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Abstract: Biological attributes of ecosystems often change nonlinearly as a function of anthropogenic and natural
stress. Plant and animal communities may exhibit zones of change along a stressor gradient that are dispropor-
tionate relative to the incremental change in the stressor. The ability to predict such transitions is essential for
effective management intervention because they may indicate irreversible changes in ecological processes. De-
spite the importance of recognizing transition zones along a stressor gradient, few, if any, investigators have
examined these responses across multiple taxa, and no community threshold studies have been reported at large
geographic scales. We surveyed benthic macroinvertebrate, fish, bird, diatom, and plant communities in coastal
wetlands across a geospatially referenced gradient of anthropogenic stress in the Laurentian Great Lakes. We
used Threshold Indicator Taxon Analysis (Baker and King 2010) to analyze each community’s response to iden-
tify potential zones of disproportionate change in community structure along gradients of major watershed-scale
stress: agriculture and urban/suburban development. Our results show surprising congruence in community
thresholds among different taxonomic groups, particularly with respect to % developed land in the watershed.
We also analyzed uncertainty associated with the community-specific thresholds to understand the ability of
different assemblages to predict stress. The high and congruent sensitivity of assemblages to development dem-
onstrates that watershed-scale stress has discernible effects on all biological communities, with increasing poten-
tial for ecosystem-scale functional changes. These findings have important implications for identifying reference-
condition boundaries and for informing management and policy decisions, in particular, for selecting freshwater
protected areas.
Key words: bioassessment, conservation, wetlands, Great Lakes, multi-assemblage, breakpoint, non-linear
changes, land use

Threshold responses and catastrophic state changes have
been recognized as critical features of biotic communities
and ecosystems (Scheffer and Carpenter 2003, Folke et al.
2004). Feedback mechanisms and emergent behavior on the
scale of ecosystems (e.g., Fauchald 2010), and nonlinearity
in physiological mechanisms underlying stress responses
imply that biological communities may often exhibit thresh-
old changes to environmental factors. Characterization of
threshold responses is important because community shifts,
such as reduced biodiversity or changes in the dominance of
an economically important species, are often undesirable

per se and because they may signal irreversible changes in
underlying ecological processes (Scheffer 2009) and ecosys-
tem function (e.g., Casini et al. 2009).

In general, biodiversity of different taxonomic groups is
weakly correlated (Heino 2010). However, greater congru-
ence of biodiversity could be expected at higher levels of
stress as many species approach limits of environmental
tolerance. Several researchers have examined the relative
importance of environmental stressors in explaining vari-
ability of community composition of different taxonomic
groups, primarily in lotic ecosystems (but see Brazner et al.
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2007a, Niemi et al. 2009, 2011 for lentic examples). Most
studies showed discordance in the responses of different
taxonomic groups (Hirst et al. 2002, Johnson et al. 2006,
Brazner et al. 2007a, Lewis et al. 2007, Johnson and Hering
2009). Understanding the nature of these dissimilar re-
sponses is essential to predicting the impacts of anthropo-
genic stressors on local ecosystems.

An important question is whether large-scale anthro-
pogenic stress results in synchronous thresholds across
taxonomic assemblages or whether taxa respond differen-
tially, leading to complex or chaotic community dynam-
ics that defy prediction. Synchronous responses would
provide critical evidence in support of regulatory and man-
agement frameworks, and lack of such data has been
cited as one of the major issues in application of the eco-
logical thresholds concept in biological conservation (Hug-
gett 2005). Considering different mechanisms underlying
assemblage-specific responses to anthropogenic stress, syn-
chronous threshold responses across several assemblages
would indicate sweeping changes in ecological commu-
nities as many species approach limits of environmen-
tal tolerance and an increasing potential for functional
changes in the ecosystems. Despite rapid development in
this area in the last few years (Dodds et al. 2010), few, if
any, investigators have examined the concordance of com-
munity thresholds across different taxonomic groups and
a common framework for addressing these changes, such as
a well-defined stress gradient (e.g., Allan et al. 2013), is lack-
ing. Predicting nonlinear responses of different asseblages
is essential to forecast the impacts of anthropogenic stress,
understand the trade-offs between biodiversity and devel-
opment (Huggett 2005), inform management- and policy-
relevant issues, and identify priority sites for management
intervention.

The Laurentian Great Lakes coastal wetlands are a suit-
able and relevant ecological system for testing the concor-
dance of community thresholds across taxonomic groups
because they are critical habitats for many biological assem-
blages, they are functionally significant as zones of nutrient
and contaminant processing at the aquatic–terrestrial in-
terface, and most important, they are distributed across a
wide gradient of anthropogenic impact ranging from se-
verely degraded to nearly pristine (Danz et al. 2007). The
responses of Great Lakes coastal wetland communities to
environmental stress are both scientifically interesting and
of crucial importance because of the enormous socioeco-
nomic value of the health of the Great Lakes ecosystem,
which contains 20% of the world’s fresh water and provides
countless ecosystem services ranging from commercial
fisheries to recreation (Niemi and McDonald 2004, Niemi
et al. 2007, Vaccaro and Reid 2011, Allan et al. 2013).

We used extensive multitaxon data sets from coastal
wetlands representing the 762 watersheds bordering the
6044-km mainland shoreline of the US Laurentian Great
Lakes (Danz et al. 2005, 2007, Reavie et al. 2006, Bhagat

et al. 2007, Howe et al. 2007). These data were collected as
part of a multidisciplinary effort to identify community re-
sponses to anthropogenic stress in the Great Lakes coastal
zone (the Great Lakes Environmental Indicators project;
Niemi et al. 2007, Morrice et al. 2008). Here, we relate
ecological stress to community changes observed in 5 dif-
ferent taxonomic groups using Threshold Indicator Taxa
Analysis (TITAN; Baker and King 2010), a change-point
and indicator-species analysis-based approach that inte-
grates responses of many individual taxa to determine cu-
mulative community response along an environmental
stress gradient. Our study is the first attempt to examine
the nonlinearity in responses of lentic assemblages and
to integrate simultaneous responses of several assemblage
types to anthropogenic stress. Our goal was to assess the de-
gree of cross-taxon congruence in response to 2 watershed-
scale anthropogenic stressors (agriculture and development).
More specifically, our objective was to assess whether com-
munity changes in response to large-scale anthropogenic
stressors were similar among the fish, benthic macroin-
vertebrate, bird, wetland plant, and diatom assemblages of
coastal wetlands.

METHODS
Study sites

We sampled coastal wetlands across the US Great
Lakes. We selected wetland sites (n = 101–172, depending
on assemblage; see below) via a stratified random proce-
dure (Danz et al. 2005) to form clusters of coastal water-
sheds that spanned the full range of anthropogenic stress
in the basin. Stressors represented 6 major classes of an-
thropogenic pressure: agriculture, atmospheric deposition,
land cover, population density, point and nonpoint pollu-
tion, and shoreline modification. Our sampling scheme
further accounted for the hydrogeomorphic type of coastal
wetlands, ensuring that each of the 4 geomorphic types
(riverine, palustrine, and lacustrine coastal wetlands, and
embayments) was included in each stress cluster. Most
wetlands were coastal lagoons connected to the main lake,
with well-developed submerged and emergent macrophyte
communities. We distributed sampling effort evenly across
the geomorphic type–stress-gradient combinations and across
the 5 Great Lakes (Fig. 1; Danz et al. 2005).

Stressor variables
The Great Lakes Basin has a long history of anthro-

pogenic activities associated with ecosystem degradation
(Evans 2005). Widespread clear-cutting across the land-
scape in the 1800s affected the entire basin, but later land-
scape disturbances were associated mainly with centers of
population, which radiated from river mouths and estuar-
ies and led to widespread habitat loss in tributaries and nu-
trient and industrial pollutant discharges in river mouths.
The strong gradient of climate and landform (i.e., soil fer-
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tility) differences across the basin largely explain the land-
use patterns that became established in the 20th century,
continue today, and led to dominance of landscapes in the
eastern portion of the basin by intensive agriculture.

We focused on 2 major watershed-scale stressors: % ag-
riculture and % developed land in the watershed. These
stressors serve as surrogates, or indicators, of the degree of
potential human impact in a watershed, and their impact
is mediated through a variety of mechanisms. The advan-
tages of our approach include ability to relate biological re-
sponses to readily available, composite measures of stress,
whereas disadvantages include lack of connection of these
variables to the precise mechanisms responsible for poten-
tial effects. Previous investigators clearly demonstrated that
biotic assemblages in Great Lakes coastal ecosystems are
affected by these stressors (Brazner et al. 2007a, b, Niemi
et al. 2009, 2011), but threshold relationships were not ex-
amined. A detailed description of the procedures used to
characterize watershed-scale anthropogenic stress is avail-
able elsewhere (Hollenhorst et al. 2011). Briefly, Arc-
Hydro® with 10-m Digital Elevation Models was used to
delineate the boundaries of downstream catchments for

each representative watershed and proportions of agricul-
ture and development in those watersheds were derived
from the US Geological Survey National Land Cover Data-
set (2001; http://landcover.usgs.gov/usgslandcover.php).

Stressor covariation
We addressed the confounding influence of geography

caused by profound climatic and geomorphic differences
across the Great Lakes basin (Bailey 1989, Brazner et al.
2007b, Hanowski et al. 2007) by conducting separate analy-
ses for 2 ecological provinces (ecoprovince; described be-
low). The Southern ecoprovince (Province 222, the Eastern
Broadleaf Forest) encompasses all of Lake Erie, southern
Lake Michigan, southern Lake Huron, and western Lake
Ontario (Fig. 1). The dominant stressor in this ecoprovince
is agriculture, but many areas are also heavily affected by
urban development. The Northern ecoprovince (Province
212, the Laurentian Mixed Forest) is less developed overall,
has less productive soils, and encompasses far less agricul-
tural and urban land use. This ecoprovince includes Lake
Superior, the northern parts of Lakes Huron and Michigan,

Figure 1. Distribution of 337 sampling sites in US Great Lakes coastal ecosystems in the Northern (Laurentian Mixed Forest) and
Southern (Eastern Broadleaf Forest) ecological provinces.

960 | Congruence of community thresholds K. E. Kovalenko et al.

Downloaded From: https://complete.bioone.org/journals/Freshwater-Science on 24 Jun 2025
Terms of Use: https://complete.bioone.org/terms-of-use



and far eastern Lake Ontario (Fig. 1). Our sampling sites
covered similar gradients of agriculture (in terms of maxi-
mum range) in both ecoprovinces, but a shorter gradient of
development in the Southern ecoprovince (Table 1).

Ecoprovince-specific analyses showed that % developed
land was not correlated with latitude in either ecoprovince
(p > 0.05). Percent agriculture was correlated with latitude
in the Southern ecoprovince for sites sampled for fish and
benthic macroinvertebrate assemblages and in the North-
ern ecoprovince for sites sampled for diatom assemblages
(fish and macroinvertebrate sites: p < 0.0001, diatoms: p =
0.0002) but not for other assemblage/ecoprovince combi-
nations (p > 0.05). As recommended by Payne et al. (2013)
we ran separate TITAN analyses (Baker and King 2010)
with latitude as the predictor for the specified assemblages
and removed robust latitude indicators from the conse-
quent stressor analyses. To examine robustness of the
results to geographic correlation, we compared change-
point estimates and bootstrapping intervals for models
with and without the taxa influenced by latitude.

We also tested for correlation between the 2 types of
stress with a subset of watersheds sampled for biotic as-
semblages. The 2 stressors were not correlated in the
Northern ecoprovince (p = 0.35), but were negatively cor-
related in the Southern ecoprovince (r = –0.64 to –0.51,
depending on assemblage, p < 0.001 for all assemblages).
The correlation is a natural consequence of high intensity
of land use in the Southern ecoprovince, and the effects of
the 2 stressors could not be partitioned. This correlation
had only a marginal effect on the concordance of commu-
nity thresholds across assemblages within the ecoprovince,
but certainly affected the comparison of responses be-
tween the 2 ecoprovinces.

Biotic community variables
We sampled 5 biological assemblages (birds, fishes, ben-

thic macroinvertebrates, diatom algae, vegetation; Fig. 1)
in 2002 and 2003. We obtained bird data for each sam-
pling unit from 10-min point-count listening surveys at 1

to 5 points within the wetland, each sampled twice during
the June/early-July breeding season (see Howe et al. 1997,
2007 for details). We sampled fishes at each site with 2 sets
of large and small fyke nets set overnight just offshore of
the 2 dominant shoreline land uses (Brady et al. 2007).
Upon net retrieval, we identified fishes to species and re-
leased them. We used D-frame nets to sample benthic
macroinvertebrates and later identified them in the labora-
tory to the highest possible resolution (genus for most
insects). We estimated vegetation cover for each taxon in
randomly selected 1-m2 quadrats (Johnston et al. 2010).
We collected diatoms from natural substrates at 0.5- to
3-m depths with a push corer, Ponar sampler, or by rock
scrubbing (see Reavie et al. 2006 for details). For each as-
semblage, we pooled within-site data to yield 1 data point
per site. Sites sampled for fish and benthic macroinverte-
brates overlapped almost completely, and sites sampled
for other assemblages overlapped somewhat (Fig. 1). Sites
sampled for each assemblage covered similar gradients
of % agriculture but somewhat different gradients for %
developed land (Table 1) related to issues of site accessi-
bility and the need to satisfy conditions for site selection
(e.g., minimum depth for fishing).

Community threshold analysis
We analyzed community responses to landscape stress-

ors with TITAN (King and Baker 2010, Baker and King
2013), which finds values along the stressor gradient where
the greatest community change occurs. This approach com-
bines Indicator Species Analysis (Dufrêne and Legendre
1997) and a multivariate partitioning algorithm to deter-
mine the most reliable indicator values (maximum indi-
cator values [IndVals]) for each taxon at each candidate
change-point along the stress gradient and to retain change-
points with maximum IndVals. As described by Dufrêne
and Legendre (1997), a perfect indicator taxon will occur
only at sites in the same stress category (i.e., it exhibits per-
fect specificity for that category, or stress level), and is ob-
served in every site in this category (i.e., demonstrates com-

Table 1. Range of stressor values for the sites sampled for each of the 5 assemblages. Agriculture and
development are expressed as a percentage of a watershed. Min = minimum, max = maximum.

Assemblage

% agriculture % developed land

Northern Southern Northern Southern

Min Max Min Max Min Max Min Max

Bird 0 78.6 0.1 89.2 0 79.5 4.9 52.6

Fish 0 78.6 0 82.6 0 91.6 4.0 68.2

Invertebrate 0.1 78.6 0 82.6 1.5 69.1 4.0 66.0

Diatom 0.1 84.6 0 83.3 2.2 91.6 5.2 92.9

Vegetation 0.1 78.6 0 82.6 3.3 55.2 6.1 34.2
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plete fidelity for that category, or stress level). Permuta-
tion of sites across the stress gradient is used to determine
the significance of each IndVal. Objective partitioning of
stress-category groups of taxa is achieved by accounting
for uncertainty of taxon-specific change points with boot-
strap replicates. Bootstrapping is further used to character-
ize purity of indicator taxa by the consistency with which
they are assigned to a particular group and indicator re-
liability (consistency of significant IndVal scores across
bootstrap replicates). The TITAN approach uses standard-
ized IndVals (z scores) instead of raw IndVal scores to
facilitate consideration of relatively infrequent taxa that
exhibit strong responses to the stress gradient (Baker and
King 2010).

A community threshold is identified at the point along
a stress gradient at which one observes synchronous
change in abundance of many taxa. The synchronous
change is ascertained by summing all standardized indi-
vidual taxa IndVals by response group for each candidate
change point. The change points with maximum sums of
standardized IndVals are then designated as community
thresholds (see Baker and King 2010 for details). This
method differentiates between taxa responding positively
(z+) or negatively (z–) to the stress gradients. This ap-
proach was demonstrated to be more sensitive than meth-
ods that aggregate taxon responses prior to analysis (Baker
and King 2010, King and Baker 2010, Kail et al. 2012).

For each assemblage, we removed taxa observed at <4
sites from the analysis. The resulting data sets contained
79 bird, 52 fish, 267 diatom, 192 wetland plant, and 99 ben-
thic macroinvertebrate taxa in the Northern ecoprovince,
and 54 bird, 39 fish, 192 diatom, 100 wetland plant, and
100 benthic macroinvertebrate taxa the Southern eco-
province (Table S1). Stressor variables had skewed distri-
butions, in particular in the Northern ecoprovince. How-
ever, recent simulations demonstrated relative insensitivity
of TITAN to data with a much greater degree of skew (Bern-
hardt et al. 2012). We used raw stressor data in all analyses
(as recommended by Baker and King 2013; but see below
for sensitivity analyses), and we log(x)-transformed all taxon-
abundance data prior to analysis. We ran all analyses in
R (version 2.12.2; R Project for Statistical Computing, Vienna,
Austria). We were most interested in responses of taxa
sensitive to environmental disturbance. Therefore, only
z– (sensitive taxa) responses were compared across taxa.
One of the strengths of this method is that sensitive (i.e.,
declining in response to stress) and degraded (increasing
in response to stress) taxon responses are treated sepa-
rately, not averaged for an overall community response.
As recommended in Brenden et al. (2008) and Baker and
King (2010), the stability of threshold solutions was eval-
uated by examining the shape of cumulative threshold fre-
quencies, the width of quantile intervals around change-
point locations, and response shapes of individual taxa.

Responses consistent with community threshold were ex-
pected to have synchronous changes in many taxa rep-
resented by sharp cumulative responses (cumulative thresh-
old frequencies) for many species, with narrow quantile
intervals (5–95% bootstrap quantile interval [QI]) around
individual species change points (Baker and King 2010)
and biologically meaningful taxon responses (Brenden et al.
2008).

Technical discussion of threshold approaches
The recent debate about threshold-identification ap-

proaches and TITAN, in particular, raised issues of in-
consistent terminology, sensitivity of approaches to fre-
quency of observations across the stressor gradients, and
detection of false positives. Baker and King (2013) empha-
sized that TITAN was not designed for detecting single-
species thresholds. Instead, synchrony in response of
multiple taxa, regardless of individual taxon responses, is
evaluated as evidence of a community threshold. TITAN
successfully handled simulated data similar to species data
(i.e., dominated by 0s), and presence of community thresh-
olds was ascertained using additional, independent ap-
proaches (Baker and King 2013). However, the discussion
of the strengths and limitations of this approach is still on-
going.

Most approaches for detection of ecological thresh-
olds are dependent on sample size, magnitude of change,
and frequency of observations across the stressor gradient
(Daily et al. 2012). Most important, bootstrapping is es-
sentially a smoothing operation, so all data-partitioning
approaches that rely on it, such as nonparametric change-
point analysis (nCPA) and TITAN display varying de-
grees of sensitivity to nonuniform distribution of samples
across environmental gradients (Daily et al. 2012). We ad-
dressed this potential problem by examining consistency
in change-point locations for transformed vs raw stressor
data and potential threshold tracking of median stressor
scores. Log(x)-transforming the stressor data altered change-
point locations by only 0.3 and 1.3% for agriculture and
development, respectively, from estimates generated from
raw stressor data. This result was expected because bi-
nary partitioning analyses are typically insensitive to mono-
tonic transformations of the predictor because they oper-
ate on ranks rather than ratio values. Potential bias of this
bootstrapping-based approach to distribution of sites across
stressor gradient could result in threshold values that track
median stressor scores. Therefore, we examined the cor-
respondence between each assemblage’s median value for
each stressor and its community threshold. Across as-
semblages, lengths of gradients of % developed land dif-
fered more than lengths of gradients of % agriculture.
Thus, if thresholds were confounded by distribution of
sites across stressor gradient, we would expect greater
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concordance among community thresholds in response to
agriculture than to development.

RESULTS
Levels of anthropogenic stressors for the sampled coastal

wetlands spanned a gradient from 0.0 to 89.2% agriculture
and 0.0 to 92.9% developed land (Table 1). Synchronous
thresholds were found for % developed land but not for %
agriculture (Fig. 2A, B). Concordant thresholds in com-
munity composition in stress-sensitive (z–) taxa for the
5 taxonomic groups occurred at 4 to 6% developed land
in the watershed in the Northern ecoprovince and 7 to
10% in the Southern ecoprovince (Fig. 2A). Wider empir-
ical confidence intervals (i.e., QIs) in community thresh-
olds among the 5 assemblages were observed in response
to % agriculture than to % developed land. Average thresh-

olds for % agriculture differed among the 5 assemblages,
but the QIs overlapped (Fig. 2B). Thresholds for diatom
and fish assemblages occurred at substantially lower % agri-
culture than those for bird and benthic macroinvertebrate
assemblages (Fig. 2B). The community thresholds identi-
fied differed between ecoprovinces. For all assemblages,
thresholds occurred at higher levels of % developed land
and % agriculture in the Southern than in the Northern
ecoprovince (Fig. 2A, B).

Threshold identification
Confidence in the existence of community breakpoints

was greatest for the % developed land stressor. This con-
fidence was supported by the steepness of cumulative
threshold frequency curves (Fig. S1A, B); the number of
significant (Fig. S2A), pure, and reliable (i.e., consistently
assigned to a particular group and with consistently sig-
nificant IndVals across bootstrap replicates) indicators;
QIs associated with individual taxa (Fig. 3A–E); and in-
dividual taxa–stressor relationships (Fig. S3). However,
birds in the Southern ecoprovince (Fig. 3I) and fishes in
the Northern ecoprovince (Fig. 3A) were exceptions to
this trend because the location of the change point was
based on a very small number of reliable indicator taxa. In
contrast to the sensitive-community responses, degraded
communities exhibited more-gradual changes in response
to stress (Fig. S1A, B).

Along the % agriculture stressor gradient in the North-
ern ecoprovince, 4 of the 5 assemblages exhibited threshold-
consistent responses characterized by steep cumulative
threshold frequency curves (Fig. S1C) and many reliable
indicator taxa with narrow (0.05–0.95) QIs (Fig. 4A, C–
E). The macroinvertebrate assemblage did not have a
sufficient number of reliable indicator taxa and did not
yield steep cumulative frequency curves characteristic of
a typical threshold response (Fig. 4B, Fig. S1C). Along the
% agriculture stressor gradient in the Southern ecoprovince,
responses of all assemblages were inconsistent with the
threshold model based on the criteria described above
(Fig. 4F–J, Fig. S2B), possibly because the 2 stressors
were confounded and because of the scarcity of relatively
pristine watersheds (see Discussion).

No matches were found between stressor medians and
community thresholds (Table S2), indicating that this
method is relatively robust to the distribution of sites across
the stress gradients. This situation is most obvious for %
agriculture, where median values of the stressor were rela-
tively consistent across assemblages, whereas thresholds
were very different. This difference seemed a bit smaller
for % developed land because of congruent thresholds, but
large (e.g., 13 sites for diatoms) and inconsistent differ-
ences existed between sites with median % development
and sites with % development at community threshold.

Figure 2. Thresholds (0.05–0.95 bootstrap quantile intervals
[QIs]) for coastal fish, invertebrate, bird, diatom and wetland
plant community thresholds in response to % developed land
(A) and % agriculture (B) in the watershed for the Northern
and Southern ecoprovinces of the Great Lakes. QIs can be
asymmetrical because of skewed distribution of bootstrapped
replicates. Veg = vegetation, Inverts = macroinvertebrates.
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Figure 3. Change-points (0.05–0.95 bootstrap quantile intervals [QIs]) for significant sensitive indicator fish (A, F), invertebrate
(B, G), diatom (C, H), bird (D, I), and vegetation (E, J) taxa along the stressor gradient % developed land in the Northern (A–E) and
Southern (F–J) province that contribute to threshold determination. Responses consistent with the threshold model are characterized
by a large number of individual indicators and narrow QIs around their change points. Indicator value p-value cut-off = 0.05; purity
and reliability cut-offs = 0.8. Identity of indicator taxa is not discussed in this paper. Note that representation of z+ (tolerant)
indicator responses (grey), although not discussed in the context of this paper, is important for comparison of results across methods
and systems. The scale reflects the entire overall range of the stressor gradients.
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Figure 4. Change-points (0.05–0.95 bootstrap quantile intervals [QIs]) for significant sensitive indicator fish (A, F), invertebrate
(B, G), diatom (C, H), bird (D, I), and vegetation (E, J) taxa along the stressor gradient % agriculture in the Northern (A–E) and
Southern (F–J) province. See Fig. 3 for explanation of figure.
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Community thresholds tended to be lower than the me-
dian % development.

Geographic covariation
For data sets with significant confounding between %

agriculture and latitude, we repeated the analyses without
the taxa responding to the latitudinal gradient. For dia-
toms in the Northern ecoprovince, when all species with
significant responses to latitudinal gradient were excluded
from the analysis (17 out of 40 robust indicators), no de-
tectable difference was seen in the resulting community
threshold, but the 5 to 95% QI decreased by 20%. For fish
in the Southern ecoprovince, we removed 1 of 3 robust
indicators and found no detectable change in the average
change-point or the QI. For the benthic macroinverte-
brate assemblage, we removed 14 of 27 robust indicators
and found no change in the average change-point, but the
QI decreased by 40%. These results indicate that observed
community thresholds and their concordance across as-
semblages reported above are robust to the confounding
effect of latitude on agriculture, where it existed.

DISCUSSION
The % developed land in a watershed at which com-

munity thresholds occurred was consistent across stress-
sensitive taxa from 5 assemblage types: birds, fish, benthic
macroinvertebrates, wetland vegetation, and diatoms. The
approximate location of these thresholds along the stressor
gradient agrees well with previous findings that changes in
benthic macroinvertebrate and fish communities occur at
low to very low (1–5%) levels of urbanization or impervious
land cover associated with development (Wang et al. 2000,
Stepenuck et al. 2002, Baker and King 2010, Hilderbrand
et al. 2010, King et al. 2011, Utz and Hillderbrand 2011,
Kail et al. 2012). Our threshold estimates for these 2 as-
semblages were slightly higher than 1 to 5% developed land,
but still similar to published values given the length of the
development gradient (0–92%).

Various approaches have been used to characterize com-
munity thresholds (e.g., Booth and Jackson 1997, Wang
et al. 2000, Qian et al. 2004, Trebitz 2012). Utz et al. (2009)
used cumulative frequency distributions to detect similar
responses to development in stream macroinvertebrates.
Gradient-boosted generalized linear models detected de-
creased macroinvertebrate richness in small streams drain-
ing watersheds with >3% impervious cover (Maloney et al.
2012). Threshold detection approaches have been a sub-
ject of recent controversy (Cuffney et al. 2011, Daily et al.
2012, but see Baker and King 2013), but the consistency of
findings across methods, systems, and taxa is very encour-
aging and increases our confidence in the existence of a
threshold response and its location along the stressor gra-
dient. Documentation of such biological sensitivity to de-

velopment has been used to justify the importance of cre-
ating protected areas in streams (Hilderbrand et al. 2010),
a scenario that may need to be considered for coastal and
lacustrine systems as well. This sensitivity of assemblages
also emphasizes the need for additional research on local
habitat factors that could mitigate watershed-scale an-
thropogenic stress and on interactions between local- and
watershed-scale factors in light of climate-change scenar-
ios (e.g., Wiley et al. 2010).

Our findings support the conjecture that anthropogenic
stress, particularly in the form of development, in water-
sheds exerts strong effects on ecological communities of
coastal wetlands in the Laurentian Great Lakes (Brazner
et al. 2007a, Niemi et al. 2011). In the Southern ecoprov-
ince, strong responses to development were observed de-
spite the negative correlation between development and
agriculture, although absence of pristine habitats and their
associated assemblages could have led to higher thresholds
in the south than in the north. The mechanisms behind
the effects of development on the resident communities
may include pollutant and sediment discharge, increasing
amount of impervious surfaces, and direct habitat destruc-
tion (reviewed in Allan 2004). A suite of factors acting on
multiple scales (Brazner et al. 2007a) could have led to the
observed congruence of thresholds across communities.
Threshold congruence also could be caused by integration
of the effects of watershed-scale stressors at the local scale.
For example, watershed-scale degradation in water quality
and disturbance of vegetation associated with increasing
agriculture and development lead to consistent local-scale
stressors on associated diatom (via water quality) and bird,
fish, and macroinvertebrate communities (via habitat deg-
radation). Aquatic and nearshore wetland vegetation is
particularly important for persistence of wetland commu-
nities, and its destruction has cascading effects on wetland
communities (Uzarski et al. 2009) by removing the struc-
tural matrix on which many assemblages rely (Diehl and
Kornijów 1997, Kovalenko et al. 2012). King et al. (2011)
argued that nonlinear responses are characteristic of as-
semblages facing novel stressors, such as those associated
with changes in water quality or hydrology subsequent to
development. Regardless of the mechanism, such congru-
ence could indicate the presence of a true ecosystem thresh-
old when changes in several biological assemblages occur
around the same stressor value.

Communities could be less sensitive to % agriculture
in the watershed than to the more-direct habitat distur-
bance associated with increasing development, especially
if some mediating local factors, such as riparian buffers or
other best-management practices, are in place. Many stud-
ies have demonstrated sensitivity of terrestrial birds and
other taxa to habitat loss and fragmentation in developed
landscapes. In some cases (Palomino and Carrascal 2007,
Garaffa et al. 2009), species exhibited threshold responses
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to landscape degradation. However, these studies illus-
trated changes associated with displacement of habitat
by agriculture or urbanization. The effects of agricultural
activities on coastal wetlands may be more indirect and,
therefore, less likely to be manifested as threshold responses.
For example, DeLuca et al. (2004) documented thresh-
old changes in marsh bird assemblages of Chesapeake
Bay in response to human land use, but the effects were
seen at local scales, not at the watershed scale. Agricul-
tural stressors act through a variety of mechanisms, includ-
ing sediment and fertilizer run-off and nonpoint source
pollution (reviewed in Allan 2004). Previous studies also
showed a wide range of responses, absence of clear com-
munity thresholds, or changes that were noticeable only
when most of the land was converted to agriculture (e.g.,
Wang et al. 2000, Allan 2004, Riseng et al. 2011). In the
case of our data, the absence of truly pristine locations
in the Southern ecoprovince, a consequence of a long his-
tory of agricultural land use, and covariation of the de-
velopmental and agricultural stress gradients may have
contributed to absence of threshold responses to stress in
associated communities.

The interprovince differences in stress thresholds in
our study correspond with biogeographical differences in
associated communities and their sensitivity to the stress
gradient. For instance, diatom assemblages in the South-
ern ecoprovince are tolerant to the contemporary environ-
mental stress in the region, such as higher nutrient con-
centrations, so a threshold was observed at a higher level
of stress than for the Northern ecoprovince. Hanowski
et al. (2007) noted that the composition of coastal wetland
bird communities differs substantially between North-
ern and Southern ecoprovinces of the Great Lakes. Other
investigators have found large differences in macroinver-
tebrate communities in rivers on and off the Precambrian
shield (Neff and Jackson 2011) and in catchments across
mountain, piedmont, and coastal physiogeographies in
the Mid-Atlantic region (King et al. 2011). Human land
use is often correlated with natural latitudinal gradients
(reviewed in Allan 2004), but for the within-ecoprovince
analyses, we demonstrated that land use had an overriding
effect on community thresholds when agricultural land
use and latitude were significantly correlated. In an analy-
sis of communities along the US coast of Lake Superior,
where latitudinal variation is minimal, Niemi et al. (2011)
showed that at least some of the observed variation was
associated with gradients of agricultural and urban devel-
opment.

We are unaware of other analyses of congruence in
community threshold responses, so we are unable to com-
pare our results to patterns in other systems. However, the
threshold congruence patterns observed in our study run
contrary to previously reported diversity trends among dif-
ferent taxa. Most investigators have shown discordance in

the responses of different taxonomic groups (Hirst et al.
2002, Johnson et al. 2006, Brazner 2007a, Lewis et al. 2007,
Johnson and Hering 2009). Fahrig (2001) simulated thresh-
old responses of birds and other organisms to habitat loss,
but she expected these thresholds to be asynchronous
among species and species groups. Stralberg et al. (2009)
predicted that varying responses of bird species to climate
change would lead to novel community assemblages, and
this lack of congruence would be expected to generate
even greater differences in multitaxon assemblages. In a
recent review, Heino (2010) reported low correspondence
in diversity among various taxonomic groups across all
freshwater systems and taxa, a result that limits application
of cross-taxon congruence in conservation (i.e., use of cer-
tain assemblages as a proxy for others). Similarly low con-
cordance in biodiversity was observed in a meta-analysis of
biodiversity trends among terrestrial taxa (Flather et al.
1997). The difference between community thresholds and
biodiversity trends might be explained by the fact that ag-
gregate metrics, such as biodiversity, are confounded by
synchronous changes in sensitive and tolerant taxa (King
et al. 2011, Baker and King 2013).

Application of thresholds in management is compli-
cated by uncertainties associated with their predicted
location along the stressor gradient and, in most cases,
limited understanding of the mechanisms underlying a
system’s response (Groffman et al. 2006, Dodds et al. 2010).
The most promising warning signals of ecosystem thresh-
olds are increasing autocorrelation (Scheffer et al. 2009)
and variance (Carpenter and Brock 2006) in the system’s
pattern of fluctuations over time. Elucidating such pat-
terns requires long-term data to distinguish proximity to
a threshold from natural variability in system’s response
(Andersen et al. 2009). Thresholds associated with com-
munity shifts can be especially difficult to detect because
of inherent variability in community composition and prob-
lems with detectability of less-common species. In our case,
threshold similarity across different assemblages increases
our confidence in its location. On the other hand, despite
a relatively strong concordance in responses of different
taxa, uncertainty associated with the response of each
taxon (5–95% QIs) leads us to recommend a multitaxon
approach rather than use of a particular assemblage as an
indicator for all other groups to increase confidence in iden-
tifying environmental thresholds. This recommendation is
consistent with those of many assessment programs (e.g.,
Barbour et al. 1999).

Changes in assemblage composition in response to de-
velopment stress were more consistent with the threshold
model than were changes in response to stress associated
with agriculture. Nevertheless, with its limitations explic-
itly acknowledged, our approach can be used to infer the
extent of environmental disturbance that is likely to cause
significant changes in community composition. Therefore,
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this approach can be used to inform watershed-restoration
and landuse-planning decisions. Such information is espe-
cially valuable for identifying sites at greatest risk of signifi-
cant change. Sites at risk that have not yet approached the
threshold could be designated as priority sites for manage-
ment intervention. Concordant changes in several commu-
nities emphasize the risk of functional changes in ecosys-
tems and the need for management action. Furthermore,
concerns regarding concurrent changes in several assem-
blages, some more charismatic than others, are easier to
convey to stakeholders than concerns about a precipitous
decline in a particular group for which public awareness
may be nearly nonexistent.

Our analyses of Great Lakes coastal wetlands indicate
that a relatively large number of sites are subject to levels of
anthropogenic stress above that necessary to elicit a thresh-
old response. This conclusion is not surprising, especially
in the Southern ecoprovince, because of high population
density, a long history of settlement and agriculture, and
anthropogenic pressure on the Great Lakes coastal ecosys-
tem. A combination of our results and the entire set of
Great Lakes watershed-level stress scores (http://beaver
.nrri.umn.edu/gleidb/gleidb/gdb_main) can be used to iden-
tify areas that must be prioritized for management inter-
vention to sustain biological communities associated with
minimally degraded conditions. These results could be
used to make long-term projections of watershed-scale
changes on resident biological communities.

In summary, we detected congruent, marked changes in
bird, fish, benthic macroinvertebrate, wetland plant, and di-
atom assemblage composition in response to watershed de-
velopment across the Great Lakes coastal margin. Cross-
taxon responses to agricultural stress were less congruent
but still overlapped. Our results indicate that watershed-
scale anthropogenic stress leads to pronounced simulta-
neous changes in many biotic assemblages, with potential
for nonlinear functional changes in aquatic ecosystems.
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