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Parasitic nematodes infect a variety of organisms including insects and vertebrates. To survive, they
evade host immune responses to cause morbidity and mortality. Despite the vast clinical knowledge
regarding nematode infections and their biological makeup, molecular understanding of the

interactions between host and parasite remains poorly understood. The utilization of model systems
has thus been employed to help elucidate the molecular interactions of the host immune response
during parasitic nematode infection. Using model systems, it has been well established that parasitic
nematodes evade host immunity by releasing excretory/secretory proteins (ESPs), which are involved

in immunomodulation. Model systems have enabled researchers to characterize further the
underlying mechanisms ESPs use to facilitate evasion and modulation of the host immune response.
This review assessed notable ESPs from parasitic nematodes that infect vertebrates or insects and

have been studied in mechanistic detail. Being able to characterize how ESPs affect the immune
systems of hosts on a molecular level increases our understanding of host–parasite interactions and
could lead to the identification of novel therapeutic targets and important molecular pathways.

Infections caused by parasitic nematodes are a widespread

global health concern that continues to afflict humans. It has been

estimated that parasitic nematodes infect more than 25% of the

global population, with the concentration of infections being

primarily in the global south (L’Ollivier and Piarroux, 2013;

Hotez et al., 2014; Pullan et al., 2014). The difficulty of detecting

parasitic infection during the early stages compounds the health

effects. Part of what makes nematode infections difficult to

diagnose early on is the ability of parasitic nematodes to evade the

host immune system, allowing them to go undetected, which in

turn leads to physiological complications that cause morbidity

and mortality (Stepek et al., 2006). The global health ramifica-

tions of parasitic nematodes are further exacerbated by the

possibilities of recurrent reinfection and emerging drug-resistant

infections. Nematodes are thus very troublesome parasites with

the ability to compromise the immune systems of insects and

vertebrates (Davis et al., 2000; Hao et al., 2010; Garg and

Ranganathan, 2012).

The difficulty in identifying the underlying molecular mecha-

nisms is in part due to the lack of good model systems with

established genetic, genomic, and proteomic tools that overcome

logistic obstacles such as cost and time (Lok, 2007; Ward, 2015).

These obstacles have been notably dealt with in other areas of

investigation such as behavioral ecology and neurobiology, where

insect-parasitic nematodes that are closely related to vertebrate-

parasitic nematodes are used as models (Hallem et al., 2007, 2011;

Dillman et al., 2012b; Castelletto et al., 2014). As a result, plausible

methods for the characterization of host immunomodulation by

nematodes have been made more efficient. One potential use of

these model systems is to study the impact of excretory/secretory

proteins (ESPs) on a host in the context of infection.

Individual components of ESPs have been observed to have

mechanisms of modulating the immune system of infected hosts

(Cooper and Eleftherianos, 2016). The immunomodulation

promotes the survival of the parasitic nematode by strategically

altering the activation of host immune responses upon infection

(Cooper and Eleftherianos, 2016). ESPs have a broad spectrum of

effects and have the ability to impact host responses in a

multifaceted context, including the response to concurrent

diseases by bystander pathogens (Jackson et al., 2006). This is

highlighted by ESP-driven anti-inflammatory responses being

implicated in the low occurrence of inflammatory bowel disease in

populations with high rates of nematode infection (Whelan et al.,

2012). Overall, specific ESPs involved in nematode immunomod-

ulation generally vary with regards to the mode of action and type

of host (Klei, 1997; Hartmann and Lucius, 2003; McSorley et al.,

2013). ESPs released also vary between the various life stages of

the parasitic nematode, and even between sexes (Soblik et al.,

2011; Sotillo et al., 2014). The need for stage-specific ESPs most

likely aligns with the specific outcomes required for the life stage
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(Soblik et al., 2011; Sotillo et al., 2014). Overall, few of these

proteins have been studied in mechanistic detail. This review

examined select immunomodulatory ESPs from nematode para-

sites of insects and vertebrates that have been mechanistically

characterized and assessed the potential of insect-parasitic

nematodes to serve as model systems for molecular characteriza-

tion of immunomodulatory ESPs (Stock, 2005).

MOLECULAR INTERACTIONS OF ESPS IN INSECTS

A specialized subset of insect-parasitic nematodes called

entomopathogenic nematodes (EPNs) are characterized by their

ability to kill hosts quickly, and their utilization of symbiotic

bacteria to facilitate their parasitic lifestyles (Dillman et al.,

2012a; Lewis and Clarke, 2012). Most EPNs enter an insect

through natural openings, and once inside they release highly

pathogenic bacteria along with ESPs into the insect’s hemolymph.

Although it was originally thought that the bacterial symbionts

were the primary source of toxicity to insect hosts, with the

nematodes serving primarily as vectors, recent studies showed

that ESPs of EPNs are highly toxic to insects (Lu et al., 2017;

Chang et al., 2019). Infection by EPNs does not go unnoticed by

insects, however, as the insect’s innate immune system uses a

series of mechanisms that detect the nematode and bacterial

partners to restrain their dissemination (Eleftherianos et al., 2010;

Castillo et al., 2011). These immune response mechanisms fall

under 2 categories: humoral and cellular (Lemaitre and Hoff-

mann, 2007; Jiang et al., 2010). The humoral immune response

activates genes needed for synthesizing and secreting antimicro-

bial peptides (AMPs) from the fat body into the hemolymph

(Imler and Bulet, 2005; Casanova-Torres and Goodrich-Blair,

2013; Rolff and Schmid-Hempel, 2016). Cellular immune

responses are regulated by hemocyte function (Ribeiro and

Brehélin, 2006). Hemocytes are the main component of the

cellular response, and they are implicated in several functions like

cell aggregate formation, phagocytosis, melanization, and encap-

sulation to help fight off infections (Marmaras and Lamp-

ropoulou, 2009; Honti et al., 2014). Melanization occurs after the

production of phenol-oxidase (PO) that is produced by the

cleavage of the proenzyme prophenoloxidase (proPO), which is a

key component of the insect immune system (Eleftherianos and

Revenis, 2011; Lu et al., 2014). Prophenoloxidase catalyzes

melanization by mediating the oxidation of mono- and diphenols

to quinones; they then polymerize to form melanin-generating

reactive oxygen species (ROS) (Cooper et al., 2019). In Drosophila

hemolymph coagulation, after the initial phase where cross-
linking depends on transglutaminase activity, PO activity

becomes the key component in the subsequent phase for further
cross-linking, hardening, and melanization of the clot matrix
(Dziedziech et al., 2020). Hemolymph coagulation is important in

the insect immune response as it stops bleeding, seals wounds, and
prevents the dissemination of pathogens and entry of microbial

invaders at the wound site (Dziedziech et al., 2020). To have a
successful infection, EPNs must evade, suppress, or modulate the
insect immune response, at least temporarily to survive, release

their mutualistic bacteria, and complete their life cycle. These
bacteria are located in a receptacle near the pharyngeal bulb and

are necessary for the growth and development of the nematode
during infection (Sicard et al., 2003). Thus, EPNs are obliged to
deploy rapid immunomodulatory strategies to protect the small

cohort of symbiotic bacterial cells they release into the host,
depressing host immunity, at least temporarily, so that the

bacteria can resume growth and deploy their immunomodulatory
arsenal to aid in protection from host immunity.
It is important to note that EPNs release ESPs during the

infective juvenile stage (IJ) (Lu et al., 2017; Chang et al., 2019). As
IJs, EPNs are in arrested development until a host is found; upon

entering the host the IJs become activated for release of ESPs (Lu
et al., 2017; Chang et al., 2019). The subsequent proteins that will
be described were discovered in the ESPs released by specific

EPNs. Each protein displayed notable immunomodulatory
properties during experimental studies that will be briefly

discussed (Table I).

Trypsin-like serine protease and Sc-CHYM

Research to identify immunomodulatory proteins led to the

discovery of a trypsin-like serine protease secreted by Steinernema
carpocapsae IJs, during infection of Galleria mellonella larvae
(Balasubramanian et al., 2010). Endogenous serine proteases and

serine protease inhibitors are important in immune response, as
they activate proenzyme prophenoloxidase (proPO), converting it
to phenoloxidase (PO), and this activation results in hemocyte

encapsulation, and melanization (Franssens et al., 2008). Al-
though many trypsin serine proteases that have been discovered

have been assigned a group or family, the trypsin-like serine
protease that was described in Balasubramanian et al. (2010) has
not been fully characterized for classification. The trypsin-like

serine protease displayed the ability to suppress 38.9–52.6% of

Table I. Table highlights entomopathogenic nematodes and excretory/secretory proteins (ESPs). Molecular immunomodulatory effects are what is
observed for the corresponding type of ESP, and thus based on the type of the pathways and molecular/cellular mechanisms they affect.

Infected host Parasitic ESPs released Molecular immunomodulatory effects* References

Insect Sc-CHYM Decrease of hemocyte encapsulation, PPO inhibition. Balasubramanian et al. (2009)

Sc-SRP-6 No melanin deposition, disruption of clotting. Toubarro et al. (2013a)

Sc-KU-4 Inhibition of hemocyte aggregation and encapsulation. Toubarro et al. (2013b)

Trypsin-like serine protease PPO inhibition, change in hemocyte morphology,

reduced hemocyte spreading and recognition.

Balasubramanian et al. (2010)

Hb-ilys-1 Suppression of PO activity. Kenney et al. (2021)

Hb-sc-1 Suppression of PO activity, reduced AMP upregulation,

reduced phagocytic activity.

Kenney et al. (2021)

Hb-ugt-1 Suppression of Br-c, reduced AMP upregulation. Kenney et al. (2020)

*Abbreviations: PPO: prophenoloxidase, PO: phenoloxidase. AMP: antimicrobial peptides.
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proPO experimentally, leading to interruption of the process of
melanization and ultimately reduced EPN encapsulation by

hemocytes (Balasubramanian et al., 2010). It altered the

morphology of G. mellonella hemocyte F-actin filaments from a

highly organized state to a disorganized state and caused a change

of hemocyte spindle shape, which coincided with inhibition in the

hemocyte spreading (Balasubramanian et al., 2010). This also
resulted in reduced recognition of the EPN Heterorhabditis

bacteriophora by G. mellonella hemocytes by 55% (Balasubrama-

nian et al., 2010). The trypsin-like serine protease thus signifi-

cantly impairs host immunity by decreasing hemocyte spreading,

encapsulation, and recognition of EPNs during infection.

Another study of ESPs secreted by S. carpocapsae reported a

discovery of a chymotrypsin serine protease virulence factor

named Sc-CHYM (Balasubramanian et al., 2009; Cooper and

Eleftherianos, 2016). Because this protein is a serine protease such
as the 1 described prior, it is likely they both affect the activation

of the proPO-PO cascade by competing with the endogenous

serine proteases. In vitro, Sc-CHYM displayed the capability to

inhibit proPO by suppressing its enzymatic activity (Balasubra-

manian et al., 2009). In vivo, Sc-CHYM reduced the melanization

and encapsulation of protease-treated beads that were injected
into G. mellonella; normally such foreign objects are encapsulated

and melanized (Balasubramanian et al., 2009). Sc-CHYM was

thus shown to weaken the cellular immune response of the insect

host and increase the success of parasitism by S. carpocapsae.

Sc-SRP-6

Another ESP from S. carpocapsae, Sc-SRP-6, was shown to

have 2 roles in protecting EPNs from host immunity. The first

role is the inhibition of hydrolysis of food particles by reducing
the activity of insect digestive enzymes (Toubarro et al., 2013a).

Protection from digestive enzymes keeps IJs and their ESPs safe

from metabolic breakdown when they enter the alimentary canal

of the host. The second role of Sc-SRP-6 is interfering with clot

formation in infected insects by binding with hemolymph plasma

proteins, forming complexes that prevent the incorporation of

melanin into the clot matrix, which is essential for encapsulation
and nodulation immune processes (Toubarro et al., 2013a; Honti

et al., 2014; Satyavathi et al., 2014; Theopold et al., 2014).

Inhibiting clot formation weakens host cellular immunity, adding

further protection to IJs during parasitism via host immunomod-

ulation.

Sc-KU-4

Another protein of interest, which belongs to the Kunitz-type

serine family of protease inhibitors, is Sc-KU-4. This protease
inhibitor is most highly expressed by the invasive stage, the IJ, of

S. carpocapsae. Sc-KU-4 was reported to inhibit hemocyte

aggregation in G. mellonella hemolymph (Toubarro et al.,

2013b). Beads treated with Sc-KU-4 remained individualized in

G. mellonella plasma, whereas nontreated beads were aggregated

and entrapped by clotting material, suggesting Sc-KU-4 protects

foreign bodies from host clotting mechanisms (Toubarro et al.,
2013b). Lastly, Sc-KU-4-treated beads were pulled down from

insect plasma and observed to be strongly bound to 2 proteins

linked to immune recognition: A homolog of a masquerade-like

protein (MSPH) and a homolog of a serine protease-like 1b (SPH-

1) (Toubarro et al., 2013b). These findings suggest that Sc-KU-4

targets insect immune recognition proteins in the plasma such as

antimicrobial peptides (AMPs), inhibits hemocyte aggregation,

and prevents encapsulation of EPNs. Protecting IJs from

recognition proteins enables them to hide from the host, thus

preventing an adequate immune response to parasitic infection.

Hb-sc-1 and Hb-ilys-1

The EPN Heterorhabditis bacteriophora has also been utilized

for the discovery of novel immunomodulatory ESPs by tran-

scriptomic analysis. Transcriptome studies were able to identify

multiple secreted protein factors that were upregulated during

parasitism (Vadnal et al., 2017). Two notable proteins that were

recently characterized are a putative lysozyme (Hb-ilys-1) and

serine carboxypeptidase (Hb-sc-1) (Kenney et al., 2021). The

potential immunomodulatory capabilities of these proteins were

assessed utilizing Photorhabdus luminescens infection of Drosoph-

ila melanogaster. Both recombinant proteins caused increased

mortality during in vivo co-injections of D. melanogaster with P.

luminescens, when compared to injections of D. melanogaster with

P. luminescens alone (Kenney et al., 2021). Both Hb-ilys-1 and

Hb-sc-1 suppressed PO activity, which correlated with a reduced

melanization response during infection. In addition to reduced

PO activity, Hb-sc-1 also reduced the upregulation of certain

AMPs (Diptericin, Attacin, and Drosomycin), indicating inade-

quate activation of the immune response (Kenney et al., 2021). It

was also found that Hb-sc-1 reduced phagocytic activity so that

hemocytes were less effective at phagocytosing pHrodo-labeled

Escherichia coli. This indicates that Hb-sc-1 might be broadly

interfering with the cellular response of the fly during infection

(Kenney et al., 2021). Further molecular experimentation is

needed to understand how PO activity is suppressed by both

enzymes, as well as to elucidate how Hb-sc-1 causes reduced

upregulation of AMPs and reduced phagocytic activity. Both Hb-

sc-1 and Hb-ilys-1 cause measurable effects on host immunity

during infection resulting in reduced survival.

Hb-ugt-1

Another protein released by H. bacteriophora that displayed

immunomodulatory effects is a putative UDP-glycosyltransferase

called Hb-ugt-1. A recent study showed that injection of D.

melanogaster with recombinant Hb-ugt-1 resulted in reduced

upregulation of the AMPs Diptericin, Attacin, and Metchnikowin

(Kenney et al., 2020). To assess the physiological effects of this, D.

melanogaster Relishmutants lacking an immune deficiency (Imd) –

based response, were injected with recombinant Hb-ugt-1 to assess

survival. The survival of these injected flies was significantly lower

over 6 days in comparison to regular survival for wild-type flies,

though the reason for reduced survival in this mutant context is

not fully understood (Kenney et al., 2020). In addition to AMP

suppression, D. melanogaster larvae injected with recombinant

Hb-ugt-1 showed suppression of the ecdysone-transcription factor

Broad-Complex (Br-c), which upregulates components of the

immune response including the Peptidoglycan Recognition

Protein LC (PGRP-LC) and some AMPs (Kenney et al., 2020).

Thus, the suppression of Br-c by Hb-igt-1 may be responsible for

the reduction of AMP upregulation. Through the reduction of

AMP upregulation, Hb-ugt-1 is likely able to compromise the host

immunity during infection.
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MOLECULAR INTERACTIONS OF EXCRETORY/
SECRETORY PROTEINS IN VERTEBRATES

With over 1 billion people infected worldwide, vertebrate-
parasitic nematodes continue to be a major public health concern

globally, specifically in nations in the global south (L’Ollivier and
Piarroux, 2013; Hotez et al., 2014; Pullan et al., 2014).

Understanding how these nematodes evade vertebrate immunity
is thus a major priority. The invasion of host tissues by parasitic
nematodes activates the complement system, which identifies

pathogens and directs the innate immune response. Leukocytes
(encoded by the MHC class I and II genes in humans) are then

recruited to the site of infection to release cytokines to enhance an
inflammatory response along with a variety of other processes

(Martinez et al., 2009). Participation of mast cells and eosinophils
also occurs because of their roles as potent effectors of a range of
cytokines and chemokines. Direct activation of leukocytes is

triggered by host tissue damage by the invading nematode, which
then leads to the recruitment of other kinds of leukocytes, such as

neutrophils, macrophages, basophils, innate lymphoid cells, and
dendritic cells, which leads to the production of toxic free radicals,
phagocytosis, and the eventual development of adaptive immune

response by the production of antibodies (de Veer et al., 2007;
Perrigoue et al., 2008; Grencis, 2015). Vertebrate-parasitic

nematodes, however, have evolved immunomodulatory mecha-
nisms, effected through their ESPs (Table II), that can interrupt 1
or more effectors of the innate immune response (Maizels et al.,

2004).

ES-62

The glycoprotein ES-62 is an ESP released by the postinfective
life-cycle stages of the rodent filarial nematode Acanthocheilonema
viteae with immunomodulatory properties highlighted by the

ability to interact with a variety of immune cells, thus being able
to regulate the host immune system via the cellular response

(Goodridge et al., 2005b; Pineda et al., 2014). ES-62 specifically
alters molecular events that control B cell and T cell receptor

signaling, which leads to significant inhibition of B cell and T cell
activation and proliferation (Al-Riyami and Harnett, 2012). ES-

62-mediated modulation requires the presence of Toll-like

Receptor TLR4, but not TLR2 and TLR6, and can affect

antigen-presenting cells, as well as the inhibition of mast cell

degranulation by the formation of a complex with TLR4 at the

plasma membrane (Goodridge et al., 2005a; Melendez et al.,

2007).

ES-62 is heavily conjugated with and modifies phosphorylcho-

line (PC), which leads to inhibition of the proliferation of CD4þT

cells and conventional B2 cells in vivo. It also reduces IL-4 of

CD4þ cells and interferon-gamma (IFN-c) production (Wilson et

al., 2003a, 2003b; Harnett et al., 2004; Marshall et al., 2005). ES-

62 also promotes the proliferation of peritoneal B1 cells and their

subsequent production of IL-10 (Wilson et al., 2003b). ES-62 also

targets antigen-presenting cells (APCs) to inhibit their ability to

produce IL-12p70 in response to lipopolysaccharides (LPS). This

is done with pretreatment of DCs and macrophages with ES-62,

where ES-62-pulsed bone marrow–derived DCs can drive Th2

differentiation in vitro (Whelan et al., 2000; Goodridge et al.,

2003). Utilizing its PC residues, ES-62 interacts with toll-like

receptor (TLR) 4 to inhibit pro-inflammatory Th1 responses. In

mast cells, binding of TLR4 by ES-62 results in degradation and

sequestration of intracellular protein kinase C-a (PKCa), which
as a result inhibits degranulation and release of inflammatory

mediators (Goodridge et al., 2005a; Melendez et al., 2007).

Although ES-62 can impair the host immune response, it has

also shown the ability to reduce the outbreak of various

autoimmune or allergy-related diseases (Harnett and Harnett,

2006). ESPs such as ES-62 thus not only have a role in host

immunomodulation, but potentially can be utilized to design

novel anti-inflammatory drugs (Al-Riyami and Harnett, 2012; Al-

Riyami et al., 2013). Ultimately, ES-62 displays the ability to

regulate B cell and T cell receptor signaling, as well B cell and T

cell activation and proliferation, significantly.

Cystatins

Cystatins are cysteine protease inhibitors. Cystatins have been

found among the ESPs of third-stage larvae (L3) vertebrate-

parasitic nematodes and have been identified to have immuno-

Table II. Table highlights notable vertebrate parasitic nematode excretory/secretory proteins (ESPs). Molecular immunomodulatory effects are what is
observed for the corresponding type of ESP, and thus based on the type of the pathways and molecular/cellular mechanisms they affect.

Infected host Parasitic ESPs released Molecular immunomodulatory effects References

Vertebrates ES-62 Inhibition of B and T cell activation and proliferation. Inhibition of mast

cell degranulation and the release of pro-inflammatory mediators.

Inhibition of IL-12p70 and pro-inflammatory Th1 responses.

ES-62 regulates gene induction by modulating the binding of NF-B

to the IL-12 promoter.

Goodridge et al. (2005a)

Goodridge et al. (2005b)

Harnett et al. (2004)

Marshall et al. (2005)

Melendez et al. (2007)

Whelan et al. (2000)

Wilson et al. (2003a)

Wilson et al. (2003b)

Cystatins Reduced T cell priming. Inhibition of T cell proliferation. Enhanced

production of anti-inflammatory Il-10. Reduced induction of active

immune response.

Dainichi et al. (2001)

Manoury et al. (2001)

Schnoeller et al. (2008)

Schönemeyer et al. (2001)

Ac-AIP-1 Reduction of local infiltration of inflammatory cells. Suppression of

pro-inflammatory cytokines. Production of anti-inflammatory IL-10.

Ferreira et al. (2017)

Ac-AIP-2 Suppression of T cell proliferation. Reduced DC co-stimulatory

marker expression.

Navarro et al. (2016)
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modulatory properties on the cellular response (Wang et al., 2017;

Maizels et al., 2018). They inhibit 2 classes of cysteine proteases:

Legumains, which are utilized for antigen processing and

presentation, and cathepsins L and S, which are utilized for

processing polypeptides. Inhibition of legumains reduces the

formation of the MHC class II molecules, which reduces the

induction of an active immune response (Dall and Brandstetter,

2016). Cystatins can also enhance the production of anti-

inflammatory cytokine IL-10, which in turn restricts T cell–

mediated responses (Schierack et al., 2003). Cystatins secreted by

Heligmosomoides polygyrus have been shown to modulate the

activity of dendritic cells. Recombinant cystatin exposed to

dendritic cells resulted in the expression of fewer MHC class II

molecules as well as CD 40 and CD 86, 2 proteins necessary for T

cell differentiation (Sun et al., 2013; Flávia Nardy et al., 2015).

Another cystatin secreted by A. vitae alters the expression of key

cytokines resulting in modulation of pro-inflammatory effects

(Behrendt et al., 2016). Recombinant cystatin resulted in

downregulation of the pro-inflammatory cytokines iNOS and

cycolooxygenase synthase (COX)-2 and induced an upregulation

of IL-10, which further promoted an anti-inflammatory effect in

microglia (Cooper and Eleftherianos, 2016).

Cystatins produce immunomodulatory effects through 2

mechanisms (Hartmann and Lucius, 2003; Gregory and Maizels,

2008). First is the inhibition of cysteine proteases (cathepsins and

aspartyl endopeptidase) necessary for host APC antigen process-

ing and presentation, which results in reduced T cell priming

(Dainichi et al., 2001; Manoury et al., 2001). The second

mechanism is the induction of immunosuppressive IL-10,

reducing co-stimulatory molecule expression by APCS, and

inhibiting T cell proliferation (Schönemeyer et al., 2001).

Immunomodulation in vivo has also been characterized by

inhibition of both allergic lung inflammation and colitis, which

is both mediated by Tregs and IL-10–producing macrophages

(Schnoeller et al., 2008). Through their inhibition of cysteine

proteases, cystatins can modulate T cell differentiation and

proliferation.

Anti-inflammatory proteins (Ac-AIP-1 and Ac-AIP-2)

Gastrointestinal hookworms have evolved to cause minimal

harm to their host in low-burden infections, through the secretion

of immunomodulatory ESPs (Ferreira et al., 2017). This allows

for the long-term survival of the parasites in a host while

potentially protecting the host from inflammatory diseases

(Navarro et al., 2016; Ferreira et al., 2017). Two anti-inflamma-

tories, ESPs Ac-AIP-1 and Ac-AIP-2, were found in the blood-

feeding stage (L4) of hookworm Acylostoma caninum. They were

recombinantly expressed and experimentally shown to display

immunomodulatory effects on the cellular response (Smallwood

et al., 2017; Maizels et al., 2018). Recombinant Ac-AIP-1 was

assessed in mouse models of colitis (Mulvenna et al., 2009;

Ferreira et al., 2017). Colitis inflammation was suppressed in these

models by Ac-AIP-1 at 1 mg kg�1, and local infiltration of

inflammatory cells was significantly reduced. Colitic inflammation

was assessed as weight loss, colon atrophy, edema, ulceration, and

necrosis, as well as abdominal adhesion. Recombinant Ac-AIP-1

promoted the production of anti-inflammatory colon IL-10,

transforming growth factor (TGF)-b, and thymic stromal

lymphopoietin (TSLP). It also suppressed several cytokines,

including the tumor necrosis factor (TNF)-a, IL-13, and IL-

17A, granulocyte macrophage colony-stimulating factor (GM-

CSF), CX motif chemokine (CXCL)-11, COX-2 mRNA tran-

scripts, and IFN-c. Ac-AIP-1 thus displayed immunosuppressing

characteristics by promoting the production of anti-inflammatory

mediators IL-10 and TGF-b, and suppression of pro-inflamma-

tory cytokines.

Ac-AIP-2 is 1 of the most abundant proteins in the A. caninum

secretome (secreted proteome) and demonstrated immunomodu-

latory capabilities in a mouse model of asthma (Mulvenna et al.,

2009; Navarro et al., 2016). Ac-AIP-2 suppressed airway

inflammation, reduced DC co-stimulatory marker expression,

and demonstrated ex vivo suppression of human T cell

proliferation with dust mite allergy (Navarro et al., 2016). Mouse

models showed that Ac-AIP-2 was primarily captured by

mesenteric CD103þ DCs, that airway inflammation suppression

was primarily dependent on DCs, and mesenteric lymph node

originated (MLNs) Foxp3þ regulatory T cells (Navarro et al.,

2016). Thus, potential anti-inflammatory therapeutic effects of

Ac-AIP-2 were mechanistically characterized to be dependent on

capture by mesenteric DC and Treg cells, which is also a

mechanism by which Ac-AIP-2 modulates the immune response

of the host upon secretion.

CONCLUSION AND FUTURE DIRECTIONS

The characterization of tens of immunomodulatory ESPs (Fig.

1) from among the hundreds that have been identified highlights

the challenge of ESP mechanism elucidation. Major obstacles to

research success include the cost and time required to characterize

ESPs of vertebrate parasitic nematodes at the molecular level

fully. Recent studies show the promise of insect model systems to

rationally identify immunomodulatory ESPs for recombinant

expression and characterization (Lu et al., 2017; Chang et al.,

2019; Parks et al., 2021). A process of in vitro activation of EPNs

has been optimized, allowing for the time-friendly acquisition of

high quantities of ESPs for downstream applications such as mass

spectrometry identification of protein composition or fraction-

ation of ESPs for targeted identification (Lu et al., 2017; Chang et

al., 2019). Although other methods of identification and collection

are utilized with vertebrate systems, the insect system, along with

proteomics and transcriptomics, presents a time- and cost-

effective model for researchers to screen, identify, or isolate novel

proteins (Moreno et al., 2011; Falcón et al., 2014; Sotillo et al.,

2014; Lu et al., 2017; Kenney et al., 2019). Also, in vitro ESP

collection methods for vertebrate-parasitic nematodes have yet to

be experimentally validated regarding their relevance to in vivo

conditions, where EPN insect model systems have been so

validated (Soblik et al., 2011; Borloo et al., 2013; Sotillo et al.,

2014; Lu et al., 2017; Chang et al., 2019). EPN model systems

have many advantages; there are still, however, areas of research

where they can be developed. Immune priming, which is

characterized by the increase in survival and host immune

response after a second specific encounter, is a phenomenon in

invertebrates that EPNs have recently been used to examine

(Kurtz and Armitage, 2006; Cooper and Eleftherianos, 2017;

Texca Tatevari et al., 2021). A recent study showed that an EPN

did not generate immune priming, future experiments can

elucidate factors for this or if they can elicit immune priming

under certain conditions (Texca Tatevari et al., 2021). More
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research is needed regarding immune priming, but EPNs are still a
promising and relevant model system that is closely related to

nematode parasites of humans, and even releasing many of the
same ESPs into their hosts (Blaxter and Koutsovoulos, 2015; Lu
et al., 2017).

If successfully utilized, EPN–insect model systems can allow for

the identification of novel mechanisms of immunomodulation and
facilitate their characterization. With a better foundation for

selecting individual proteins or molecules for experimentation,
vertebrate studies can be more precise and efficient in elucidating
molecular pathways involved with vertebrate-parasitic nema-

todes. This may allow for the development of vaccines that can
promote parasitic nematode clearance, better treatments of

infection, or better treatments of autoimmune disease using drugs
derived from immunosuppressing ESPs.
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