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Seeding is sometimes used in attempts to increase grass forage production in invaded rangelands, but
insufficient long-term data prevent determining if seeded grasses are likely to become and remain
productive enough to justify this expensive practice. We quantified long-term seeding outcomes in a
widespread Rocky Mountain foothill habitat invaded by leafy spurge (Euphorbia esula L.) and several
exotic grasses. Fourteen yr after seeding, the most productive grass (bluebunch wheatgrass [Pseudor-
oegneria spicata (Pursh) A. Léve]) produced 900 (100, 12 000) kg ha~! [mean (95% CI)], which was about
70% of total plant community biomass. This result was not greatly altered by grazing according to an
unreplicated, grazed experiment adjacent to our replicated ungrazed experiment. Regardless of treat-
ment, E. esula gradually became less productive and seeded and unseeded plots produced similar E. esula
biomass 14 yr after seeding. P. spicata reduced exotic grasses about 85%. Our results resemble those of
another foothills study of another invasive forb (Centaurea stoebe L. ssp. micranthos [Gugler| Hayek) and a
Great Plains study of E. esula, so foothills seeding outcomes seem somewhat insensitive to invader
composition, and seeding can increase forage across much of E. esula’s range. While there is always some
risk seeded grasses will fail to establish, our study combined with past studies identifies invaded habitats
where seeded grasses have a good possibility of forming persistent, productive stands.
Published by Elsevier Inc. on behalf of The Society for Range Management. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

determine their fates. When grasses remain sparse a few years after
seeding (e.g., Piper and Pimm 2002; Fansler and Mangold 2011), it

Invasive plants with poor forage characteristics have replaced
forage grasses on millions of hectares of western US rangelands
(Duncan et al. 2004). Examples include leafy spurge (Euphorbia
esula L.), an invasive forb not typically heavily consumed by cattle,
elk, and deer (Trammell and Butler 1995), and downy brome
(Bromus tectorum L.), an invasive annual grass lacking palatability
and protein content beyond early growth stages (Cook and Harris
1952).

Attempts to increase forage quantity and quality sometimes
involve seeding. Seeding is considered failure prone, though seeded
populations are rarely tracked long enough to conclusively
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is tempting to assume they will remain sparse indefinitely and this
assumption is sometimes correct according to a few longer-term
studies (Ferrell et al. 1998; see fig. 8 of Rinella et al. 2012; Ott et al.
2019). However, in areas infested with sulfur cinquefoil (Potentilla
recta L.), seeded grass cover jumped from 8% to 50% between 3 and
6 yr after seeding (Endress et al. 2007; Endress et al. 2012), and in
areas invaded by spotted knapweed (Centaurea stoebe L. ssp.
micranthos [Gugler] Hayek), seeded grasses went from sparse to
dominant between 2 and 15 yr after seeding (Rinella et al. 2012).
Ottetal.(2019), Prodgers (2013), and Copeland et al. (2019) provide
further examples of seeded grasses gradually increasing. In short,
sparse grass stands are not a good sign a few years after seeding,
but it is not assured stands will remain sparse indefinitely.

On the other hand, productive stands are a good sign early after
seeding, but it is not assured quickly proliferating stands will
remain productive over the long term. After quickly proliferating,
seeded grasses sometimes gradually decline and other times
remain productive for prolonged monitoring periods (5-12 yr)

1550-7424/Published by Elsevier Inc. on behalf of The Society for Range Management. This is an open access article under the CC BY license (http://creativecommons.org/
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(Ferrell et al. 1998; Thacker et al. 2009; Robins et al. 2013; Davies
and Boyd 2018; Stonecipher et al. 2019). When grasses gradually
decline, it is likely a consequence of invaders recovering from
herbicides and/or tillage combined with seeding (e.g., Benz et al.
1999; Metier et al. 2018).

In summary, short-term results are unreliable indicators of long-
term seeding outcomes, so more long-term data are needed to
determine which seeded grasses can flourish in which invaded
environments. The rough fescue (Festuca altaica Trin.) habitat we
studied is prevalent in northern Rocky Mountain foothills (Taylor
1994). Long-term research indicates seeding can return forage
production to foothills invaded by the short-lived, tap-rooted
perennial forb spotted knapweed (C. stoebe L. ssp. micranthos
[Gugler] Hayek) (Rinella et al. 2012), and if this is also true for the
long-lived, rhizomatous weed of this study (E. esula), it will suggest
seeding outcomes are somewhat consistent across invader species.
Finally, long-term research shows seeded grasses can maintain
robust stands in E. esula—invaded northern Great Plains habitats
(Ferrell et al. 1998), and if this is also true for foothill habitats, it will
suggest seeding can reverse forage losses throughout E. esula’s
invasive range.

We seeded five grasses, and previous studies led us to hypoth-
esize one or more of these grasses would be productive 14 yr after
seeding (Ferrell et al. 1998; Rinella et al. 2012). We hypothesized
the most productive grasses would suppress E. esula and exotic
grasses. Grasses were sown with and without herbicide, and based
on Rinella et al. (2012), we hypothesized seeded biomass would
remain greater where herbicide was applied 14 yr earlier.

Methods
Study Area

The study occurred near Lolo, Montana (46°44'7.36"N,
114°1'26.08”"W) on level ground with Bigarm gravely-loam (loamy-
skeletal, mixed, frigid Typic Haploxerolls) soils and 30-yr
(1981-2010) average annual precipitation of 350 mm (Missoula
International Airport, https://www.ncdc.noaa.gov/cdo-web/datatools/
normals). Forb vegetation was E. esula with scattered C. stoebe and
western salsify (Tragopogon dubius Scop). Dominant grasses were
downy brome (Bromus tectorum L.), Japanese brome (Bromus
arvensis L.), bulbous bluegrass (Poa bulbosa L.), and Canada bluegrass
(Poa compressa L.), nonnatives considered to have low forage value.
Scattered native grasses (purple threeawn [Aristida purpurea Nutt.],
green needlegrass [Nassella viridula (Trin.) Barkworth], and bluebunch
wheatgrass [Pseudoroegneria spicata (Pursh) A. Love]) and shrubs
(Artemisia spp.) were present.

Study Design

Six grass seeding treatments (Great Basin wild rye [Leymus
cinereus (Scribn. & Merr.) A. Love], orchardgrass [Dactylis glomerata
L.], thickspike wheatgrass [Elymus lanceolatus (Scribn. & J.G. Sm.)
Gould], big bluegrass [Poa secunda ]. Presl], P. spicata, no grass) and
three herbicide treatments (picloram, imazapic, no herbicide) were
randomly arranged in a split-plot design with grass whole-plot
(4.3 x 13.5 m) and herbicide subplot (4.3 x 4.5 m) factors. In 2002,
treatments were replicated four times inside a 2.4-m tall fence that
excluded cattle, goats, and wildlife, and in 2003, treatments were
replicated once outside the fence to evaluate sensitivity of results to
light grazing.

Seeded forage grasses were perennial and native, except
D. glomerata, which is nonnative. Pure live seed rates resembled
recommended US Department of Agriculture Natural Resources
Conservation Service rates and were 9.5 kg ha~', 3.4 kg ha—', 9.5 kg
ha!, 3.4 kg ha~!, and 13.5 kg ha~! for L. cinereus, D. glomerata,

E. lanceolatus, P. secunda, and P. spicata, respectively (Taliga 2011).
Picloram (0.56 kg a.e. ha~') and imazapic (0.03 kg a.i. ha—!) were
applied with methylated seed oil (2.3 L ha—!) using a backpack
sprayer delivering 130 L ha~l Herbicides were applied mid-
September before killing frost, and grasses were no-till drilled at a
soil depth of 0.6 cm in early November.

Plant Measurement

Current-yr biomass was clipped to ground level within one
random 1.0 x 1.0 m area per plot in late June of the 2nd, 3rd, and
14th yr after seeding, except for the unreplicated experiment,
where clipping occurred the 13th yr. Biomass was sorted into
E. esula, seeded grass, and other species, dried (72 h, 50°C), and
weighed.

Data Analysis

This section concerns the replicated experiment because we
present only unanalyzed raw data from the unreplicated experi-
ment. Data from L. cinereus plots were not analyzed because 33 of
36 L. cinereus values equaled zero. E. esula and other species data
were natural log-transformed and analyzed with a bivariate mixed
effects linear model. Fixed effects were grass species, herbicide,
measurement year, replication, and measurement year x herbicide,
and random effects were grass species x herbicide, grass species x
measurement year, whole plots, and subplots. The seeded grass
model had the same terms, except terms for herbicide effects 14 yr
after seeding were not significant (P > 0.3) and thus excluded. For
grasses, we used a Tobit version of the model because 38% of ob-
servations equaled zero (Chib 1992). We natural log-transformed
non-zeros and assumed zeros represented plots containing < 10.0
kg ha~! of seeded grass. Other cutoff values (2 kg ha—! and 50 kg
ha!) generated similar conclusions. Standard noninformative
Bayesian prior distributions were assigned to all model parameters,
and the posterior distributions of model parameters were simu-
lated using a Gibbs sampling algorithm implemented in Fortran
(Intel Corporation 2013; Gelman et al. 2014). Significance tests were
conducted using samples from the posterior distribution.

Results
Seeded Grasses

In yr 2 and 3, L. cinereus biomass was 0 in all 12 plots, and in yr
14, it was 0 in 9 plots but nevertheless averaged 780 kg ha~! (data
not shown). Herbicides did not affect seeded biomass the 14th yr (P
> 0.1), though herbicides increased seeded grasses appreciably in yr
2 and 3 (Fig. 1). For example, the third yr, P. spicata produced about
el3 = 40 kg ha~! where no herbicide was applied compared with
about 600 kg ha~! where picloram was applied (see Fig. 1). Poa
secunda was usually the least productive grass (see Fig. 1). The 14th
yr, P. spicata produced about e#5 = 900 kg ha~', or 70% of total plant
community biomass, and P. spicata outproduced D. glomerata (P =
0.004), P. secunda (P = 0.001), and likely E. lanceolatus (P = 0.06)
(see Fig. 1). In the 13th yr of the unreplicated experiment,
L. cinereus, D. glomerata, E. lanceolatus, P secunda, and P. spicata
produced 340 kg ha~',0 kg ha~!,30 kg ha—!, 290 kg ha~!, and 2 030
kg ha~1, respectively.

E. esula
In yr 2 and 3, only P. spicata plus herbicide reduced E. esula

(Fig. 2). By yr 14, herbicide and seeding treatments did not affect
E. esula (P > 0.14), although E. esula was naturally less abundant:
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Figure 1. Seeded grass means (symbols) and 95% confidence intervals (bars). There is one estimate per species the 14th yr because herbicides did not significantly impact grasses
that yr (P > 0.30). Within grass species and years, means with a common lowercase letter do not differ, and averaged over herbicide treatments, grasses with a common uppercase
letter do not differ (P > 0.05). Numbers next to symbols are back-transformed values.
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Figure 2. Euphorbia esula means (symbols) and 95% Cls (bars). Only P. spicata—seeded plots are graphed because other grasses did not reduce E. esula. The final study yr is not
graphed because there were no significant differences (P > 0.20). Means with a common letter do not differ (P > 0.05). Numbers next to symbols are back-transformed values.

E. esula comprised about 30% of control plot biomass in yr 14, E. lanceolatus reduced unseeded biomass in imazapic-treated plots
compared with about 55% in yr 2 and 3. (P < 0.04, data not shown).
Unseeded Species (excluding E. esula) Discussion

Only P. spicata reduced unseeded biomass, and it reduced it After 14 yr, all five seeded grasses persisted and P. spicata

about 85% (Fig. 3). An exception is yr 2, when P. secunda and appeared most productive, comprising about 70% of total plant
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community biomass. Similarly, in a study of a C. stoebe—invaded
foothills site, P. spicata proved productive 16 yr after seeding
(Rinella et al. 2012). Our site and the Rinella et al. (2012) site sup-
ported other invaders besides E. esula and C. stoebe, including
B. tectorum and B. arvensis, so P. spicata is capable of boosting forage
production in foothills invaded by a range of weed species. Like our
E. esula—infested foothills site in Montana, E. esula—infested Great
Plains sites in Wyoming maintained robust grass stands > 10 yr
after seeding (Ferrell et al. 1998), so seeding can provide long-term
increases in forage production across much of E. esula‘s invasive
range. Though these results are promising, seeding failures are
nevertheless possible in invaded foothills. For example, P. spicata
and other seeded grasses remained rare throughout one of four
long-term foothills experiments of Rinella et al. (2012).

Unlike Rinella et al. (2012), we did not observe herbicides
benefiting seeded grasses many years after application. Conversely,
herbicides have benefited grasses shortly after application in our
study and other rangeland seeding studies (e.g., Bakker et al. 2003,
but see Wilson et al. 2004). Herbicides likely increase chances
grasses establish and grow large enough to persist.

Seeding to increase forage production is useful only if seeded
species persist with grazing. Unlike our main experiment, our
unreplicated experiment included livestock and wildlife grazing
and seeded biomass was roughly similar between experiments. In
addition, the productive seeded grass stands of Rinella et al. (2012)
and Ferrell et al. (1998) formed with grazing. Seeded grasses can
withstand grazing in invaded foothills and E. esula—invaded habi-
tats more generally.

P. spicata and other seeded grasses did not suppress E. esula over
the long term, though E. esula naturally became less productive
over time. Similarly, in Rinella et al. (2012), P. spicata did not sup-
press C. stoebe over the long term, though T. intermedium reduced
C. stoebe biomass about 90%. In our study, unseeded nonnative
grasses produced more biomass than E. esula and these grasses are
undesirable because they lack palatability and protein most of the
year (Cook and Harris 1952). P. spicata formed productive stands
that reduced undesirable grasses about 85%, and that was the
biggest benefit of seeding in our study.

Implications

Seeding is an option for trying to increase forage production in
invaded rangelands, but it is often unclear if seeded grasses have a
reasonable chance of remaining productive enough to justify this
expensive practice. Combined with two previous long-term

studies, our study shows seeded grasses can boost forage produc-
tion for prolonged periods in a range of E. esula—invaded habitats
and Rocky Mountain foothill habitats supporting multiple invaders
(Ferrell et al. 1998; Rinella et al. 2012). While there is always a risk
seeded grasses will fail to persist, there is a good possibility seeded
grasses will form persistent, productive stands in these habitats.
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