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Many wildlife populations are experiencing a variety of environmental pressures due to the direct and indirect conse-
quences of a changing climate. In the northeast, USA, moose Alces alces are declining in large part because of the increasing 
parasitism by winter tick Dermacentor albipictus, facilitated by high host density and optimal environmental conditions. To 
test this hypothesis, and better understand the influence of this interaction on the stability of the regional population, we 
constructed a population viability model using data collected through comprehensive survival and productivity studies in 
2002–2005 and 2014–2018 in northern New Hampshire. Years of heavy tick infestation (epizootics) saw a marked reduc-
tion in calf survival (< 50%), adult calving (< 60%), twinning rate (< 5%) and complete loss of yearling productivity. 
We conducted population viability analysis using VORTEX ver. 10.2 to model this moose population for 40 years using 
mean demographics from both time periods, including environmental variation measured in the field during winter tick 
epizootic (2002, 2014, 2015, 2016) and non-epizootic (2003, 2004, 2005, 2017) years. This exercise highlights the influ-
ence of winter tick infestation on the trajectory of the population with the potential for rapid population growth or decline 
depending on the frequency of epizootics. We suggest a shift in moose management strategy focused on lowering moose 
density, assuming continued influence of climate change on the host–parasite relationship.

Keywords: Alces alces, Dermacentor albipictus, epizootic, modeling, moose, mortality, New Hampshire, population,  
survival, winter tick

Over the past century, moose Alces alces populations across the 
southern edge of their range in North America have repeat-
edly expanded and contracted (Lankester 2010). Infectious 
pathogens, parasites, habitat loss and nutritional deficiency 
are all thought to play a role in population fluctuations, and 
certain of these factors are influenced by a warming climate 
(Samuel 2004, Murray et al. 2006). The winter tick is the 
leading cause of the recent decline of the moose popula-
tion in northern New Hampshire, USA and other parts of 
northern New England by causing high calf mortality and 
reduced fecundity in years of epizootics (Musante  et  al. 
2010, Jones et al. 2017, 2019). The recently observed, and 
predicted frequency of shorter winters (Wake  et  al. 2014) 
is favorable for increased survival, longer larval questing 
period, and higher abundance of winter tick which together 

cause continuous negative impact on moose at their south-
ern range (Jones et al. 2019).

The moose population in New Hampshire has experi-
enced a slow but steady decline from ~7500 in the late-1990s 
to ~4000 in 2015 (Rines 2015). In addition, yearling and 
adult cows have realized a concurrent drop in body weight 
and ovulation rate (measured via corpora lutea counts on 
harvested animals; Bergeron et al. 2013, Jones et al. 2017) 
despite sustained availability of optimal forage habitat 
(4–16 year age-class forest) do to disturbance from commer-
cial timber production (Ball 2017). This downward trend 
is largely the result of the interaction between a relatively 
high moose density in the northern region, which in com-
bination with shorter winters, provides for an increased fre-
quency of winter tick Dermacentor albipictus epizootics that 
translates to heightened calf mortality rates (>50%) and 
reduced productivity (Musante et al. 2010, Jones et al. 2017, 
2019). Reexamining these population parameters will pro-
vide insight into predicting the future population dynamics 
of moose in northern New Hampshire and the region, and 
is critically important in designing and implementing local 
management strategies.
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Comprehensive moose projects conducted in northern 
New Hampshire measured annual survival and productivity 
during both epizootic and non-epizootic years from 2002 to 
2005 (Musante et al. 2010) and 2015 to 2017 (Jones et al. 
2017, 2019, Ellingwood 2018). The objective of this study 
was to model the trajectory of northern New Hampshire’s 
moose population to test its future viability under varying 
frequencies of winter tick epizootics by using the combined 
8 years of population demographics measured in the field 
from a robust sample population of radio-marked moose.

Methods

We projected northern New Hampshire’s moose population 
over 40 years (2018–2058) using VORTEX ver. 10.2 (Lacy 
and Pollak 2017), an individual-based computer simula-
tion model for population viability analysis (PVA). PVA is a 
method to predict the future of wildlife populations based on 
mean demographic rates, and the impacts of environmental 
variation on these rates, including catastrophes (Brook et al. 
1999, Lacy 2000). As an ‘individual-based’ model, each indi-
vidual is represented with life events simulated and the sta-
tus of each monitored in the population over time; changes 
in the population occur once per year as a series of discrete 
events (e.g. breeding, calving, mortality, ageing; Lacy 2000). 
Moose are categorized as calves (< 1 year old), yearlings (≥ 
1 and < 2 years old) and adults (≥ 2 years old). Animals 
advance to their next age class on 19 May, the median date 
of parturition in the study area (Jones  et  al. 2017). Envi-
ronmental variation in vital rates was incorporated into the 
model with random values sampled from a binomial distri-
bution, with a specified probability and standard deviation 
for each life event. For each individual, should the sampled 
random value fall above the specified probability, the event is 
deemed to occur (Lacy et al. 2017). Raw sampling variance 
was used for this simulation, likely resulting in an overes-
timate of the biological variation of vital rates. The model 
assumed no effect of density dependence on productivity  
or survival.

This analysis used productivity and survival rates mea-
sured from 2002 to 2005 (Musante et al. 2010) and 2014 to 
2018 (Jones et al. 2017, 2019, Ellingwood 2018), represent-
ing eight years of monitoring radio-marked moose within 
the same northern New Hampshire study area during epizo-
otic and non-epizootic years (Fig. 1). Pregnancy rate reflects 
the proportion of cows testing positive for pregnancy at the 
time of capture, and was measured via blood samples (2002, 
2014–2017) and ultrasound (2003). Calving rates (propor-
tion of cows having one or more calves), twinning rates (pro-
portion of parturient cows that have twins) and the survival 
of calves (0–7 months) was measured by visual monitoring 
(ground-telemetry homing); see Jones et al. (2017) for addi-
tional monitoring details. Successive calving was monitored 
across years and was defined as the proportion of individual 
cows that calve in consecutive years.

Survival rates used in the PVA simulation were measured 
on unmarked calves (0–7 months), marked-calves (8–12 
months) and yearlings/adults (> 12 months) were esti-
mated as proportions of the starting sample population and 

assumed equal between sexes; see Musante et al. (2010) and 
Jones et al. (2019) for details on survival analysis and cause-
specific mortality. Annual survival rate of the 0–1 age class 
was calculated by combining the data from the unmarked 
(summer, fall) and marked (winter, spring) groups of calves; 
while not all marked calves were from marked adults, pool-
ing these two groups was reasonable for an estimate as they 
were all monitored within the same study area. Further, there 
was low annual variability in calf survival through the sum-
mer and fall (Jones et al. 2017). Adults that had been moni-
tored for < 1 year due to timing of capture were censored 
from survival estimates in respective years. An ANOVA test 
was used to examine differences in productivity, and survival 
between epizootic and non-epizootic years. Adults and year-
lings were considered a single ‘adult’ age class for survival 
measurement due to the limited sample size of radio-marked 
yearlings and the difficulty in differentiating yearlings from 
adults at the time of capture. Adults and yearlings were 
considered separate cohorts for productivity measurement 
despite the limited sample size due to the known disparity in 
reproductive potential between age classes, with the poten-
tial for delayed maturation of physically compromised year-
lings (Adams and Pekins 1995, Jones et al. 2017).

A starting population size (n) of 908 was used, based 
upon the average (2014–2017) density estimate (0.44 
moose km−2) developed from November observation sur-
veys by deer hunters (Bontaites  et  al. 2000) in the region 
where radio-marked animals were monitored (~1250 km2); 
this region encompasses the core of New Hampshire’s moose 
population with the highest density estimates. The 2016–
2017 estimated calf:adult age ratio was 0.18, and the adult 
bull:cow sex ratio was 0.41 (K. Rines, New Hampshire Fish 
and Game Department pers. com.). The starting adult age 
structure was estimated using a stable age distribution where 
age–sex classes were allocated according to the expected age 
distribution calculated from the initial N and birth and 
death rates (Lacy  et  al. 2017); age structure was assumed 
equal between sexes.

The impact of epizootics was simulated using the ‘catas-
trophe’ function available in VORTEX. Catastrophes are 
assigned a specified probability of annual occurrence, caus-
ing one-year reductions in reproduction and survival. A 
24% reduction in adult calving and total loss of reproduc-
tion in the yearling age class in epizootic years was mea-
sured across eight years of radio-marked moose monitoring. 
Additionally, calf and adult survival were reduced by 51% 
and 8%, respectively (Table 1). To simulate the impact of 
epizootics at varying rates of occurrence, five scenarios of 
the model were run using catastrophe probabilities of 0.00, 
0.25, 0.50, 0.75 and 1.00; 0.00 equals no future epizoot-
ics and 1.00 equals annual occurrence. To provide a thor-
ough description of simulated population behavior, 1000 
iterations of each simulation were run (Lacy  et  al. 2017). 
A stepwise approach was used to identify the frequency of 
epizootics that would allow the population to stabilize at its 
current size.

Using VORTEX’s built-in ST function, we tested vital 
rate elasticity to determine which parameters had the larg-
est effect on the population’s mean arithmetic growth (λ) 
under ‘epizootic’ and ‘non-epizootic’ conditions. In separate 
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simulations, we varied the following four vital rates inde-
pendently within ± 10% of their baseline (mean) value: 1) 
calf survival, 2) yearling/adult survival, 3) yearling produc-
tivity and 4) adult productivity. We ran 1000 iterations of 
each condition to assure results are robust to random varia-

tion. We measured the response of the population’s growth 
rate to changes in each parameter as (λ+ − λ−)/(λ0) where λ+ 
and λ− are the output from the adjusted parameter values 
and λ0 is the mean growth rate using unadjusted parameters  
(Cooper et al. 2001).

Figure 1. Study area in northern New Hampshire, USA.
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Results

Productivity

The adult pregnancy rate averaged 75% annually (Table 2);  
68% in 2002–2003 (n = 28) and 78% in 2014–2017 
(n = 59). There was no difference in pregnancy rate by sam-
pling method (p > 0.05); the serum assay for pregnancy 
is 93–95% accurate for pregnant cows (BioPRYN Wild, 
Moscow, ID), while the use of ultrasound eliminates the 
potential for false-positives (Stephenson  et  al. 1995). The 
average calving rate was 69%; 77% in 2002–2005 and 61% 
in 2014–2017 (Table 3). A marked decline in yearling calv-
ing rates was observed between 2002–2005 and 2014–2017 
(from 40% to 0%) as well as a decline in adult twinning rates 
(from 12% to 1%). Further, calving rates were significantly 
lower in epizootic years (59%) than in non-epizootic years 
(79%; p < 0.05). Calves were observed with 84% of known 
pregnant cows across all years of the study. In 2014–2017 
the successive calving rate averaged 53% and only 29, 28 
and 21% of cows reared calves in successive years, respec-
tively (Jones et al. 2017, Ellingwood 2018); 15 years earlier, 
this population had a successive calving rate of 75% (Mus-
ante et al. 2010).

Unmarked neonate survival

Survival of unmarked neonates to 60 days averaged 76% 
(n = 194) across all 8 years of monitoring; 78% of mortality 
occurred in the first week of life. Post-summer survival was 
high, and annual survival to ~8 months of age (birth through 
31 Dec) averaged 75%. Cause specific mortality during this 
period was unidentifiable as remains were rarely located. 
Summer survival was not different between epizootic and 
non-epizootic years (p > 0.05).

Radio marked moose survival

Studies from 2002 to 2005 and 2014 to 2017 monitored 
178 radio-marked calves (8–12 months old) from January 
to May over 8 years (14–37 calves annually). Survival rate 
averaged 34% in epizootic years (2002, 2014, 2015, 2016) 

and 69% in non-epizootic years (2003, 2004, 2017; Table 
4); this difference reflected the annual difference in winter 
tick parasitism, the primary cause of death each year (Mus-
ante et al. 2010, Jones et al. 2019). Surviving calves entered 
the yearling age class on 19 May, the median parturition date 
measured in these studies.

Yearling and adult survival were measured with 33 radio-
marked cows in 2002–2005 and 60 cows in 2014–2017. In 
each study, surviving calves (male and female) were included 
in the subsequent year’s survival measurement of yearling/
adult animals. Yearling/adult survival averaged 83% (range: 
73–91%) and was not significantly different (p > 0.05) 
between studies (Table 4).

Population viability

The models representing annual epizootic probabilities (Pr) 
of 0.25, 0.50, 0.75 and 1.0 predicted negative mean expo-
nential growth values of 0.01, 0.08, 0.16 and 0.28, respec-
tively. Pr(0.25) saw a 7% reduction in population size over 
40 years, while Pr(0.50), Pr(0.75) and Pr(1.0) saw more 
rapid declines with populating halving in less than 10 years 
(Fig. 2). The population maintains the potential for rapid 
growth at current vital rates with a positive rate of growth 
(r = 0.01) in the absence of future epizootics. The poten-
tial for population stability occurs at a 23% probability of 
annual epizootics.

Under a non-epizootic scenario, only subtle differences 
were identified between the relative influences of individual 
vital rates on population growth; population growth is most 
sensitive to changes in adult survival, followed by calf sur-
vival and adult productivity (Table 5). During epizootics, 
fluctuations in individual vital rates had minimal control 
on the high negative growth rate of the population. The 
response of population growth to yearling calving during 
epizootics could not be measured, as the baseline rate for 
this metric is zero.

Discussion

Knowledge of environmental factors influencing the shifting 
host–parasite balance of moose and winter ticks are impor-
tant for conservation and population management. Winter 
tick epizootics are generally considered infrequent events, 
and their occurrence indicates an imbalanced host–parasite 
relationship resulting from the combination of high host/
tick abundance with favorable environmental conditions 
promoting infestation (Samuel 2004). What was uncom-
mon, however, is now common and likely to increase, with 
concern about winter tick parasitism spreading across North 
America in the mid- to southern range of moose. For exam-
ple, research to specifically assess the impact of winter ticks 

Table 1. Mean calving and survival rates from radio-marked moose during epizootic and non-epizootic years in northern New Hampshire 
(2002–2005 and 2014–2017).

Calving (SD) Survival (SD)

Yearling Adult Twinning Calf Yearling/adult

Epizootic 0.00 (0.00) 0.64 (0.15) 0.00 (0.00) 0.34 (0.12) 0.80 (0.08)
Non-epizootic 0.16 (0.21) 0.84 (0.08) 0.08 (0.02) 0.69 (0.02) 0.87 (0.05)

Table 2. Pregnancy rates of adult cows captured in northern New 
Hampshire, 2002, 2003, 2014–2017.

Year No. tested No. pregnant Pregnancy rate

2002 24 15 0.63
2003 4 4 1.00
2014 21 16 0.76
2015 16 12 0.75
2016 9 7 0.78
2017 13 11 0.85
Total/avg. 87 65 0.75
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on moose occurs in Quebec (J. P. Tremblay, Univ. Laval, 
unpubl.), Yukon (E. Chenery, Univ. of Toronto, unpubl.) 
and British Columbia, Canada (Kuzyk et al. 2018), and in 
Utah, USA (K. Hersey, Utah Division of Wildlife Resources, 
unpubl.).

Because most moose populations in North America south 
of 60° latitude experience low, annual infestation of winter 
ticks (Samuel 2004, 2007), it is important to understand 
the influence of environmental factors that shift the host–
parasite balance. Further, although the frequency of epizo-
otics is of paramount concern in population management 
as demonstrated here, both infestation level and population 
impact occur along a continuum. For example, measurable 
calf mortality and reduced productivity were measured in 
both ‘non-epizootic’ and ‘epizootic’ years in the northeast 
USA (Musante  et  al. 2010, Ellingwood 2018, Jones  et  al. 
2019). Managers should not focus entirely on the epizootic 
threshold (50% survival) because the highest winter calf 
survival rate was only 70% from 2014 to 2017 in northern  
New Hampshire.

This modeling exercise emphasized the influence of win-
ter tick epizootics on the long-term fate of the northern 
New Hampshire moose population. Should the recent rate 
of epizootics continue (75%; 2014–2017), the population 
is predicted to halve in as few as 10 years. This estimate is 
consistent with that predicted in the age-structured model 
RAMAS Ecolab (Setauket, NY; Akcakaya et al. 1999) used 
by Jones (2016) to simulate the annual effect of winter ticks. 
Continued, consecutive epizootics are improbable, however, 

as both climactic conditions and host density must remain 
favorable for such events to occur (Samuel 2004). The effect 
of ticks on calf survival in 2014–2017 suggests that the cur-
rent moose density is sufficient to support epizootics; there-
fore, fall ground conditions arguably remain the primary 
influence and predictor of tick abundance and epizootics.

In the absence of high winter tick infestation, the north-
ern New Hampshire moose population maintains the poten-
tial to rebound based on the demographics in non-epizootic 
years, with potential for population doubling in ~10 years; 
likewise, an 11-year estimate was predicted by Jones (2016) 
when simulating low impact by winter ticks. Models simu-
lating epizootic probabilities of 0.25–0.75 illustrate the pre-
dicted impact of epizootics at varying probability of annual 
occurrence. Population growth at epizootic probabilities < 
0.25 is dependent on increasingly unfavorable weather con-
ditions for ticks (drought and/or early winter) that deter 
either larval abundance or the length of the autumnal quest-
ing period (September–December; Aalangdong 1994, Addi-
son  et  al. 2016), and the survival of adult female ticks in 
spring (April–May; Drew and Samuel 1986, Samuel 2007). 
An epizootic probability of 0.50–0.75 represents the current 
frequency documented in northern New Hampshire since 
2014, with periodic variation in ground conditions during 
autumn and a slowly declining moose density that affect 
sustained high tick abundance. Population stability was 
achieved at ~23% probability of annual epizootics, consis-
tent with the rate documented in northern New England 
in the early 2000s (one in four years; Musante et al. 2010). 
These modeled estimates are likely conservative due to a 
number of assumptions of the model including adult male 
survival rates the use of raw variance estimates, inflating the 
overall variation present and biasing projections low across 
all analyses (Staples et al. 2004).

Analysis of vital rate elasticity indicates that adult sur-
vival and productivity are the most significant demographic 
rates in population change. Despite the implication that 
juvenile survival has less influence on population growth 
relative to adult survival, it remains a critical component of 
population dynamics (Gaillard et al. 2000). As affirmed by 
this study, adult survival for large herbivores generally has a 
low coefficient of variation (< 10%) and is largely buffered 
from environmental variation; in contrast, juvenile survival 
and fecundity of young females often have high variation 
(CV > 30%, Gaillard et al. 2000). Considering the low vari-
ation in adult survival in epizootic and non-epizootic years, 

Table 3. Annual reproductive rates of radio-marked cows in northern New Hampshire, 2002–2005 (Musante et al. 2010) and 2014–2017 
(Jones et al. 2017, Ellingwood 2018).

Year
Calving rate (n) Twinning rate

Yearling Adult Total Yearling Adult Total

2002* 0.20 (5) 0.82 (17) 0.68 0.00 0.21 0.20
2003 1.00 (1) 0.77 (26) 0.88 0.00 0.10 0.10
2004 0.00 (5) 0.92 (24) 0.78 0.00 0.09 0.09
2005 0.44 (9) 0.89 (19) 0.74 0.25 0.06 0.10
2014* NA 0.67 (21) 0.67 NA 0.00 0.00
2015* 0.00 (3) 0.46 (33) 0.42 0.00 0.00 0.00
2016* 0.00 (1) 0.59 (32) 0.58 0.00 0.00 0.00
2017 NA 0.76 (38) 0.76 NA 0.03 0.03

Twinning rate is defined as the proportion of parturient females having twins.
* Indicates winter tick epizootic.

Table 4. Annual survival rates of radio-marked moose in  
northern New Hampshire during 2002–2005 (Musante et al. 2010, 
Jones et al. 2019).

Year

Survival rate

Unmarked 
calves (0–8 mo.)

Marked 
calves  

(8–12 mo.)
Marked yearling/adults 

(> 12 mo.)

2002* 0.73 0.50 0.73
2003 0.75 0.71 0.87
2004 0.81 0.67 0.91
2005 0.55 NA NA
2014* 0.64 0.38 0.91
2015* 0.87 0.26 0.78
2016* 0.78 0.23 0.75
2017 0.80 0.70 0.84

* Indicates winter tick epizootic.
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the potential importance of juvenile survival on recruitment 
cannot be understated; further, the near complete lack of 
yearling productivity is abnormal in moose (Schwartz 2007). 
The grouping of yearling and adult mortality rates in the 
model may lead to a slight positive bias due to the reduced 
vulnerability to tick mortality with increasing body size/age 
(Musante et al. 2007).

A population’s carrying capacity (K) is defined as the 
number of healthy animals an area can support, and is gen-
erally limited by habitat quality and quantity, with popula-
tions above K displaying poor condition due to malnutrition 
(Van Ballenberghe and Ballard 2007). While northern New 
Hampshire’s moose population is symptomatic of nutri-
tional restriction (reduced body weights, low productivity 
and low juvenile survival), no instances of starvation have 
been documented (Musante et al. 2010, Ellingwood 2018, 
Jones  et  al. 2019) and regional habitat is considered near 
optimal (Scarpitti  et  al. 2005, Bergeron  et  al. 2011, Ball 
2017). That K is influenced by parasitism and the frequency 
of winter tick epizootics is evident in the data presented here 
and in previous studies (Samuel 2007, Musante et al. 2010, 
Jones et al. 2017, 2019).

A lower moose density should eventually be realized from 
the continued negative impacts of high calf mortality, low 
productivity and delayed maturation of yearlings. A bal-
anced host–parasite relationship was estimated to occur at a 
threshold density of ~1 moose km−2 in Alberta, CA (Samuel 
2007), a density higher than that currently estimated in the 
study area. Certainly moose population density is inherently 
difficult to measure, and estimates are subject to wide vari-
ance and repeatability issues. Further, patterns in forest har-
vesting (Ball 2017) and moose foraging behavior in spring 
and autumn (Healy et al. 2018) likely concentrate tick and 
moose abundance on the landscape, thereby promoting 
locally high infestations that add to a larger regional impact.

The interrelationships and influences of sustained quality 
habitat, moose foraging behavior, tick ecology and climate 
change point to the difficulty in identifying and predict-
ing a threshold balance between moose density and winter 
tick abundance, especially at the southern range boundary 
of moose. And importantly, an epizootic again occurred in 
2018 (60% calf mortality; P. Pekins unpubl.) marking a con-
tinuous 15-year population decline, and four epizootics in 
five years. This trend in successive epizootics would suggest 
the primary effect of climate change is an extended autumnal 
questing period that effectively reduces the threshold density 
of moose associated with high tick abundance and resultant 
epizootics (Jones et al. 2019). Whatever a normal balance is/
was relative to moose density, tick abundance and infestation 
level, an extended larval questing period will allow higher 
infestation levels at lower tick abundance and moose density 
(Healy 2018).

Importantly, population decline is relatively slow because 
adult mortality rates are considered normal (Musante et al. 
2010, Jones  et  al. 2019), yet individuals are not realizing 
optimal growth or productivity (Jones  et  al. 2017), tradi-
tional management goals associated with K. Accelerating 
decline through a more liberalized moose harvest is a pos-
sible means to reduce the impact of winter ticks, ostensibly 
by lowering both moose population density and relative tick 
abundance. Given the availability of quality habitat, a lower 

Figure 2. Population trajectories of the northern New Hampshire moose population under varying probabilities of annual epizootics (0.0, 
0.25, 0.75, 1.0).

Table 5. Elasticity of population growth rate (λ) to changes in moose 
population parameters during epizootic and non-epizootic years.

Parameter Elasticity to λa Elasticity to λb

Calf survival −0.0028 (2) −0.0017 (2)
Yearling survival −0.0018 (4) −0.0011 (3)
Adult survival −0.0084 (1) −0.0079 (1)
Yearling calving 0.0004 (5) NA
Adult calving 0.0025 (3) 0.0011 (3)

Elasticity ranks on absolute values are shown parenthetically.
Relative elasticity to λ was evaluated by varying each parameter ± 
10% of its baseline value; see Table 1. Negative values indicate a 
negative relationship between the parameter and population 
growth.
a Elasticity to changes in ‘non-epizootic’ conditions.
b Elasticity to changes in ‘epizootic’ conditions.
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moose density should yield measurably improved health 
and productivity metrics in the population. When above K, 
hunted populations are often managed through liberal har-
vest (Mercer and McLaren 2002); in essence, this strategy 
recognizes parasitism, not habitat, as a major determinant of 
K. Although somewhat counterintuitive when considering a 
declining population, a reduction in moose density through 
harvest management represents a possible, proactive strategy 
to limit the frequency and associated impacts of epizootics.
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