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Abstract

The use of stable isotope enrichment to mark mosquitoes has provided a tool to study the biology of vector spe-
cies. In this study, we evaluated isotopic marking of Aedes aegypti (L.) (Diptera: Culicidae) in a laboratory set-
ting. We determined the optimal dosage for marking adult Ae. aegypti mosquitoes with 13C and 15N. Additionally, 
Ae. aegypti mosquitoes were single and dually marked with 13C and 15N for up to 60 d postemergence without 
changes to adult body size or transgenerational marking. This report adds to the growing literature that ex-
plores the use of alternative marking methods for ecological and vector biology studies.

Key Words: Aedes aegypti, stable isotope, marker retention, mark-capture study, dispersal

Aedes aegypti (L.) (Diptera: Culicidae) has spread throughout trop-
ical and semitropical regions of the world, has a close association 
with humans, and has become a primary vector of viruses including 
dengue (DENV), chikungunya (CHIKV), Zika (ZIKV), and yellow 
fever (YFV) (Powell 2018). With no efficacious vaccines available for 
DENV, CHIKV, and ZIKV (Espinal et al. 2019), vector control re-
mains a primary strategy to reduce vector populations and transmis-
sion of viruses to humans (Barrera et al. 2014, Schwab et al. 2018). 
In order to develop strategies and devices to control disease vectors 
such as Ae. aegypti, there is a need to improve the tools to study 
their biology.

The development of a marking technique is crucial for the 
study of vector biology such as feeding habits, resource alloca-
tion, and dispersal studies (Faiman et al. 2019). The use of stable 
isotopes as a biological marker has been documented for several 
aquatic insects including mosquitoes of the genera Anopheles 
(Diptera: Culicidae) (Hood-Nowotny et al. 2006, Helinski et  al. 
2007, Opiyo et  al. 2016), Culex (Diptera: Culicidae) (Hamer 
et al. 2012, Winters and Yee 2012, Hamer et al. 2014, Medeiros 
et al. 2017), and Aedes (Winters and Yee 2012, Opiyo et al. 2016, 
Medeiros et  al. 2017). However, there has not been a published 
use of isotopes to mark Ae. aegypti mosquitoes. In this study, we 
document the use of the stable isotopes 13C and 15N to isotopically 
mark laboratory-reared Ae. aegypti mosquitoes.

Materials and Methods

We used Ae. aegypti mosquitoes from the Liverpool strain to eval-
uate the effects of single and dual isotopic enrichment of a hay-
infusion larval habitat on male and female adults.

Isotopic Enrichment of Larval Habitat
In order to simulate a breeding site, plastic trays (34.3  × 25.4  × 
3.8 cm of 3 liters) were prepared 1 wk prior to eclosion of mosquito 
eggs by adding 1 g of hay/liter of water, 0.002 g/liter of 13C and/or 
15N (Hamer et al. 2012). Initial experiments combining isotopes and 
eggs on the same day yielded low enrichment (S. M. Garcia-Luna, 
J. G. Juarez and G. L. Hamer, unpublished data). Trays were placed 
into an environmental chamber set up to 28°C and a photoperiod 
of 12:12 light–dark hours to allow for microbial communities to 
develop. Two-hundred eggs per tray were added and followed until 
pupation, with the exception of the dose experiment on which 50 
eggs per dose were used. When larvae reached L3, an additional 0.5 g 
of grounded fish food (TetraMin, Tetra, Germany) was added per 
tray as a nutrition supplement. Pupae were collected and placed in 
100  ml plastic cups inside a BugDorm-1 (MegaView Science Co., 
Ltd., Taiwan). Adults were offered 10% sucrose solution ad libitum, 
which was changed weekly. Three individuals per treatment by ex-
periment were collected into individual 1.7 ml microcentrifuge tubes 
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and stored at −80°C until further processing. Control samples were 
reared as previously described without the addition of stable isotopes.

Single and Dual Isotope Marking
Mosquitoes were reared in either 0.002  g/liter of 13C-labeled glu-
cose (U-13C6, 99% atom%; Cambridge Isotope Laboratories, Inc., 
Andover, MA), 0.002 g/liter of 15N-labeled potassium nitrate (KNO3, 
15N, 99% atom%; Cambridge Isotope Laboratories, Inc.) (Hamer 
et  al. 2012) or a combination of both for the dual isotopic label 
(1:1 ratio) treatment. We tested if mosquito sex (male and female) 
and the time after adult emergence had an effect on the δ 13C and 
δ 15N by sampling adult mosquitoes at 7, 14, 21, 32, 39, and 60 d 
postemergence (dpe). We also evaluated three isotopic doses of 13C 
by hatching and rearing Ae. aegypti mosquitoes at concentrations of 
0.001, 0.00075, and 0.00035 g/liter. We assessed the potential for 
transgenerational marking by allowing 3–5-d-old 13C-marked male 
(n = 50) and female (n = 50) mosquitoes to mate and produce off-
spring that were tested upon adult emergence.

In order to determine the effects of stable isotope enrichment 
on adult male body size, wing length measurements (n = 15 males/
treatment) were taken. Subsequently, we evaluated if the addition of 
400 µl of an artificial diet made of a 2% solution of desiccated and 
defatted liver powder (Bio-Serv, Flemington, NJ) and brewer’s yeast 
hydrolysate (Bio-Serv) at a ratio of 3:2 (which we will refer as LP) 
during egg eclosion, would influence δ 13C and δ 15N.

Sample Processing and Analysis
Samples were analyzed for isotopic marking at the Texas A&M 
University Stable Isotope Geosciences Facility using a Thermo Fisher 
Scientific Delta V Advantage with Flash EA Isolink attached to a 
ThermoFinnigan Conflo IV isotope ratio mass spectrometer as pre-
viously described (McDermott et  al. 2019). Individual adult mos-
quitoes were placed in tin capsules in a 96-well plate. Mosquitoes 
were dried at 50°C for 24 h, and capsules were then crimped shut 
(Medeiros et al. 2017). δ 13C (measurement of the ratio of stable iso-
topes 13C: 12C) versus Vienna Pee Dee Belemnite (VPDB) and δ 15N 
(measurement of the ratio of stable isotopes 15N: 14N) versus air 
([(Rsample-Rstandard)/Rstandard] × 1,000) (IAEA 1995) values for each pool 
were recorded, regardless of isotope treatment. Differences in the 
mean δ 13C or δ 15N by treatment were analyzed using a two-sample 
t-test. Wing length was analyzed by using a nonparametric compar-
ison (due to non-normality of data) using Dunn’s test with control 
for joint ranking. Normality was evaluated using the Shapiro Wilk 
test on the residuals.

Results and Discussion

We did not observe a difference in the δ values between male and 
female Ae. aegypti for either δ 13C (m  =  185, f  =  193, t  =  0.29, 
P = 0.7) or δ 15N (m = 5284, f = 5322, t = 0.29, P = 0.7; Fig. 1). 
The persistence of single and dual marking over time was evalu-
ated up to 60 dpe. The δ-values showed that single (δ 13C: dpe 
60 = 15.31 ± 0.31; δ 15N: dpe 60 = 1081.41 ± 100.30) and dual 
(δ 13C: dpe 60  =  9.05  ± 4.54; δ 15N: dpe 60  =  996.93  ± 116.61) 
marking persist over time, at least under our laboratory experi-
mental setting, and that it can be effectively measured if single or 
dual marking is carried out (Fig. 2). We did not detect a statistical 
difference when comparing the mean concentration of single or 
dual marking throughout the study, with the exception of δ 13C for 
14 (13C = 17.4, 13C+ 15N = 8.08, t = −3.1, P = 0.02), 32 (13C = 10.4, 
13C+ 15N = 5.3, t = −2.57, P = 0.04) and 60 d postadult emergence 

(13C = 15.3, 13C+ 15N = 9.1, t = −2.8, P = 0.03). This reduction for 
δ 13C during the dual marking could be related to differential assim-
ilation of carbon and nitrogen under different relative abundances 
of these elements. For example, in the presence of elevated nitrogen 
under the dual marking treatment, the larvae or larval diet could 
have assimilated less carbon.

When evaluating the three concentrations of 13C, we observed 
a significantly higher δ 13C in comparison to the control (−18.32 ± 
0.49; Fig. 3). This confirms that even at the lower tested dose 
(0.00035 g/liter) an effective marking can be detected (11.99 ± 9.92), 
allowing for lower concentrations to be used for enrichment pur-
poses. To evaluate the potential for transgenerational marking, adult 
females and males with an average δ 13C of 10.91 ± 7.9 produced 
progeny with values of −16.62 ± 0.29 for females and −17.60 ± 0.28 
for males, demonstrating no transfer of 13C marking to F1 eggs (data 
not shown).

We assessed the effect of single and dual larval diet isotope en-
richment on the wing length (mm) of adult male Ae. aegypti. Males 
that had dual marking showed a statistically shorter wing length 
than the control males (control = 2.24 ± 0.19, dual = 2.08 ± 0.07, 
Z = −3.26, P = 0.003). When comparing the control to single iso-
topic marking with 13C (2.14 ± 0.05mm) and 15N (2.30 ± 0.14) no 
statistical difference was observed. However, wing length of our ar-
tificially fed males were all lower than the average 2.64 mm of field 
collected ones (Nasci 1986). This suggest that the larval environment 
relying on the natural microbiota provided by the hay infusion and 
the addition of fish food at the L3 stage provided insufficient nutri-
tion for developing larvae. In light of this, we evaluated the addition 
of the artificial diet as supplemental nutrition following the previous 
procedures. We were able to detect the isotopic marking of males 
(δ 13C: 389.98 ± 15.01; δ 15N: 5,531.84 ± 70.33) and females (δ 15N: 
5,694.16 ± 164.62) when artificial food was added. We were un-
able to collect sufficient females for the 13C isotopic marking. This 
demonstrates that the early addition of artificial food for nutrition 
allowed the bioaccumulation of stable isotopes into adult structural 
tissues to persist.

This study documents that similar protocols to isotopically mark 
Culex, Anopheles, and other species of Aedes mosquitoes also apply 
to Ae. aegypti. This study extends prior laboratory marking studies 

Fig. 1.  Single isotopic marking for δ 15N and δ 13C in adult male and female 
Ae. aegypti 24 h postemergence. Light gray bars denote Ae. aegypti males 
and dark gray Ae. aegypti females. Error bars indicate SEM.
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by showing very little decay over the 60-d period as adults (Hamer 
et al. 2012). The lack of transgenerational marking of progeny im-
proves the utility of using stable isotopes in a mark-capture study 
design. As a container species mosquito and as a vector responsible 

for 96 million cases of dengue each year (Bhatt et al. 2013), the use 
of stable isotope marking offers a valuable tool to study the bio-
nomics of Ae. aegypti.
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