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REFERENCE CONDITION APPROACH

Using Test Site Analysis and two nearest neighbor
models, ANNA and RDA, to assess benthic
communities with simulated impacts

Chantal L. Sarrazin-Delay’*, Keith M. Somers®®, and John L. Bailey*"®

1Living with Lakes Center, Laurentian University, Sudbury, Ontario, Canada, P3E 2C6

?Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, Ontario, Canada,
POA 1EO

®Living with Lakes Center, Ontario Ministry of the Environment and Climate Change, Sudbury, Ontario, Canada, P3E 2C6

Abstract: Reference Condition Approach bioassessment programs have been in place in the northern and Muskoka
regions of Ontario, Canada, for many years. Assessments are carried out regularly to evaluate and monitor the
effects of a variety of activities, including mining, forestry, and cottage development. These programs are run by
the Co-operative Freshwater Ecology Unit (CFEU) at Laurentian University in Sudbury, Canada, and the Dorset
Environmental Science Centre (DESC) in Muskoka, Canada. We applied 2 bioassessment methods used at the
CFEU and DESC to 3 data sets that were subjected to simulated impact by nutrient enrichments to compare
their performance with a number of other bioassessment methods. We used Assessment by Nearest Neighbour Anal-
ysis (ANNA) and a Redundancy Analysis (RDA) variation of ANNA with Test Site Analysis (TSA) to identify subsets
of reference sites to compare with a given simulated impact test site based on habitat matching. We compared the
benthic macroinvertebrate (BMI) communities and evaluated the differences between the validation and training
sites to assess the degree of impairment. After assessing all impacted sites, we calculated Type 1 and Type 2 error
rates. ANNA and RDA separated sites with different levels of simulated impact in an Australian data set of
diverse benthic macroinvertebrate communities distributed along a habitat gradient. In contrast, our assessments did
not perform well with 2 data sets for which the simulation did not behave as expected, perhaps because of impover-
ished communities.

Key words: reference condition, benthic macroinvertebrates, Assessment by Nearest Neighbour, redundancy
analysis, simulated impact

The Canadian Fisheries Act (FA) provides protection for
fish and their habitat. As part of the Environmental Effects
Monitoring (EEM) requirements of the Metal Mining Ef-
fluent Regulations of the FA, mining companies are re-
quired to monitor the biological effects of their discharge
on receiving waters. This requirement includes monitoring
the benthic macroinvertebrate (BMI) community (Walker
et al. 2003). BMI communities from sites exposed to mine
effluent are compared to communities from unexposed ref-
erence areas and an effect is defined as a statistically sig-
nificant difference between exposed and unexposed com-
munities (Glozier et al. 2002).

An increasingly used study design for such comparisons
is the Reference Condition Approach (RCA) in which a
database is developed of reference sites where human dis-

turbance has been minimal, i.e., no point-source pollution,
logging activity, etc. (Simon 1991, Omernik 1995). Habitat
is used to match an exposed site to a number of reference
sites, and the BMI community at the test site of interest is
compared to that found at the appropriate reference sites
(Bailey et al. 2004, Bowman and Somers 2005).

These types of assessments are used in Ontario by the
Ontario Benthos Biomonitoring Network (OBBN) (Jones
et al. 2005) at the Dorset Environmental Centre and the
Freshwater Invertebrate Research Network of Northern On-
tario (FIRNNO) (Reynoldson et al. 2005, Sarrazin-Delay et al.
2006) at the Cooperative Freshwater Ecology Unit. These
networks were established to define reference conditions
for benthos in Ontario. The resultant RCA databases in-
clude BMI abundance data, water chemistry and site-, chan-
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nel-, and watershed-level habitat data for hundreds of refer-
ence and test sites. The habitat variables are used at the site-
matching step of RCA assessment (Bowman and Somers
2005). In the Benthic Assessment of Sediment (BEAST)
approach, clustering based on BMI followed by Discrimi-
nant Functions Analysis (DFA) is used as the site-matching
strategy (Reynoldson et al. 1995, 1997). The BEAST ap-
proach assumes discrete groupings of reference sites, but in
reality, BMI communities may span a continuum. As a re-
sult, test sites may be classified into the incorrect cluster of
reference sites (Bowman and Somers 2005). A similar clus-
tering method is used for Australian River Assessment Sys-
tem (AUSRIVAS; Simpson and Norris 2000). In contrast,
groups of reference sites are not assumed in the Assessment
by Nearest Neighbour Analysis (ANNA; Linke et al. 2005).
In ANNA, the test-site BMI community is simply com-
pared to the BMIs from reference sites that most resemble
the test site with respect to their habitat variables. Broadly,
ANNA involves: 1) matching a test site to appropriate ref-
erence sites based on closest distance in multivariate habi-
tat space, its nearest neighbors (NNs), and 2) comparison
of the BMI community at a test site to the communities
from the matched NN subset of reference sites to deter-
mine degree of impairment. In general, ANNA modeling is
simple, requires fewer steps than BEAST and AUSRIVAS,
and is conducive to incorporating new reference data as they
become available.

The BEAST and AUSRIVAS approaches are based on
the assumption that clusters or types of BMI communities
exist at reference sites, whereas the ANNA approach as-
sumes that the reference sites belong to 1 large group. BMI
communities from reference sites also can span a gradient
of habitat conditions (Bailey et al. 1998). Multivariate meth-
ods that model community changes along gradients are
available (Legendre and Legendre 1998). Redundancy Anal-
ysis (RDA) or Canonical Correspondence Analysis (CCA)
could be used to model community—habitat relationships
and subsequently to match test sites with neighboring ref-
erence sites (Verdonschot 1995, Bowman and Somers 2005).
As a complement to ANNA, we used RDA to model the
community—habitat relationship for reference sites and used
these models to select NNs to evaluate test sites, much like
the ANNA approach.

We applied ANNA and RDA assessments to 3 data
sets as part of a collection of studies in which the ability of
commonly used bioassessment methods to correctly clas-
sify sites with simulated enrichment impacts was evaluated
(Bailey et al. 2014). Simulated impacts of varying severity
were applied to reference-site data by deliberately altering
abundance and richness of macroinvertebrates from a ran-
domly selected subset of reference sites as described by
Bailey et al. (2014). We assessed reference sites with 1 of
4 levels of simulated impacts (none to severe) with a series
of biological metrics in a Test Site Analysis (TSA; Bowman
and Somers 2006). A test site was deemed to be impaired
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when any of the metrics fell outside the normal range for
the reference sites (e.g., Kilgour et al. 1998, Glozier et al.
2002). We used the 3 data sets to evaluate the ability of
ANNA and RDA methods to assess impaired sites correctly.

METHODS
Data sets

Data consisted of BMI and habitat data from 3 inde-
pendent data sets from Yukon Territory (YT) streams, Lau-
rentian Great Lakes (GL) nearshore areas, and Australian
Capital Territory (ACT) streams (Bailey et al. 2014). We
selected data sets from areas that differed in geography and
habitat and that were obtained with differing sampling meth-
ods to test the various assessment methods rigorously.

YT data set In the Yukon region of northern Canada,
BMIs were sampled with a travelling kick-and-sweep tech-
nique at 158 reference streams between 2004 and 2006. Sam-
ples were subsampled in the laboratory to a fixed 300-count
with abundance values extrapolated to the entire sample.
Forty-two habitat variables were recorded at each site.

GL data set Great Lakes nearshore lake sites were sam-
pled over the period of 1991 to 2010 with a box core, mini-
box core, or Ponar sampler and subsequently corrected for
area sampled. Entire samples were counted; when excessive
amounts of material were encountered, subsampling was
done using a Marchant box with fixed count of 200 prior to
2000 and 300 in subsequent years. Fixed count data were
scaled up to the whole sample and expressed /m? Twenty-
five variables were used to characterize the habitat of the
164 reference lake sites.

ACT data set Australian Capital Territory reference-
stream riffle sites were sampled in spring 1994 and 1995
with a 10-m-long kick-and-sweep method. Samples were
subsampled to a minimum 200 count and BMIs were ex-
pressed as relative abundance. Data were not scaled to the
entire sample. In this case, 26 habitat variables were re-
corded for each of the 107 sites.

Simulated impacts

For each data set, a subset (40 for YT and GL, 20 for
ACT) of the reference sites was randomly selected to be
assessed as test (validation) sites. Each of these sites was
subjected to 4 levels of simulated impact to create 4 sets
of validation sites in which abundance and richness had
been altered to simulate the effects of no (D0), mild
(D1), moderate (D2), and severe (D3) enrichment of each
site (Table 1; Bailey et al. 2014). The simulated impacts
preferentially removed sensitive families at progressively
stronger levels. Taxon tolerances used to alter the BMI
data were based on the Hilsenhoff family-level tolerance
value (TV; Hilsenhoff 1988) for North American sites



Table 1. Simulated impact treatment applied to minimally
disturbed validation sites to create 4 levels of disturbance.

Effects were applied to sensitive, intermediate, and tolerant
families in benthic macroinvertebrate communities.

Impact
severity Code

Effects applied to validation
minimally disturbed sites

Unimpacted DO  None
Mild D1 Sensitive: —25% abundance, —10% taxa
Intermediate: unchanged

Tolerant: +75% abundance

Moderate D2  Sensitive: —75% abundance, —50% taxa
Intermediate: —50% abundance, —20% taxa
Tolerant: —25% abundance, —10% taxa
Sensitive: —100% taxa

Intermediate: —75% abundance, —50% of
taxa

Tolerant: —50% abundance, —20% taxa

Severe D3

(YT, GL) or Stream Invertebrate Grade Number (SIGNAL)
tolerance value (Chessman et al. 1997) for ACT sites. Sen-
sitive taxa had TV 1—-4 or SIGNAL 7-10, intermediate had
TV 5-6 or SIGNAL 4-6, and tolerant had TV 7-10 or
SIGNAL 1-3.

Data preparation

For each data set, we prepared the habitat data by re-
placing missing values for the habitat variables with the
mean value of the variable, removing outliers, and center-
ing and standardizing variables (Fig. 1). We did not in-
clude habitat variables related to the simulated enrich-
ment impact in the analyses. In the GL data set, water
nutrients, dissolved O,, and temperature at the lake bot-
tom were excluded. The GL data set also had an outlier
that was excluded, site 1216. This site was the only one
with a coarse substrate consisting of gravel and sand,
whereas substrate at all other sites consisted of silt and
sand. We included all ACT and YT habitat and BMI data
in modeling and site assessment.

Site matching

Site matching is central to the RCA. We used 2 site-
selection methods: ANNA and RDA. For both methods,
the 1° step was to reduce the habitat variables to a set of
linearly uncorrelated variables with principal components
analysis (PCA; Fig. 1). We centered and standardized the
habitat data (z-score) then used the Biplot add-in in Excel
2007 (Microsoft, Redmond, Washington; Lipkovich and
Smith 2001) to run the PCAs. We used the broken-stick
model (Jackson 1993) to determine the number of non-
trivial axes to retain for site matching. For ANNA, Euclid-
ean distance of nontrivial PCA axis scores between each
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validation site and all of the training sites was used to
select 30 NNs. In other words, the 30 training sites closest
to a validation site in habitat ordination space were se-
lected to assess the validation site.

For the RDA, we used the same PCA scores in multi-
ple regressions with each of the 4 Environmental Effects
Monitoring (EEM) metrics (density, family richness, even-
ness, and Bray—Curtis distance) as the dependent variables
(i.e., Metric; = by + byxy + boxs + . .. b,x,, , where x,, values
are the habitat PCA axis scores and b,, values are the
slopes) to calculate the expected (predicted) metric values
for each training site. We rotated the predicted training-
site values using PCA to produce RDA scores (Legendre
and Legendre 1998) and projected the predicted validation-
site values onto the RDA ordination. We used Euclidean
distance between each validation site and all of the training
sites in the RDA to identify the 30 NNs. The Euclidean
distance was weighted by explained variation for each of the
axes. Therefore, the axis that explained most of the varia-
tions weighed more heavily on the results.

Community metrics

We calculated 4 summary metrics (as described by the
EEM program; Walker et al. 2003) for the training and
validation sites: total BMI density, family richness, Simp-
son’s evenness (0 = community dominated by 1 or 2 fam-
ilies, 1 = even distribution of families), and Bray—Curtis
distance (0 = same community, 1 = different community)
(Fig. 1; Glozier et al. 2002). In the case of YT and ACT
data sets, timed sampling did not allow calculation of
density, so abundance, standardized by sampling effort,
was used. For the sake of simplicity, future reference to
this metric, regardless of data set, will be referred to as
density. Assumptions of normality were satisfied by using
log,o(density). Transformation was not necessary for rich-
ness, evenness, and Bray—Curtis distance.

TSA

Thirty training-site NNs for each validation site were
used to calculate the NN mean for each of the biological
metrics (Fig. 1). We defined the effect size (ES) as the value
for a validation-site metric falling outside the normal range
of variation among the 30 NNs (mean + 2 SD, 30 NNs), i.e.,
outside the cloud enclosing 95% of the variation in the NN
sites as described by Kilgour et al. (1998). The ES was cal-
culated as (X,;—X xn)/SDany Where X, is the metric value
for the validation site, X n;y is the mean metric value for the
30 NN, and SDpy is the standard deviation of the 30 NNs.
The univariate noncentral F test (ES > normal range), cal-
culated using the zface add-in (Excel 2007; Microsoft, Red-
mond, Washington; Lenth 2003), was used as a measure of
the overall biological difference between each validation site
and its NNs for each of the metrics. This approach is called
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Data sets -YT, GL, ACT

Remove variables affected by impact
Remove outliers
Center and standardize (z-scores)

PCA of habitat variable z-scores
(all training sites and validation sites)
Select non-trivial axes (broken-stick model)

RDA - Redundancy Analysis

training site metric-habitat linear
relationship

Multivariate multiple regression of
habitat PCA scores (RDA)

Project validation sites onto training
RDA using habitat data

Identify 30 NNs - smallest Euclidean
distance in RDA space

Calculate density, richness,
evenness and Bray-Curtis

Habitat Data
Preparation
PCA
|
ANNA - Nearest Neighbour
in habitat PCA space
NN selection
Identify 30 NNs - smallest Euclidean
distance in PCA space
- Calculate density, richness,
Metrics evenness and Bray-Curtis
Univariate, metric non-central F
Assessment ES > normal range

Univariate, metric non-central F
ES > normal range

Figure 1. Flow chart describing steps used in the bioassessment of simulated impact sites using Assessment by Nearest Neighbour
Analysis (ANNA) and Redundancy Analysis (RDA) in the Reference Condition Approach context. YT = Yukon Territory, GL = Laurentian
Great Lakes, ACT = Australian Capital Territory, PCA = principal components analysis, NN = nearest neighbor, ES = effect size.

Test Site Analysis (TSA; Bowman et al. 2003, Bowman and
Somers 2006). As per EEM requirements, a test site was
assessed as impaired if its BMI community fell outside of
the normal range for any one of the EEM biological end-
points based on the 30 NNs.

RESULTS
PCA ordinations and site matching

Four nontrivial axes explained 57.8% of the variation
for the YT data set (Table S1, Fig. 2A—C). A geography/
climate gradient was evident on axis 1, with latitude and
June temperature loading negatively and longitude and
January snowfall and temperature loading positively. Cli-
mate and watershed-scale variables, including precipita-
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tion, June temperatures, stream order, and perimeter of
the upstream watershed, loaded on axis 2. A climate/geol-
ogy gradient involving June and total rainfall and sedi-
mentary geology characterized axis 3. Axis 4 captured a
watershed size gradient with drainage area, perimeter,
stream length and wetted width loading on this axis. Sites
were clustered in site-score plots, especially on plots of
axes 1 and 2 (Fig. 2A) and of axes 1 and 3 (Fig. 2B), which
were heavily loaded with climate/geography variables. The
validation sites fell within the scatter of the training sites
on all axes. For each of the validation sites, 30 NNs were
selected to assess the BMI community.

The GL PCA (Table S2, Fig. 3A, B) had 3 nontrivial
axes that explained 56.1% of the variation in the habitat.
Axis 1 presented a nutrient/substrate size gradient with
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Figure 2. Yukon Territory habitat ordination plots showing
site principal components analysis (PCA) scores for PC2 vs
PC1 (A), PC3 vs PC1 (B), and PC4 vs PC1 (C). See Table S1
for loading scores and habitat variable codes. Numbers in
parentheses are % variation explained by the axis. Vectors
indicate strength of relationship of habitat variables with the
PC axis.
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Figure 3. Laurentian Great Lakes habitat ordination plots
showing site principal components analysis (PCA) scores for
PC2 vs PC1 (A) and PC3 vs PC1 (B). See Table S2 for loading
scores and habitat variable codes. Numbers in parentheses are
% variation explained by the axis. Vectors indicate strength of
relationship of habitat variables with the PC axis.

sediment nutrients and % silt loading positively and sub-
strate size (% sand and particle size) loading negatively.
On axis 2, latitude and Al/Ca gradients were evident
with Al,Os, Fe,Os, and clay loading positively and alka-
linity and CaO loading negatively. Axis 3 was character-
ized by longitude and sediment chemistry (P,Os, MnO,
and K,O). Plots of these PCA scores revealed a continu-
ous distribution or single group of training and validation
sites. All validation sites fell within the scatter for the
training sites. Within this group, 30 NN were selected for
each validation site.

For the ACT data set (Table S3, Fig. 4A—C), 4 PCA axes
explained 60.2% of the variance. The 1** axis captured a
substrate/flow gradient with cobble, boulder, and water ve-
locity loading positively and gravel loading negatively. Axis
2 reflected watershed size characteristics (stream order,
distance from source, watershed area, bank width) and pres-
ence of bedrock. Axis 3 was a substrate gradient with peb-
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Figure 4. Australian Capital Territory habitat ordination
plots showing site principal components analysis (PCA) scores
for PC2 vs PC1 (A), PC3 vs PC1 (B), and PC4 vs PC1 (C).

See Table S3 for loading scores and habitat variable codes.
Numbers in parentheses are % variation explained by the
axis. Vectors indicate strength of relationship of habitat
variables with the PC axis.
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ble and gravel loading positively and boulder loading neg-
atively. Axis 4 was an alkalinity/conductivity gradient. The
ACT plots revealed one large group of sites with a few val-
idation sites falling outside most of the training sites es-
pecially on the positive end of axes 2 and 3 (i.e., sites with
larger watershed areas and higher stream order). Thirty NN
training sites were selected to assess each of the validation
sites.

Community metrics

Total BMI density was highest at GL sites with a
mean density of ~17,000 BMI/site, whereas mean densi-
ties were much lower at YT sites (714 BMI/site). YT den-
sities were similar between DO and D1 sites with a sub-
sequent reduction at D2 and D3 sites (Fig. 5A). A slight
increase in GL density was observed from the DO and D1
sites with a gradual reduction in density for D2 and D3
sites (Fig. 5B). Variability in density was high among train-
ing sites and among categories of validation sites. YT and
GL densities were organism counts extrapolated to the en-
tire sample, but ACT density was number of BMIs subsam-
pled (minimum 200). Mean density at ACT DO sites was
228 BMIs with a steady decrease, as simulated impact se-
verity increased, to a mean of 36 individuals at D3 sites
(Fig. 5C).

The YT data set had 59 families and an average richness
of 10 families/site (Fig. 5D). Fewer families were encoun-
tered in the GL data set with 54 families and an average
richness of 8 families/site (Fig. 5E). Training-site richness
was highest in the ACT data set with 67 families across all
sites and an average richness of 18 families at individual
sites (Fig. 5F).

Low evenness was found at ACT (0.29; Fig. 5I) and YT
(0.35; Fig. 5G) DO sites, whereas highest evenness was
found at GL training sites (mean = 0.43; Fig. 5H). For all
data sets, Simpson’s evenness changed very little with sim-
ulated impact severity, except for an increase at D3 sites.
Bray—Curtis distance was higher at YT (0.66; Fig. 5]) and
GL (0.64; Fig. 5K) training sites and lowest at ACT train-
ing sites (0.43; Fig. 5L). Bray—Curtis distance increased
with increasing simulated impact severity for all data sets.

TSA and model evaluation

The percentage of sites evaluated as impaired (% im-
paired) (noncentral F test, ES > normal range of 95% of
NN) generally increased with simulated impact severity
with ANNA and RDA models (Fig. 6A—C). A striking
increase in % impaired with simulated impact severity
was seen for ACT sites with both models (10% of DO
sites and 100% of D3 sites assessed as impaired; Fig. 6C).
Percent impaired YT sites also increased with simulated
impact severity (Fig. 6A), but did not approach the levels
seen for ACT D3 sites. Percent impaired GL sites did not
change with simulated impact severity and was ~10%
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Figure 5. Box-and-whisker plots showing the relationship of benthic macroinvertebrate community density (A—C), family richness
(D-F), evenness (G-I), and Bray—Curtis distance (J-L) to simulated impact severity for the Yukon Territory (A, D, G, J), Laurentian
Great Lakes (B, E, H, K), and Australian Capital Territory (C, F, I, L) data sets for each site type. Diamonds are means, central
horizontal lines are medians, box ends are quartiles, and whiskers show ranges. T = training site, DO = unimpacted validation site,
D1 = mildly impacted validation site, D2 = moderately impacted validation site, D3 = severely impacted validation site.

regardless of impact severity. For all data sets, RDA and
ANNA models had low Type 1 errors that ranged from 5
to 12.5% of DO sites assessed as impaired (Table 2). Type
2 errors (impacted sites assessed as equal to reference)
were high in most cases, but Type 2 errors were low for
ACT D2 and D3 sites.

ESs for each metric are presented as 1: 1 plots for RDA
and ANNA models (Fig. 7A-L). The closer a site falls to
the line, the more similar the assessment by the 2 models.
A reduction of BMI density with increasing simulated impact
severity was observed in all 3 data sets, and D3 sites char-
acteristically fell within the negative ES range (below the
DO site mean). Agreement between modeling methods was
good for all data sets, but the relationship began to break
down for D3 sites (negative ES) in the YT (Fig. 7A) and
ACT (Fig. 7C) data sets. ANNA was slightly better than the
RDA in assessing D3 sites as impaired in the YT data set.
ESs were very large for the ACT data set. When simulated
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impacts were applied (especially at the D3 level), densities
were as low as 2 individuals.

Richness decreased with simulated impact severity (i.e.,
at D3 sites with negative ESs) (Fig. 7D-F). ANNA and RDA
models assessed sites equally, except that sites in the YT
data set sometimes were assessed as more impaired by one
of the approaches (i.e., more scatter around the 1:1 line).
Evenness was assessed similarly by both models (Fig. 7G-I).
However, the increase in evenness with simulated impact
was unexpected. A severely impacted site (D3) typically
would have low evenness indicated by a negative ES. In-
stead, D3 sites fell mostly at the positive end of the plots,
whereas DO sites fell on the negative end. Increasing Bray—
Curtis distance (i.e., differences in communities indicating
impairment) produced positive ESs (Fig. 7]-L). For Bray—
Curtis distance, impacted sites generally were assessed dif-
ferently by the 2 models, and the plots had greater scatter
around the 1:1 line relative to the other metrics.
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Figure 6. Percentage of sites assessed as impaired for
Yukon Territory (A), Great Lakes (B), and Australian Capital
Territory (C) using 4 modeling methods, Assessment by
Nearest Neighbour Analysis (ANNA), Redundancy Analysis,
(RDA) Benthic Assessment of Sediment (BEAST; data from
Reynoldson et al. 2014), and Australian River Assessment
System (AUSRIVAS; data from Nichols et al. 2014) for
unimpacted (D0), mildly (D1), moderately (D2), and severely
(D3) impacted validation sites.

Assessment results using ANNA and RDA were com-
pared to the results of 2 national-program models (BEAST
and AUSRIVAS) for the same 3 data sets. Percent im-
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Table 2. Percentage of sites incorrectly assessed using the
Assessment of Nearest Neighbour Analysis (ANNA) and
Redundancy Analysis (RDA) models, reported as Type 1
(validation sites assessed as impaired) and Type 2 (simulated
impact sites assessed as equal to reference) errors.

Type 1 (%) Type 2 (%)

DO D1 D2 D3
Australia (ACT) ANNA 5 85 35 0
RDA 10 80 30 0
Yukon Territory (YT) ANNA 10 925 85 70
RDA 15 85 875 675
Great Lakes (GL) ANNA 12.5 875 925 90
RDA 7.5 95 925 95

paired at each severity level were very similar for the
ANNA, RDA, and AUSRIVAS models (Fig. 6A—C; Nich-
ols et al. 2014), but the BEAST model assessed a larger
percentage of DO and D1 sites as impaired (Reynoldson
et al. 2014) especially for the YT and ACT data sets. For
the YT and GL data sets, more sites were assessed as im-
paired with increasing simulated impact severity with
BEAST and AUSRIVAS, whereas fewer sites were as-
sessed as impaired with increasing simulated impact se-
verity with ANNA and RDA. Percent impaired sites in the
GL data set did not increase with simulated impact sever-
ity with ANNA and RDA (~10% impaired regardless of
the simulated impact severity).

DISCUSSION

ACT training sites (n = 87) were distributed along a
continuum of habitat without clustering (Fig. 4A-C), a pat-
tern that allowed good site matching by the NN methods,
ANNA and RDA. The responses to simulated impacts cor-
responded to increased % impaired when the ANNA and
RDA models were applied (Fig. 6C). The rich benthic com-
munities (18 families) with low variability resulted in simu-
lated impact treatments that successfully mimicked actual
impacts. As a consequence, impacted sites were classified
correctly as impaired. The AUSRIVAS model performed
equally well (Nichols et al. 2014) (Fig. 6C), but BEAST did
not and >80% of sites were assessed as impaired regardless
of simulated impact severity (Reynoldson et al. 2014).

YT training sites (n = 118) were clustered in 4 distinct
groups along a habitat continuum (Fig. 2A—-C), a pattern
that can lead to poor site matching by NN methods (i.e.,
validation sites are compared to training sites that are
somewhat dissimilar in habitat). Furthermore, this data set
was unusual in that some training sites had quite low den-
sity (8—8200 BMIs, mean = 714 BMI/site) and richness (1-
22, mean = 10 families/site). Poor site matching led to
poor site assessments. For example, some DO sites at the
high end of the richness range were assessed as impaired,
whereas their D2 and D3 counterparts were assessed as



Yukon Territory
A 4 B

ee0
UUDg

Great Lakes

Volume 33 December 2014 | 1257

Australian Capital Territory
C 0

log (density)

Family Richness
ES-RDA

Evenness
ES-RDA

Bray -Curtis distance
ES-RDA

E
ES- ANNA

Figure 7. Effect size (ES; distance of validation metric value from mean value for 30 nearest neighbors) for benthic macroinvertebrate
community density (A—C), family richness (D—F), evenness (G-I), and Bray—Curtis distance (J-L) for the Yukon Territory (A, D, G, ),
Great Lakes (B, E, H, K), and Australian Capital Territory (C, F, I, L) data sets using 2 modeling methods (Redundancy Analysis [RDA] and
Assessment by Nearest Neighbour Analysis [ANNA]). Symbols represent varying levels of simulated impacts (unimpacted, mildly, moder-

ately, and severely impacted).

unimpaired even though higher richness is generally an
indication of an unimpaired community. Density and even-
ness changed little over the range of simulated impact sever-
ity, and although richness and Bray—Curtis distance did
show the expected response to simulated impacts, metric
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values overlapped considerably across site types (Fig. 5A,
D, G, J), which made detection of impairment problematic.
In fact, low percentages of impacted sites were assessed as
impaired by both ANNA and RDA models (Fig. 6A, Table 2).
Distinguishing DO from D3 sites was difficult with the
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BEAST model (Reynoldson et al. 2014), although % im-
paired sites did increase with simulated impact severity
(Fig. 6A). In contrast, AUSRIVAS (Nichols et al. 2014) dis-
tinguished DO and D1 sites from D2 and D3 sites (Fig. 6A)
as expected.

GL training sites (n = 123) were distributed along a
habitat continuum without clustering (Fig. 3A, B), allowing
good site matching with ANNA and RDA. However, low-
diversity communities at training sites and high variation
in metric values (Fig. 5B, E, H, K) resulted in inability to
distinguish effects of simulated impact severity in site as-
sessments (Fig. 6B). GL training-site BMI communities
were dominated by Oligochaeta (e.g., Tubificidae), Diptera
(e.g., Chironomidae), and Dreissenidae even before simu-
lated impacts were applied. The simulated impacts re-
moved sensitive families first, so it had minimal effect on
GL community metrics. Thus, detection of impairment by
ANNA, RDA, and the BEAST model (Reynoldson et al.
2014) was poor. The AUSRIVAS model (Nichols et al.
2014) was able to detect impairment, but a higher than ex-
pected percentage of unimpacted (DO) sites was assessed as
impaired.

Some modeling methods (e.g.,, BEAST and AUSRIVAS)
are based on the assumption that distinct groups of sites
exist. Groups were evident for the YT data set (Fig. 2A—C),
and AUSRIVAS successfully distinguished YT impacted
sites, as did BEAST to a lesser extent. However, often sites
are distributed along a continuum of habitat variables, as
seen in the ACT and GL data sets (Figs 3A, B, 4A-C). In
this situation, models that do not assume clusters or dis-
crete types of communities, such as ANNA and RDA,
should be more sensitive than grouping models (Bowman
and Somers 2005, Linke et al. 2005). The ANNA and RDA
models successfully distinguished sites with varying simu-
lated impacts for the ACT data set, which displayed a
continuum or gradient of habitat conditions. Poorer per-
formance with both the GL and Y T data sets suggests that
clustering of sites (e.g., Y T) was not the only problem with
the application of the NN approaches to these data sets.
Subsample data were scaled up to full samples (in contrast
to ACT), thereby increasing BMI density to levels at which
simulated impacts were insufficient to create distinct dif-
ferences. We think that simulated impacts were less ap-
parent in the GL and YT data sets, and this situation led
to correct classification of fewer impaired sites in these
2 data sets.

The response of the EEM metrics to enrichment is gen-
erally well known: density increases, richness decreases,
evenness decreases, and Bray—Curtis distance increases
(Rosenberg and Resh 1993, Mackie 2004). The enrichment
impact simulated here successfully produced the expected
trends (Fig. 5A-L), except that density was systematically
reduced rather than increased as simulated impact sever-
ity increased (D0-D3) and evenness was slightly greater at
D3 than at DO sites. The outcome of this model-testing
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exercise depends on the successful application of simulated
impacts to the data sets (e.g., Reynoldson et al. 1997), but
an evaluation of the success of the simulated impacts is
not presented here.

High variability in the BMI data also may have led to
poor ability to distinguish impacted sites. Ranges presented
in Fig. 5A—L are inflated compared to values used to eval-
uate a validation site for which only the metric values for
a subset of 30 NN sites would be used. Nevertheless, high
variability in these data sets may have contributed to our
inability to distinguish impacted sites. Four levels of simu-
lated impacts should have been distinct with respect to all
metrics, with little to no overlap in their ranges. Somewhat
distinct metric values were achieved for the ACT data set
(Fig. 5C, F, I, L), leading to successful separation of impact
levels (Fig. 6C). However, the simulation does not appear
to have successfully created distinct levels of impact for
the GL data set and, to a lesser extent, the YT data set.
The range of the GL metrics overlapped considerably and
only subtle changes were seen in metric values as simu-
lated impact severity increased from DO to D3 (Fig. 5B,
E, H, K). Therefore, it is not surprising that the models
did not tease apart the impact levels for the GL data set
(Fig. 6B). Furthermore, YT and GL training sites gener-
ally had low richness before simulated impacts were ap-
plied. Low richness at training sites led to assessment of
some DO and D1 sites as impaired because of higher
than expected richness at these validation sites, whereas
the corresponding D2 and D3 sites were assessed as un-
impaired.

The objective of our study was to identify which bio-
assessment method was best at detecting simulated impacts.
ANNA and RDA produced similar results that agreed with
our expectations for the ACT data set with a habitat con-
tinuum and a rich BMI community. With the YT and GL
data sets, ANNA and RDA produced results that corre-
sponded only weakly to the simulated impact gradient.
We think that the simulated impacts did not sufficiently
alter BMI communities with naturally low diversity and
high variability (Y T streams) or dominated by enrichment-
tolerant taxa (GL nearshore sites). Thus, assessment results
were data-set specific and may depend on the metrics that
were used. We used metrics specified by the Canadian fed-
eral EEM program, but these metrics did not respond to
the simulated impacts as expected. Given these results, the
best method depends on the particular scenario, and use of
several different methods might be wise when conducting a
bioassessment. Future comparative analyses should include
additional metrics (e.g., correspondence analysis scores) and
multivariate assessments (e.g., D in TSA), on both real and
simulated data.
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