, 
refine; Russell and Burch 1959). These principles encour-
age scientists to replace the use of animals with alternative 
methods whenever possible, to reduce the number of ani-
mals in experiments to the absolute minimum, and to refine 
or limit the pain and distress that animals are exposed to. 
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The 3Rs have since become an integral part of legislation 
and guidelines on animal experiments in many countries 
(Sneddon et al. 2017) and the research community itself has 
encouraged the development of guidelines to improve the 
use of animals for scientific purposes (Kilkenny et al. 2010, 
Buchanan et  al. 2015, Mellor 2016). While the 3Rs prin-
ciples were originally proposed for laboratory animals, they 
can be – and should be – applied also in wildlife research. 
One example is the use of non-invasive research methods, 
i.e. methods that do not affect the physical integrity of the 
animal (Lefort  et  al. 2019). Some non-invasive methods 
do not even require capturing and handling. Even though 
efforts have been made to support the process of incorpo-
rating the 3Rs into wildlife research (NORECOPA 2008, 
Lindsjö et al. 2016, Field et al. 2019, Sloman et al. 2019), 
there have been recently published several articles that indi-
cate that wildlife biologists may be struggling with imple-
menting these principles (Costello et al. 2016, Waugh and 
Monamy 2016, Russo  et  al. 2017, Lindsjö  et  al. 2019, 
Zemanova 2019).

In order to encourage the implementation of the 3Rs 
principles in wildlife research, I carried out a review of the 
literature on the potential impact of research methods on 
animal welfare, and provide here specific examples where the 
3Rs principles have been successfully applied.

Methods

I derived my synthesis based on published journal articles 
and books. Specifically, I searched for relevant literature on 
the Web of Science and Google Scholar until March 2019 
and also used references cited in the papers I found. For 
publications on impact of research methods on animal wel-
fare, my search strings consisted of: Topic = (“welfare” OR 
“impact” OR “effect” OR “detrimental” OR “lethal” OR 
“survival”) AND “wildlife” OR “ecology” AND (“method” 
OR “technique”). To identify publications describing avail-
able non-invasive techniques and their implementation, 
I used the search terms: Topic = (“non-invasive” OR “non-
lethal” OR “non-destructive” OR “alternative” OR “replace-
ment” OR “reduction” OR “refinement” OR “improved”) 
AND “wildlife” OR “ecology” AND (“method” OR “tech-
nique”). I excluded publications in which content was not 
relevant to this synthesis.

Potential impact of commonly used 
methods in wildlife research on animal 
welfare

Capturing, trapping and experiments in captivity

In contrast with laboratory animals, wildlife animals are not 
used to interaction with humans, so any capture or handling 
can be very stressful (Wilson and McMahon 2006). Increased 
cortisol levels have been reported for example in captured 
Weddell seals Leptonychotes weddellii (Harcourt et al. 2010). 
Cattet et al. (2008) showed that grizzly bears Ursus arctos that 
have been repeatedly captured significantly differed in their 

body condition compared with bears that have been cap-
tured only once. Nest survival in captured seabirds, yellow-
billed loon Gavia adamsii and pacific loon G. pacifica, was 
30% lower than in non-captured adults (Uher-Koch et al. 
2015). Stress of capture can even lead to capture myopa-
thy, a metabolic muscle disease that often results in death 
(Nuvoli et al. 2014, Green-Barber et al. 2018).

Capturing can also change the animal’s behaviour, which 
then significantly affects data collected in behavioural and 
recapture studies. For instance, polar bears Ursus maritimus 
in the study by Rode  et  al. (2014) displayed reduction in 
activity and movement rates 3.5 days post-capture. Lin-
hart et al. (2012) showed that willow warblers Phylloscopus 
trochilus could recall the capture event by mist netting even a 
year later and learn to avoid mist nests.

Apart from stress and impact on behaviour, capturing can 
also result in physical damages. These damages can range 
from skin abrasions to broken limbs (Phillips  et  al. 1996, 
Fleming et al. 1998, Grisham et al. 2015). Trapped animals 
are also vulnerable to predation (Hilario et al. 2017).

Many experiments on behavior and cognition in ani-
mals take place in captive settings. While these conditions 
allow for logistical control, they often lead to harms for the 
captive animals (Marino and Frohoff 2011). The damaging 
effects of captivity have been well documented. Animals can 
exhibit stereotyped behavior (Wechsler 1991, Callard et al. 
2000, Shyne 2006, Jett  et  al. 2017, Poirier and Bateson 
2017, Williams et al. 2018a), and suffer from increased stress 
(Bordeleau et al. 2018, Ferreira et al. 2018), which can even-
tually result in higher incidence of diseases and mortality 
(Terio et al. 2004, Mitchell et al. 2018).

Marking

Research on wildlife often requires marking of animals to 
obtain data on behaviour, survival, reproduction or home 
range size. Virtually all marking methods require capture, 
which is stressful to wild animals, and many methods also 
involve tissue damage. Common marking techniques 
include for instance hot- or freeze-branding, mutilations, 
tags and bands, and the use of radio-transmitters.

Branding
Hot-branding and freeze-branding have been used for mark-
ing cattle Bos taurus and horses Equus caballus for centuries 
(Macpherson and Penner 1967), and have been modified 
for marking pinnipeds. Not surprisingly, hot-branding is a 
painful procedure, reflected in the behavioural changes of 
branded Stellar sea lions Eumetopias jubatus (Walker  et  al. 
2010). Public concerns about animal welfare have resulted 
in lawsuits and withdrawal of research permits for sea lion 
research involving hot-branding (Dalton 2005). Moreover, 
the development of skin tumours following freeze- or hot-
branding has been observed in cattle (Yeruham et al. 1996), 
raising caution for wildlife branding.

Mutilations
Toe clipping is a classic method for marking small vertebrates 
such as lizards, amphibians and rodents. Unique marking is 
achieved by clipping toes in different combinations on dif-
ferent limbs. Although considered harmless by some authors 
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(Grafe  et  al. 2011, Ginnan  et  al. 2014), toe-clipping can, 
in fact, result in reduced survival rate (McCarthy and Parris 
2004, Olivera-Tlahuel et al. 2017). It also has negative effect 
on locomotor performance and endurance (Schmidt and 
Schwarzkopf 2010) as well as the clinging performance of 
pad-bearing lizards, which was documented in the Carolina 
anole Anolis carolinensis (Bloch and Irschick 2005).

Tags and bands
Another common method of marking animals is with tags or 
bands. Tags can be made from a variety of materials – most 
commonly metal or plastic – and are usually augmented by 
alphanumeric codes for individual or group recognition. 
Larger animals often require immobilization before mark-
ing and attaching tags, and the procedure of tag attachment 
can be painful (Cramer 2017, MacRae et al. 2018). In small 
animals, for instance, fish, tagging can affect the survival rate 
(Burdick 2011, Hoye et al. 2015).

Tags can be applied to many different parts of the body 
depending on the anatomy of the animal, most often to 
wings (Trefry et al. 2013), fins (Sonne et al. 2012) or flip-
pers (Hazekamp et  al. 2010). The study by Robinson and 
Jones (2014) revealed that tagged seabirds, crested auklets 
Aethia cristatella, showed reduced return rates and provision-
ing behaviour. Tags can increase the cost of swimming due to 
drag in grey seals Halichoerus grypus (Hazekamp et al. 2010), 
and tagged Magellanic penguins Spheniscus magellanicus 
have been observed to experience foraging difficulties during 
low food abundance periods (Wilson et al. 2015). Moreover, 
tags damaged flippers of Adélie penguins Pygoscelis adeliae 
(Jackson and Wilson 2002), and modified diving behaviour 
and decreased survival in the first year after banding in little 
penguins Eudyptula minor (Fallow et al. 2009).

Radio-transmitters
Radiotelemetry has been key to track the movement of ani-
mals. This method uses the transmission of radio signals to 
locate a radio-transmitter that has been attached to an ani-
mal. Radio-transmitters can be glued to the skin, designed as 
a GPS collar or a harness, or surgically implanted. To track 
mule deer Odocoileus hemionus, elk Cervus elaphus nelsoni 
and moose Alces alces females, even vaginal implant trans-
mitters are being used (Bishop et al. 2007, Barbknecht et al. 
2009, Thompson et al. 2018).

Several issues have been identified with radio-transmitters. 
For instance, Dixon et al. (2016) found evidence of decreased 
survival rate associated with harness-mounted satellite trans-
mitters on falcons Falco cherrug. In passerine birds, both 
entanglement with vegetation or body parts and non-entan-
glement injuries have been observed (Hill and Elphick 2011).

Another issue is the method of attachment and weight of 
the instrument. If the radio-transmitter is attached by glue, 
this can lead to lesions and abrasions on the skin (Field et al. 
2012). The study by Rasiulis et al. (2014) showed that heavy 
collars decreased survival rate in caribou Rangifer tarandus, 
and by Brooks et al. (2008) that grazing behavior of Burchell’s 
zebras Equus burchelli antiquorum is affected by collar weight.

Particularly problematic is the use of implanted trans-
mitters as this involves additional trauma to the animal.  
The recent study by Arnemo et al. (2018) showed that trans-
mitters implanted into the abdominal cavities of brown 

bears Ursus arctos performed poorly and were not biocom-
patible, in several cases causing the animal’s death. Several 
cases of mortality caused by implanted radio-transmitters 
have been reported also in European lynx Lynx lynx (Lech-
enne et al. 2012), Harlequin ducks Histrionicus histrionicus 
(Mulcahy and Esler 1999) and American badgers Taxidea 
taxus (Quinn et al. 2010).

Blood and tissue sampling

Genetic tools have become indispensable for biodiversity 
assessment and monitoring (Stetz  et  al. 2011). Genetics is 
important to assess abundance, occupancy, hybridization, 
genetic diversity, population structure and effective popula-
tion size (Stetz et al. 2011, Carroll et al. 2018). Common 
methods used for DNA collection are blood and non-lethal 
tissue sampling, such as toe-clipping or fin-clipping. Blood 
is also commonly used for assessing levels of potential det-
rimental elements, such as heavy metals, and in physiology 
studies to assess hormonal levels (Bryan et al. 2007, Berglund 
2018). Blood sampling could be however difficult in small 
animals, such as zebrafish Danio rerio (Zang et al. 2013), and 
has been even linked to lower survival rates during the first 
year after sampling in Amarican cliff swallows Petrochelidon 
pyrrhonota (Brown and Brown 2009). Fin-clipping has been 
shown to be painful for fish, common carp Cyprinus carpio 
and Atlantic salmon Salmo salar, and may affect their sur-
vival (Hansen 1988, Roques et al. 2010).

Lethal sampling

The use of lethal means for tissue sampling and collection of 
voucher specimens has a long tradition in wildlife research. 
Besides the obvious harm to the individual animal, removing 
a key member of the group in species with complex social 
formations can result in impaired well-being of the remain-
ing individuals (Shannon  et  al. 2013). Moreover, lethal 
methods are unfortunately often used even in cases when 
this is not necessary, such as in gathering data on abundance, 
DNA sampling or dietary analysis (Vucetich and Nelson 
2007, Hammerschlag and Sulikowski 2011, Costello et al. 
2016, Russo et al. 2017, Zemanova 2019).

Application of the 3Rs into wildlife research

There is a significant difference between research on labora-
tory animals and on wildlife in that the former is used as 
models for humans, for example, in testing toxicity or effec-
tiveness of new drugs. Wildlife research, on the other hand, 
focuses on the study animal itself, in order to understand 
its biology, behavior and health. Moreover, wildlife encom-
passes a very broad range of species with different ecologi-
cal and physiological traits, which makes generalizations of 
guidelines challenging. Nevertheless, the 3Rs principles can 
be applied to wildlife research in several ways.

Replacement may not be always possible, because the 
animals are the objects of the study. However, individual 
identification with natural marking, use of camera traps, or 
non-invasive sampling can provide data without the neces-
sity of handling an animal (Fig. 1, Table 1).
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Reduction (Fig. 1, Table 2) can be achieved, for example, 
through efficient experimental design and planning, calculat-
ing the minimum sample size, avoiding repetition through 
meta-analyses of previously published studies, sharing data 
and resources (NC3Rs 2018). Individual animals can also be 
used for multiple purposes – for instance by combining cap-
ture–mark–recapture and genotyping studies (Lampert et al. 
2003). Another strategy for reduction is the implementation 
of in silico methods, which could be used for species distri-
bution, population modelling in response to climate change 
or disease spread predictions (Smith and Cheeseman 2002, 
Zemanova et al. 2018).

Non-invasive methods can be considered as replacement, 
but also a part of reduction and refinement strategies (Lind-
sjo et al. 2016), depending on how the methods are used (Fig. 
1, Table 1–3). Refinement (Table 3) includes, for example, 
the use anesthesia, tranquilization and light-weight radio-
transmitters (Harcourt  et  al. 2010, McGuire  et  al. 2014). 
For minimum injuries and capture of non-target species, it 
has been recommended to use call playback and taxidermy 
decoys (Veltheim  et  al. 2015), and to use traps that have 
been shown to cause no or minimal injuries, for instance, 
replacing foothold traps with box traps (Kolbe et al. 2003, 
Bergvall et al. 2017).

Alternatives to capturing and trapping

Many data that used to require trapping can nowadays be 
achieved by different means. For instance, the presence/

absence data can be collected using camera traps or drones, 
and DNA can be sourced from hair traps or faeces.

Camera traps
Camera traps can be applied to estimate species richness, 
habitat occupancy, population density or behavior, with little 
effort by the researcher (Di Cerbo and Biancardi 2013). The 
absence of a researcher is particularly beneficial in the study 
of wild primates, where habituation to human presence could 
be detrimental due to threat of hunting (Bezerra et al. 2014). 
Camera traps can be even a more efficient method of detec-
tion than other methods, such as hair traps, cage traps or 
scat count surveys (Monterroso et al. 2014, Welbourne et al. 
2015, Day et al. 2016). This efficiency improves when using 
a lure or bait (Boulerice and Van Fleet 2016, McLean et al. 
2017). Modern camera traps can record also videos that  
can be used in behavioural studies (Lobo et  al. 2013, Fla-
gel et al. 2016).

Camera traps have been used for detection of many species, 
including small terrestrial and arboreal mammals such as red 
and eastern grey squirrels, Sciurus vulgaris and S. carolinensis 
(Di Cerbo and Biancardi 2013), foxes Vulpes velox (Stratman 
and Apker 2014), feral cats and European wildcats, Felis catus 
and F. silvestris (Anile et al. 2014, Stokeld et al. 2015), dogs 
Canis familiaris (Rasambainarivo  et  al. 2017), Hermann’s 
tortoises Testudo hermanni (Ballouard  et  al. 2016), north-
ern flying squirrels Glaucomys sabrinus (Boulerice and Van 
Fleet 2016), North American river otters Lontra canadensis 
(Day et al. 2016) and grey wolves Canis lupus (Sver et al. 2016).  

Figure 1. Implementation of the 3Rs principles (replacement, reduction, refinement) in wildlife research. Overlapping methods for replace-
ment and refinement depend on whether the animal has to be captured or not. Please see Table 1–3 for more details.
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Table 1. Examples of studies implementing the 3Rs principle of Replacement. See Fig. 1 and the main text for more detail.

Replacement method Instead of Species Animal class Reference

Individual identification 
by footprints

Marking with invasive 
methods 

white rhinocero Ceratotherium simum mammals Alibhai et al. 2008

 (e.g. tags, collars) giant panda Ailuropoda melanoleuca mammals Li et al. 2018
  South American tapir Tapirus terrestris mammals Moreira et al. 2018
Individual identification 

by natural markings
Marking with invasive 

methods 
pygmy blue-tongue skink Tiliqua 

adelaidensis
reptiles Li et al. 2009

 (e.g. toe-clipping) grey seal Halichoerus grypus mammals Vincent et al. 2001
  fire salamander Salamandra 

salamandra
amphibians Sukalo et al. 2013

  alpine longhorn beetle Rosalia alpina insects Caci et al. 2013
  sperm whale Physeter macrocephalus mammals Alessi et al. 2014
  wunderpus octopus Wunderpus 

photogenicus
cephalopods Huffard et al. 2008

  northern goshawk Accipiter gentilis birds Hoy et al. 2016
  Asian black bear Ursus thibetanus mammals Higashide et al. 2012
  common seadragon Phyllopteryx 

taeniolatus
fish Martin-Smith 2011

Using faeces for DNA 
collection

Blood or tissue sampling bumblebees Bombus spp. insects Scriven et al. 2013

  mountain gorilla Gorilla beringei 
beringei

mammals Roy et al. 2014

  western capercaillie Tetrao urogallus birds Rosner et al. 2014
  Asian elephant Elephas maximus mammals Gray et al. 2014
  Cabrera’s vole Microtus cabrerae mammals Proença-Ferreira et al. 

2019
Using feaces for dietary 

analysis
(Lethal) intestinal content 

sampling or stomach 
flushing

Hawaiian tree snails Achatinella spp. molluscs Price et al. 2017

 wolf spiders Pardosa spp. arachnids Sint et al. 2015
  smooth snake Coronella austriaca reptiles Brown et al. 2014
Using faeces for 

ecotoxicology
Blood or tissue sampling lesser horseshoe bat Rhinolophus 

hipposideros
mammals Afonso et al. 2016

  European pied flycatcher Ficedula 
hypoleuca

birds Berglund 2018

Using feaces for stress 
assessment

Blood sampling red deer Cervus elaphus mammals Millspaugh et al. 2001

  African bush elephant Loxodonta 
africana

mammals Ahlering et al. 2013

  mourning dove Zenaida macroura birds Washburn et al. 2003
  North Atlantic right whale Eubalaena 

glacialis
mammals Hunt et al. 2006

  Columbian ground squirrel 
Urocitellus columbianus

mammals Bosson et al. 2009

Camera traps Capture European wildcat Felis silvestris mammals Stokeld et al. 2015
  Hermann’s tortoise Testudo hermanni reptiles Ballouard et al. 2016
  North American river otter Lontra 

canadensis
mammals Day et al. 2016

  black rat Rattus rattus mammals Rendall et al. 2014
Environmental DNA 

(eDNA) from water
Blood or tissue sampling freshwater mussels (Unionidae) bivalves Cho et al. 2016

  platypus Ornithorhynchus anatinus mammals Lugg et al. 2018
  wild boar Sus scrofa mammals Williams et al. 2018b
Using hair and feathers 

for DNA collection
Blood or tissue sampling grey wolf Canis lupus mammals Ausband et al. 2011

  American black bear Ursus 
americanus

mammals Gould et al. 2018

  cougar Puma concolor mammals Sawaya et al. 2011
  kiwis Apteryx spp. birds Ramon-Laca et al. 2018
Using hair and feathers 

for endocrinology
Blood or tissue sampling American black bear Ursus 

americanus, brown bear U. arctos
mammals Bryan et al. 2014

  Clark’s nutcrackers Nucifraga 
columbiana 

birds Fairhurst et al. 2011

Using saliva for 
endocrinology

Blood or tissue sampling Indian rhinoceros Rhinoceros 
unicornis

mammals Gomez et al. 2004

  rhesus macaque Macaca mulatta mammals Higham et al. 2010
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To estimate density, individuals are marked or identified 
by natural markings (Jordan  et  al. 2011, Thornton and  
Pekins 2015).

Drones
One recent technological advance applied in wildlife moni-
toring has been the unmanned aerial vehicles, also known 
as drones. Drones are particularly useful in approaching 
sensitive wildlife in inaccessible areas. Some studies revealed 
that drone-derived data are more accurate than data from 
ground-counting methods (Ezat et al. 2018, Hodgson et al. 
2018). Moreover, drone technology can be cheaper than 
radio-collars (Mulero-Pazmany  et  al. 2015). Drones have 
been successfully implemented in monitoring populations of 
polar bears Ursus maritimus (Barnas et al. 2018b), saltwater 
crocodiles Crocodylus porosus (Bevan et al. 2018, Ezat et al. 
2018), or snow geese Anser caerulescens (Barnas et al. 2018a). 
Drones can be also used for collecting exhaled breath con-
densate of humpback whales Megaptera novaeangliae for 
microbiome analysis (Apprill et al. 2017).

Alternatives to invasive marking

Dyes
For short-term studies, paint can be used to mark individual 
animals, as has been demonstrated in studies on lizards, Ano-
lis cristatellus, A. gundlachi, A. krugi and Sceloporus undulates 
(Johnson 2005) or rainbow trout Oncorhynchus mykiss (Fren-
kel et al. 2002). Birds can be marked with dyes placed on 
eggs or nests (Cramer 2017).

Natural markings
For identification of individual animals, natural mark-
ings can be used, such as unique patterns and scars, fungal 
patches or pelage markings (Vincent  et  al. 2001, Manis-
calco et al. 2006, Li et al. 2009). Identification based on nat-
ural markings has been successfully implemented in studies 
on e.g. fish (Arzoumanian et al. 2005, Meekan et al. 2006, 
Auger-Methe et al. 2011, Martin-Smith 2011, Correia et al. 
2014, Monteiro et al. 2014, Gonzalez-Ramos et al. 2017),  

Indo-Pacific bottlenose dolphins Tursiops aduncus (Gomez-
Salazar et al. 2011, Bichell et al. 2018), sperm whales Phy-
seter macrocephalus (Alessi  et  al. 2014), Asian black bears 
Ursus thibetanus (Higashide et al. 2012), polar bears Ursus 
maritimus (Anderson  et  al. 2007), Australian sea lions 
Neophoca cinerea (Osterrieder  et  al. 2015), cougars Puma 
concolor (Alexander and Gese 2018), tigers Panthera tigris 
(Karanth  et  al. 2006), cheetahs Acinonyx jubatus (Kelly 
2001), giant pandas Ailuropoda melanoleuca (Zheng  et  al. 
2016), salamanders, Eurycea tonkawae, Ambystoma opacum 
and Salamandrina perspicillata (Gamble  et  al. 2008, Ben-
dik  et  al. 2013, Romiti  et  al. 2017), crustaceans Rhyncho-
cinetes typus and Chionoecetes opilio (Gallardo-Escarate et al. 
2007, Gosselin  et  al. 2007), manatees Trichechus manatus 
latirostris (Langtimm et al. 2004), Majorcan midwife toads 
Alytes muletensis (Pinya and Perez-Mellado 2009), common 
European vipers Vipera berus (Bauwens et al. 2018), green 
sea turtles Chelonia mydas (Gatto  et  al. 2018), wunderpus 
octopuses Wunderpus photogenicus (Huffard  et  al. 2008), 
little brown bats Myotis lucifugus (Amelon et al. 2017), jew-
elled geckos Naultinus gemmeus (Knox  et  al. 2013), newts 
Ichthyosaura alpestris and Lissotriton vulgaris (Mettouris et al. 
2016), and even beetles Lucanus cervus, Rosalia alpina and 
Rhynchophorus ferrugineus (Caci  et  al. 2013, Romiti  et  al. 
2017, Diaz-Calafat et al. 2018).

Identification by footprints
Some mammal species can leave signs that are sufficiently 
distinctive for identification purposes. Footprints have 
been used as a tracking method for millennia (Pimm et al. 
2015), and current specialized software allows for individ-
ual, sex and age group classification with more than 90% 
accuracy (Jewell et al. 2016). Shape and size of footprints 
was used to identify individual white rhinos Ceratotherium 
simum (Alibhai et al. 2008, Law et al. 2013), fishers Mar-
tes pennanti (Herzog et al. 2007), giant pandas Ailuropoda  
melanoleuca (Li  et  al. 2018), tigers Panthera tigris 
(Gu et al. 2014) or South American tapirs Tapirus terrestris 
(Moreira et al. 2018).

Table 2. Examples of studies implementing the 3Rs principle of Reduction. See Fig. 1 and the main text for more detail.

Reduction method Instead of Species Animal class Reference

Improved statistics methods and 
minimum sample size 
calculation 

Using an excessive 
number of animals

moose Alces alces mammals Girard et al. 2002

 lesser black-backed gull Larus 
fuscus

birds Thaxter et al. 2017

Computer modelling (in silico) Using an excessive 
number of animals

black slug Arion ater, red slug  
A. rufus, Spanish slug A. vulgaris 

molluscs Zemanova et al. 2018

  eastern mosquitofish Gambusia 
holbrooki

fish Panayotova and Horth 2018

  American badger Taxidea taxus mammals Smith and Cheeseman 2002
Using a single individual or 

sample for multiple purposes
Using multiple 

individuals for one 
purpose only

coyote Canis latrans mammals Prugh et al. 2008

  tungara frog Physalaemus 
pustulosus

amphibians Lampert et al. 2003

Conducting meta-analysis of 
previous studies

 Duplication of studies African bush elephant Loxodonta 
africana

mammals Guldemond and Van Aarde 
2008

  passerine bird species birds Chamberlain et al. 2009
  bat species mammals Jung and Threlfall 2018
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Vocal individuality
Instead of marking, individual animals of certain species can 
be distinguished by their vocalization features (Terry et al. 
2005). This method has been successfully applied not only 
in birds, such as the great grey owl Strix nebulosa (Rog-
nan et al. 2009), but also in marmots Marmota olympus and 
Richardson’s ground squirrels Spermophilus richardsonii (Pol-
lard et al. 2010).

Alternatives to invasive blood and tissue sampling

Ecotoxicology
Improving our knowledge of the potential impacts of chemi-
cal pollutants on wildlife is an important aspect of biological 
conservation. Unfortunately, traditional methods of obtain-
ing samples in ecotoxicology are invasive (Jasinska et al. 2015, 
Wilkie et al. 2018, Boisvert et al. 2019, Xing et al. 2019, da 
Costa Araujo et al. 2020), and research on non-destructive 
methods is severely lacking (Chaousis et al. 2018).

Nevertheless, non-invasive methods have already been 
applied in several ecotoxicology studies. For instance, heavy 
metals can be determined from hair samples, which was done 
in wood mice Apodemus sylvaticus (Tete et al. 2014), brown 

rats Rattus norvegicus (McLean  et  al. 2009), bats Artibeus 
spp., Myotis bechsteinii, Myotis daubentonii, Myotis myotis 
and Pipistrellus pipistrellus (Flache et al. 2015, Becker et al. 
2018) or European hedgehogs Erinaceus europaeus (Vermeu-
len et al. 2009). Heavy metals can be also detected in faeces 
(Afonso et  al. 2016, Berglund 2018). Mingo et  al. (2017) 
were able to detect pesticide exposure in common wall liz-
ards Podarcis muralis measured through buccal swabs. The 
in silico modelling of toxicity pathways has been recently 
applied to constructing adverse outcomes in wildlife (Mad-
den et al. 2014).

Physiology
Chronic stress can have potentially deleterious effects (please 
see above for more details). Stress can be quantified by mea-
suring the level of glucocorticoids, a class of steroid hor-
mones (Millspaugh and Washburn 2004). Glucocorticoid 
levels used to be typically assessed from blood (Hood et al. 
1998, Mathies et al. 2001), but this often requires the cap-
ture of the animal, which could influence the results. An 
additional drawback of blood samples is that they may not 
represent long-term hormone levels (Millspaugh and Wash-
burn 2004).

Table 3. Examples of studies implementing the 3Rs principle of Refinement. See Fig. 1 and the main text for more detail.

Refinement method Instead of Species Animal class Reference

Using buccal swabs for DNA 
collection

Toe clipping, blood 
sampling

European tree frog Hyla arborea amphibians Angelone and 
Holderegger 2009

  red-cockaded woodpecker 
Leuconotopicus borealis

birds Vilstrup et al. 2018

  rodent species (Muridae, 
Heteromyidae, Sciuridae)

mammals Parmenter et al. 1998

  redside dace Clinostomus elongates, 
channel darter Percina copelandi

fish Reid et al. 2012

Using buccal swabs for ecotoxicity Blood or tissue 
sampling

rock dove Columba livia birds Shepherd and Somers 
2012

  common wall lizard Podarcis muralis reptiles Mingo et al. 2017
Using skin swabs for DNA 

collection
Toe clipping, blood 

sampling
myotis bats Myotis spp. mammals Player et al. 2017

  Sierra Nevada yellow-legged frog 
Rana sierrae

amphibians Poorten et al. 2017

Using hair samples for 
ecotoxicology

Tissue sampling Neotropical fruit bats Artibeus spp. mammals Becker et al. 2018

  European hedgehog Erinaceus 
europaeus

mammals Vermeulen et al. 
2009

Anesthesia Handling without 
anesthesia

gopher tortoise Gopherus 
polyphemus

reptiles McGuire et al. 2014

  marbled newt Triturus marmoratus amphibians Le Chevalier et al. 
2017

  timber rattlesnake Crotalus horridus reptiles Hale et al. 2017
Tranquilization Not minimizing stress 

response
Weddell seal Leptonychotes weddellii mammals Harcourt et al. 2010

  zebrafish Danio rerio fish de Abreu et al. 2014
Improved trapping Trapping methods that 

could lead to injuries
European lynx Lynx lynx mammals Kolbe et al. 2003

(e.g. box traps instead of foothold 
traps)

 roe deer Capreolus capreolus mammals Bergvall et al. 2017

Smaller tracking instruments Using heavy and 
robust instruments

California spotted owl Strix 
occidentalis occidentalis

birds Atuo et al. 2019

  feral cat Felis catus mammals Recio et al. 2011
Suction cups for attaching devices 

on cetaceans
Skin penetrating 

instruments
Heaviside’s dolphin Cephalorhynchus 

heavisidii
mammals Sakai et al. 2011

Invertebrate-derived DNA (iDNA) Blood or tissue 
sampling with 
instruments

meerkat Suricata suricatta mammals Habicher et al. 2013

  common swift Apus apus birds Bauch et al. 2013
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A non-invasive alternative is the use of faecal samples. 
Studies in which faecal glucocorticoids were assessed were 
conducted in elks Cervus elaphus (Millspaugh et al. 2001), 
mourning doves Zenaida macroura (Washburn et al. 2003), 
greater sage grouse Centrocercus urophasianus (Jankowski et al. 
2009), African bush elephants Loxodonta africana (Munshi-
South et al. 2008, Ahlering et al. 2013), Columbian ground 
squirrels Urocitellus columbianus (Bosson et al. 2009), com-
mon degus Octodon degus (Soto-Gamboa et al. 2009), giant 
pandas Ailuropoda melanoleuca (Yu et al. 2011), aardwolves 
Proteles cristata (Ganswindt et al. 2012), eastern chipmunks 
Tamias striatus (Montiglio et al. 2012), coyotes Canis latrans 
(Schell  et  al. 2013), crab-eating foxes Cerdocyoun thous 
(Paz et al. 2015), marmots Marmota flaviventris (Wey et al. 
2015), woylies Bettongia penicillata (Hing  et  al. 2017), 
pikas Ochotona princeps (Wilkening  et  al. 2016), North 
Atlantic right whales Eubalaena glacialis (Hunt et al. 2006) 
or primates (Behringer and Deschner 2017). In frogs, der-
mal swabs (Santymire et al. 2018) or urine samples (Nara-
yan et al. 2010, Narayan 2013) collected by gentle massage 
of the lower abdomen can be used for the analysis.

Due to their small molecular weight and lipid solubil-
ity, glucocorticoids pass quickly from blood serum to saliva, 
where it can be directly measured (Romano  et  al. 2010). 
Stress assessment from saliva has been implemented in 
Indian rhinoceros Rhinoceros unicornis (Gomez et al. 2004), 
and rhesus macaques Macaca mulatta (Higham et al. 2010).

One of the latest methods of non-invasive sampling is 
body odour collection. A wide range of volatile and semi-
volatile organic compounds create chemical profiles, which 
can be used in studies on chemical signatures of health as 
well as kinship, diet and reproduction (Nair  et  al. 2018, 
Weiss et al. 2018a, b).

DNA sampling
Non-invasive genetic sampling has a great potential in wild-
life biology, with a variety of applications (Waits and Paet-
kau 2005). Advancements in forensics, medical research 
and ancient DNA techniques generate new methods that 
can be relatively easily applied to improve data production 
and analysis of non-invasive genetic samples also in wildlife 
research (Beja-Pereira et al. 2009).

Faecal DNA-based sampling to identify individuals and 
estimate the population size was implemented in e.g. Asian 
elephants Elephas maximus (Gray  et  al. 2014), mountain 
gorillas Gorilla beringei beringei (Roy  et  al. 2014), Indian 
rhinoceros Rhinoceros unicornis (Das et al. 2015), Cabrera’s 
voles Microtus cabrerae (Proença-Ferreira et al. 2019), Afri-
can golden wolves Canis anthus (Karssene et al. 2018), kit 
foxes Vulpes macrotis mutica (Wilbert  et  al. 2015) or birds 
Apteryx spp., Otis tarda, Tetrao urogallus (Idaghdour  et  al. 
2003, Perez  et  al. 2011, Rosner  et  al. 2014, Ramon-
Laca et al. 2018, Vallant et al. 2018). Faecal DNA has been 
also used for identifying insects like Bombus spp. and Ceuto-
rhynchus assimilis (Fumanal et al. 2005, Scriven et al. 2013) 
and spiders Pardosa spp. (Sint et al. 2015). To direct the sur-
vey efforts detection dogs may be used for locating faecal 
samples (Arandjelovic et al. 2015, Wilbert et al. 2015).

Another method of non-invasive genetic sampling is hair 
trapping. Hair can be collected either by catching an ani-
mal and plugging the hair, with baited methods, or passively 

through natural rubs or travel route snares. Baited methods 
of hair collection can be divided into four main types: 1) hair 
corrals with barbed wire encircling a bait, 2) rub stations, 
which are structures saturated with scent to induce rubbing, 
3) trees wrapped with barbed wire or 4) boxes or tubes con-
taining attractants and fitted with hair snaring devices (Ken-
dall and McKelvey 2012). Baited hair collection has been 
often applied in large carnivores (Canis latrans, C. lupus, 
Puma concolor) (Ausband et al. 2011, Sawaya et al. 2011). 
Another method was introduced by Keeley and Keeley 
(2012), who developed a modified blowgun dart with sticky 
ends to collect hair from variegated squirrels Sciurus variega-
toides without penetrating their skin.

An increasingly common non-invasive genetic sampling 
technique used primarily in frogs is buccal swabbing (Bro-
quet  et  al. 2007, Angelone and Holderegger 2009, Gal-
lardo et al. 2012). This method can be however applied also 
to other types of animals, for instance, birds (Leuconotopicus 
borealis) (Vilstrup et al. 2018), lizards (Coronella austriaca, 
Lacerta agilis, Podarcis muralis) (Beebee 2008, Schulte et al. 
2011) and fish (Clinostomus elongates, Percina copelandi) 
(Reid  et  al. 2012). However, buccal swabbing may not be 
safe for certain reptiles, such as tortoises (due to their head 
retraction escape response) and snakes. In these species, 
cloacal swabbing can be used instead (Mucci  et  al. 2014, 
Ford et al. 2017).

Alternatively, skin and mucus swabbing can be imple-
mented. Skin swabbing drastically limits handling in 
comparison to buccal swabbing, and it is particularly use-
ful for vulnerable and small animals, which was shown in 
alpine newts Ichthyosaura alpestris (Prunier  et  al. 2012), 
fire salamanders Salamandra salamandra (Pichlmuller et al. 
2013) and Sierra Nevada yellow-legged frogs Rana sierrae 
(Poorten  et  al. 2017). Wing swabbing has been success-
fully used for DNA collection in bats (Myotis evotis, M. 
septentrionalis, M. yumanensis, M. lucifugus) (Player  et  al. 
2017). Mucus swabbing has been used to collect DNA in 
cephalopods (Enteroctopus dofleini, Sepia officinalis) (Hol-
lenbeck et al. 2017, Sykes et al. 2017), land snails (Arianta 
arbustorum) (Armbruster et al. 2005) and slugs (Arion spp., 
Geomalacus maculosus) (Morinha  et  al. 2014), intertidal 
snails (Nucella spp.) (Kawai  et  al. 2004), polyplacophoran 
molluscs (Ischnochiton spp.) (Palmer  et  al. 2008), freshwa-
ter pearl mussels Margaritifera margaritifera (Karlsson et al. 
2013) and fish (Manta birostris, Oreochromis niloticus) 
(Kashiwagi et al. 2015, Taslima et al. 2016).

In birds, eggshells (Strausberger and Ashley 2001, Egl-
off  et  al. 2009, Kjelland and Kraemer 2012, Maia  et  al. 
2017) or feathers (Rudnick et al. 2007, Kjelland and Krae-
mer 2012, Olah et al. 2016) can be used as a source of DNA. 
Feathers can be collected opportunistically or through a 
feather-trap (Maurer et al. 2010).

Saliva is also a great source of DNA that can be collected 
non-invasively by using e.g. baits and porous material (Var-
gas et al. 2009, Lobo et al. 2015). Additionally, DNA sam-
ples can be obtained from mineral lick (Schoenecker et al. 
2015), rests of prey (Harms et al. 2015, Wheat et al. 2016) 
or damaged crop (Saito et al. 2008).

Other potential sources of DNA include scent marks 
(Malherbe et al. 2009), snow footprints (Dalen et al. 2007), 
urine (Nagai et al. 2014, Nakamura et al. 2017), insect exu-
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viae (Kranzfelder  et  al. 2016, Nguyen  et  al. 2017), spider 
webs (Xu et al. 2015, Blake et al. 2016), antlers (Hoffmann 
and Griebeler 2013, Kim et al. 2015) or shed skin (Swan-
son et al. 2006, Horreo et al. 2015).

As organisms move through the environment, they 
also leave some DNA traces behind. This environmen-
tal DNA (eDNA) can be used for detection of targeted 
organisms, and it is particularly useful for detection of 
invasive (Collins  et  al. 2013, Hunter  et  al. 2015) or rare 
species (Jerde et  al. 2011). Most eDNA applications have 
targeted aquatic environments, for instance, in studies on 
harbor porpoises Phocoena phocoena (Foote  et  al. 2012), 
mussels (Unionidae) (Cho et  al. 2016), hellbenders Cryp-
tobranchus alleganiensis (Olson et  al. 2012), fish (Cyprinus 
carpio, Oncorhynchus mykiss) (Eichmiller  et  al. 2016, Fer-
nandez  et  al. 2018) or platypus Ornithorhynchus anatinus 
(Lugg et al. 2018). However, eDNA techniques have been 
used also in deer Capreolus capreolus (Nichols et al. 2012) or 
wild boar Sus scrofa studies (Williams et al. 2018b), using 
saliva from twigs or water from drinking reservoirs as the 
DNA source.

While not completely non-invasive method, blood-suck-
ing insects have been used as a ‘gentle’ stress-free method of 
DNA collection in several mammalian species (Voigt et al. 
2005, Calvignac-Spencer et al. 2013, Habicher et al. 2013, 
Lee et al. 2015, Rodgers et al. 2017), so-called invertebrate-
derived DNA (iDNA). The potential of using terrestrial 
leeches (Haemadipsa spp.) for the same purpose has been also 
assessed (Schnell et al. 2015).

Alternatives to lethal sampling

Alternatives to collecting voucher specimen
One of the best methods as an alternative to voucher col-
lection is a series of high-quality photographs, which can be 
even used to describe a new species (Athreya 2006, Mint-
eer et al. 2014a), especially in combination with other lines 
of evidence (e.g. DNA from skin or buccal samples and 
recording a species’ mating call).

Species abundance
Biodiversity assessment could be done through count sur-
veys and visual sampling (Lecq  et  al. 2015, Ksiazkiewicz-
Parulska and Goldyn 2017). Methodology on estimating 
species abundance from occurrence maps has been also 
recently published (Yin and He 2014).

Dietary composition
The recent application of next generation sequencing and 
enrichment methods to trophic ecology can enable rapid 
resolution to questions about diets of practically any 
animal from their faeces (O’Rorke  et  al. 2012, Pompa-
non et al. 2012). Faecal genotyping as a method to examine 
dietary composition was used in e.g. coyotes Canis latrans 
(Prugh et al. 2008), European pine martens Martes martes 
(O’Meara  et  al. 2014), seals (Arctocephalus forsteri, Phoca 
vitulina) (Emami-Khoyi et al. 2016, Hui et al. 2017), fish 
(Barbus barbus, Chondrostoma toxostoma toxostoma, Chon-
drostoma nasus nasus) (Corse  et  al. 2010), snakes (Coro-
nella austriaca) (Brown  et  al. 2014), snails (Achatinella 
spp.) (O’Rorke  et  al. 2015, Price  et  al. 2017), fruit flies  

Drosophila melanogaster (Fink  et  al. 2013) or spiders  
(Pardosa spp.) (Sint et al. 2015).

Concluding remarks

Studies on wildlife are regularly conducted with the assump-
tion that they have an insignificant impact on the studied 
animals (Jewell 2013) or that the impact is outweighed by 
any potential benefits to the population or species (Vucetich 
and Nelson 2007, Parris et al. 2010). Such assumptions how-
ever raise concerns for animal welfare, a topic that has been 
increasingly discussed among public, ethical committees, 
journal publishers and funding agencies (McMahon  et  al. 
2012, Zemanova 2017).

In this review, I outlined the potential implications 
of commonly used invasive research methods for wildlife 
welfare. Some of the research practices can, however, have 
delayed consequences and monitoring of animals for any 
adverse impact should be required (Putman 1995). It is also 
important to note that in many cases, animal welfare impli-
cations of research methods are simply not known. In this 
case it is imperative to exercise the precautionary principle 
(Crozier and Schulte-Hostedde 2015).

In the past, a high level of invasiveness was necessary to 
obtain reliable data for understanding and designing manage-
ment measures for wildlife. However, research methods have 
to be adjusted as our technical advancement and our under-
standing of species ability to feel pain grows (Costello et al. 
2016, Waugh and Monamy 2016), and wildlife researchers 
need to limit the harm to the animals in order to ensure 
ethical acceptability of their work (Crettaz von Roten 2009, 
Lund et al. 2012). Even though non-invasive methods may 
not be yet suitable for all types of wildlife research, we should 
strive to implement them whenever possible. As I showed 
in this review, many researchers have already succeeded to 
do so.

Building upon the 3Rs principles (Fig. 1, Table 1–3), 
Curzer  et  al. (2013) proposed another R: refusal. Refused 
should be studies with badly conceived research plans, stud-
ies with no prospect of contributing significant knowledge, 
or studies in which the harm to the animal clearly exceeds 
any benefit of new knowledge. Some research practices 
might then have to be rejected simply on ethical grounds 
(Bekoff 2002).

In conclusion, the 3Rs principles are just as relevant to 
wildlife research as they are to laboratory animal studies. The 
current wildlife research needs to shift from using invasive 
and lethal methods to prioritizing non-invasive alterna-
tives. Study and management of wildlife are necessary, but 
in doing so, we bear responsibility for ensuring that welfare 
of the studied animals is compromised as little as possible 
through our work.
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