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REVIEW

Advantage or Disadvantage: Is Asexual Reproduction Beneficial
to Survival of the Tunicate, Polyandrocarpa misakiensis?

Kazuo Kawamura* and Shigeki Fujiwara

Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Japan

ABSTRACT—It has been believed that clonal propagation by asexual reproduction has serious disadvan-
tages for long-term survival, because asexual reproduction seems not to remove harmful mutations, it seems
not to give rise to genetic variations upon which evolution depends and it seems not to reset cell aging. In this
article, we re-consider those arguments, by reviewing asexual reproduction of the tunicate, Polyandrocarpa
misakiensis. Tracer experiments of bud formation and growth using morphological and chimeric phenotypes
showed that the parental epithelial tissues surrounding the bud primordium do not enter the growing bud. It
is possible, therefore, to assume that budding involves the purge of a large number of parental somatic cells
and tissues. Unlike sexuals, asexuals do not carry out meiotic recombination nor gene shuffling that are two
major sources of genetic variation, but we can show that in P. misakiensis at least two genes have significant
redundancy and genetic variation even in a clonal colony. Telomerase expressed in germlines is thought to
reset the molecular clock executed by telomere shortening. In our Polyandrocarpa cDNA projects, four out of
about 2,000 cDNAs examined were matched with retroviral reverse transcriptase that is the catalytic subunit
of telomerase, suggesting that telomerase might work in asexual reproduction. In P. misakiensis, dedifferen-
tiation system is used to make new asexual generations. TC14 lectin plays an important role in the mainte-
nance of multipotent but differentiated state of the formative tissue. It is antagonized by tunicate serine
protease (TRAMP) that has striking mitogenic and dedifferentiation-inducing activities on the multipotent
cells. This system would serve to delay aging of somatic cells. In conclusion, empirical arguments that asexual
reproduction is disadvantageous to long-term life do not appear to be tenable to budding of P. misakiensis.

INTRODUCTION

The capacity to repair missing parts of the body is a gen-
eral characteristic shared by every organism, although the
extent of repair varies among species. The regenerative po-
tential of some marine and freshwater invertebrates is so re-
markable that a piece of tissues can reconstruct the whole
body (Morgan, 1901). Asexual reproduction takes advantage
of this potential for propagating individuals (Brien, 1968). It
can be found in most phyla in the animal kingdom including
Polifera, Cnidaria, Plathelminthes, Annelida, Bryozoa, Echi-
nodermata, Enteropneusta and Chordata.

Asexual reproduction accompanies neither meiotic recom-
bination nor shuffling of male and female genomes, as is usual
with sexual reproduction (Barton and Charlesworth, 1998). It is
carried out by multipotent somatic cells (cf., Nakauchi, 1982)
instead of single germ cells, indicating that the colonial popula-
tion shares genomic constitution. In the sense that clonal indi-

viduals are given off, asexual reproduction has resemblance to
parthenogenesis in rotifers (Wurdak and Gilbert, 1977), aphids
(Normark, 2000) and others. Actually, evolutional geneticists
regard both asexual reproduction and parthenogenesis as syn-
onym (e.g., Wuethrich, 1998). Nonetheless, they are discern-
ible from each other, because parthenogenesis begins with
female (sexual) gametes, in which there is a good chance giv-
ing rise to genetic recombination and, consequently, genetic
variation during oogenesis (Kabay and Gilbert, 1977). In this
paper, the term, asexual reproduction, is limited to the narrow
definition by which a new individual comes from somatic cells.
For broader definition, if necessary, clonal reproduction will be
used to refer to the natural creation of clonal individuals.

It has been generally believed that clonal reproduction
has disadvantage to long-term survival. This is because clonal
reproduction seems not to remove harmful mutations, it seems
not to give rise genetic variation and it seems not to reset cell
aging. In this paper, we would like to re-consider those classi-
cal problems that asexual reproduction addresses, based on
our recent findings in the budding tunicate, Polyandrocarpa
misakiensis.
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Purge of deleterious genes
Many evolutional geneticists argue that the fitness

(viability and reproductive success) of sexual reproduction is
superior to that of asexual one (Barton and Charlesworth,
1998). They insist that sex serves to assemble beneficial varia-
tions and so it creates a well-adapted lineage in the face of a
rapidly changing environment (e.g., Ishii et al., 1989). Although
genetic mutations are obviously the source of evolution, most
mutations affecting fitness appear to be harmful rather than
beneficial (Keightley et al., 1998), leading to the extinction of
offspring (Fig. 1A). One of the most important merits of sexual
reproduction may be, therefore, to eliminate deleterious
mutations rather than to accumulate beneficial mutations
(Leigh, 1973). Now, we have plenty of hypotheses to explain
how sex purges genetic scapegoats (Drake, 1991), although
we do not know yet about the accurate rate at which sex
removes harmful mutations. Gametogenesis may offer an
opportunity to self-diagnose the integrity of genome, by sort-
ing-out of mutations during meiosis (Fig. 1B). Then, harmful
genes will be thrown away together with the carrier (gamete)
in the trash.

On the other hand, clonal reproduction seems not to have
such an opportunity of sorting-out of harmful mutations. The
offspring inherit all of their bad genes and may pick up
another through a new mutation (Wuethrich, 1998). In this
way, mutations continue to be accumulated in both individu-
als and in the population (Sniegowski et al., 1997; Taddei et
al., 1997). Those notions mentioned above are invariably cor-
rect in parthenogenesis where genetic clones are produced
by female populations. In the rotifer, Asplanchna sieboldi, dip-
loid females reproduce parthenogenetically via mitotic oogen-
esis (Gilbert, 1976). This way of reproduction does not give

any chances to throw harmful genes away, as a full set of
genetic components should be transferred through female
generations. Depending on nutritional conditions, some of the
females produce eggs undergoing meiotic oogenesis (Kabay
and Gilbert, 1997). The haploid eggs develop parthenogeneti-
cally into males instead of females. However, these males
can scarcely transfer their selected genome to the offspring
by fertilization, as the females produce diploid eggs. The
accumulation of harmful mutations has a risk leading to the
extinction of those populations and, finally, species. As dis-
cussed below, asexual reproduction, another mode of clonal
reproduction, would not necessarily come into the same con-
sequence as parthenogenesis.

Can asexual reproduction remove harmful mutations?
Tunicates belonging to the phylum Chordata are phylo-

genetically the highest organism that can reproduce asexu-
ally. Asexual animals of P. misakiensis were first collected in
1970 (Watanabe and Tokioka, 1972), and have ever since
been cultured for 30 years in Japanese marine laboratories,
including ours. Their mode of propagation is referred to as
palleal budding (cf., Nakauchi, 1982). A palleal bud grows out
from the parent body wall that consists of the outer and inner
epithelia and mesenchymal cells intervening between them
(Fig. 2) (Kawamura and Watanabe, 1982a,b; Kawamura and
Nakauchi, 1984, 1986).

It is noteworthy that the bud begins with heterogeneous
cell population instead of a single cell with which sexual
reproduction starts. When harmful mutations occur sponta-
neously in some of those somatic cells, deficient cells may
possibly be extinguished as a result of competition with
remaining normal cells (Fig. 2A-a). In case they are alive but

Fig. 1. Fate of harmful mutations in sexual reproduction. (A) In sexual reproduction, when a zygote (top) has harmful mutations (red rod) all
descendants have the same deficiencies (middle, bottom). (B) Harmful mutations (red rods) in germlines (top) may be segregated during meiosis
(middle), providing a chance to eliminate those mutations in the next generation (bottom).
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have less proliferative activity, the probability that they spread
to the clonal population becomes very low (Fig. 2A-b). In
either cases, harmful mutations would not bring about seri-
ous consequence in the clonal life of budding animals. We
wonder if deficient cells have similar or somewhat higher pro-
liferative activity than normal cells (Fig. 2A-c). The former
(deficient cells) may be substituted gradually for the latter,

thus some individuals of the next blastogenic generation
being occupied by the offspring of the deficient cells (cf., Figs.
2B and 2C). The spreading (or the block of spreading) of harm-
ful mutations in asexual reproduction depends largely on the
amount of parental tissues that participate in bud formation.

In botryllid and polystyelid tunicates, both buds and adult
animals are connected with the extra-individual vascular sys-

Fig. 3. Bud growth in P. stolonifera. (A) Adult animal with buds (stolons), ventral view. The test vessel system develops around the basal
margin of the body. a, ample; e, endostyle; h, heart; i, intestine; o, orifice; p, pyloric caecum; s, stolon; sti, stigmata; sto, stomach. Bar, 1 mm. (B)
Daily growth of a bud. Vascular ampullae are omitted, but orifices (a1, a2, b1, b2) are plotted. As noted by a2 and b2, the parental epidermal
tissue does not move toward the growing bud. (Reproduced from Kawamura and Watanabe, 1981).

Fig. 2. Fate of harmful mutations in asexual reproduction. (A) In P. misakiensis, a bud consists of heterogeneous cell populations, the outer
epidermal and inner endodermal epithelia and intervening mesenchymal cells. Deficient cells (red boxes) may be extinguished as a result of
competition with normal cells (a). If deficient cells are alive but less proliferative than normal cells, they do not have serious effect on the life of
clonal individuals (b). When mutant cells have the same or somewhat higher proliferative activity than normal cells, they can occupy a definite
area of the animal (c). (B, C) In some cases mutations will be inherited to the next blastogenic generation (right), and in the other cases they will
not be inherited (left).
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tem by orifices (Newberry, 1965; Mukai et al., 1978) (Fig. 3A).
In Botryllus, Botrylloides and Symplegma, the orifices are
located at definite areas on the zooidal ventral surface. In
Polyandrocarpa, on the other hand, they are distributed very
abundantly around the basal margin where the bud primor-
dium appears (Fig. 3A), making it easy to trace the epithelial
tissue movement during bud growth. Strictly, the orifice is a
good landmark of the epidermis but not the inner epithelium.
However, many literatures have shown that both epithelia
behave synchronously during budding (Berrill, 1941; Izzard,
1973; Kawamura and Nakauchi, 1986). In P. stolonifera, an
adult animal of at most 5 mm in length produces very elon-
gated buds (stolon) of more than 10 mm in length (Kawamura
and Watanabe, 1981). Figure 3B shows the redrawing of their
observation of bud growth with reference to orifices. The bud
primordium was about 0.3–0.4 mm in width and 0.2 mm in
height along the basal margin of the parent body wall. It had
two orifices (a, b) at first that were soon divided, respectively,
into two sub-orifices (a1, a2, b1, b2). Interestingly, neither a2
nor b2 entered the growing stolon. The orifices increased in
distance exclusively between a1 and a2 or between b1 and
b2. It is noteworthy that after the bud primordium stage
parental epithelial tissues seem not to participate in the
stolonial outgrowth.

This empirical observation mentioned above has been
supported by chimera experiments (Kawamura and Watanabe,
1984). Two strains of P. misakiensis, white spot and spotless,
are discernible from each other by the presence or absence
of a white circular spot on the dorsal surface. The color phe-
notypes are determined by epithelial components of animals
(Kawamura and Watanabe, 1984; Ishii et al., 1993). Buds of
the spotless strain was amputated and grafted into the body
wall of the host adult animal of the white spot strain. The grafts
expressed a spotless phenotype that was the same as the
donor strain, even after they grew more than twice as large as
the original size (Kawamura and Watanabe, 1984). This
result is consistent with the notion that bud growth does not
need the supply of parent (host) epithelial tissues.

Both results of P. stolonifera and P. misakiensis strongly
suggest that epithelial components of a new blastogenic gen-
eration are all derived from a relatively small number of cells
of the bud primordium. In other words, budding involves the
removal of a large number of somatic cells and tissue of the
parent animal. We would like to emphasize, therefore, that
asexuals as well as sexuals have a good chance to purge
harmful mutations.

Genetic variation in sexual reproduction
Genetic variation is undoubtedly the motive force of bio-

logical evolution. It can be promoted by chromosomal recom-
bination (Barton and Charlesworth, 1998), shuffling of male
and female genomes (Maynard Smith, 1978), neutral or ben-
eficial mutations by nucleotide substitution (Kimura, 1967;
Johnson, 1999), and genomic change of larger scale such as
duplication or deletion (Ohno, 1970; Hughes, 1994; Wolfe and
Shields, 1997; Holland et al., 1994). Sexual reproduction has

the privilege of executing both the recombination and shuf-
fling of genomes. It has been believed that those recombina-
tion and shuffling are beneficial by allowing favorable alleles
to come together (Fisher, 1930). At the same time, however,
it is also possible that favorable sets of genes having been
accumulated through natural selection are broken up by
genetic recombination (Barton and Charlesworth, 1998). The
compromise is that recombination can be selectively advan-
tageous if different gene combinations are favored in different
generations and in different circumstances (Maynard Smith,
1978). In any case, sex offers some efficient methods for
genetic variations without harmful mutations. Clonal reproduc-
tion either by parthenogenesis or asexual reproduction does
not have such convenient methods, which is one of major rea-
sons why clonal reproduction is thought to be disadvantageous
to long-term survival (Barton and Charlesworth, 1998).

How fast are genetic variations fixed in the genome? The
mutation rates seem to be determined by a balance between
natural selection favoring lower mutation rates and opposing
selective forces favoring higher mutation rates (Dawson, 1998).
They vary widely among different species (Drake, 1991). In
Escherichia coli, the rate has been estimated as 1.7×10–4/
haploid genome/generation (Kibota and Lynch, 1996). In
eukaryotes, it is 0.84 in Daphnia (Deng and Lynch, 1997),
0.3–0.4 in Drosophila melanogaster (Mukai et al., 1972;
Keightley, 1994), about 0.1 in inbred population of mice
(Caballero and Keightley, 1998), and about 5 in human
(Kondrashov and Crow, 1993).

Does clonal population give rise to genetic variation ?
Some aphids in Australia exhibit a complete absence of

sexual reproduction. These wild-living parthenogenetic lin-
eages have genetic variations in microsatellites and a few other
inheritable components (Wilson et al., 1999). A clone of labo-
ratory-maintained parthenogenetic aphids was examined
genetically over 32 generations (Lushai et al., 1998). A puta-
tive germline mutation was noted once and somatic muta-
tions were noted four times. Mitotic unequal crossing over
seems to occur in X chromosome (Mandrioli et al., 1999). A
greenbug in the United States reproduces primarily by apomic-
tic parthenogenesis, which is interrupted by a periodic sexual
cycle. Shufran et al. (1997) have shown that the intergenic
spacer of the rDNA is stable within parthenogenetic clones
and that periodic sexual reproduction is a primary mechanism
for the generation and maintenance of genetic variability.

In P. misakiensis, two examples of genetic variation have
been known so far. One is tunicate C-type lectins of 14 kDa
(TC14) (Suzuki et al., 1990). C-type lectins are calcium-
dependent carbohydrate-recognition proteins (Drickamer,
1993). They have a common sequence motif of 115 to 130
amino acid (aa) residues. TC14 consisting of 125 aa contains
only the carbohydrate recognition domain that binds to D-
galactose (Suzuki et al., 1990) and D-fucose (Poget et al.,
1999). A cDNA encoding another type of TC14 has been iso-
lated (Shimada et al., 1995), named TC14-2 in relation to the
original one that was renamed TC14-1. Two additional isoforms
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have recently been purified (TC14-3, Matsumoto et al., in
preparation; TC14-4, C. Nakamoto, unpublished data). Four
TC14s are all translated and have the conserved half cys-
teine and carbohydrate-binding amino acids (Fig. 4A). We
found that although they are redundant, their functions are
not the same. TC14-3 showed the highest activity of cell
coagulation (Matsumoto et al., in preparation).

Polyandrocarpa serine protease inhibitor (P-serpin) is
another example of genetic variation (Kawamura et al., 1998).
It belongs to a secretory type of polypeptide, referred to as
Kazal’s inhibitor (Kazal et al., 1948) that is characterized by a
peculiar consensus signature with conserved half-cystines
(Greene and Bartelt, 1969). Our project of cDNA analysis has
shown that P-serpin is expressed enormously during budding
(Kawamura et al.,1998). P-serpin contained two related
cDNAs, P-serpin 1 discernible from P-serpin 2 by six nucle-
otide longer than the latter (Fig. 4B). Both P-serpin 1 and 2
had an elastase inhibitor domain and a trypsin inhibitor
domain, showing homology to ovomucoid, double-headed pro-
tease inhibitor, pancreatic secretory trypsin inhibitor and
acrosin inhibitor, all of which belong to Kazal’s inhibitor fam-
ily. Recently, at least two additional subtypes of P-serpin were
found (Y. Kariya, unpublished data). They had an insert of
either nine or 18 nucleotides long without frame-shift (Fig. 4B).
Genetic variants were also found within P-serpin 2. A total of
59 P-serpin 2 cDNAs examined could be classified into four
groups, each having the substitution of two or three nucle-

otides (our unpublished data).
Gene duplication is an important source of evolutionary

novelty. Most duplications are of just a single gene, but Ohno
(1970) has proposed that whole-genome duplication (polyp-
loidy) is an important evolutionary mechanism. The genetic
redundancy of TC14 and P-serpin may be ascribed in part to
ancient duplication of their genes or of the entire genome.
Many duplicate genes have been found in the yeast Saccha-
romyces cerevisiae (Kaback, 1995). Wolfe and Shields (1997)
have proposed a model in which this species is a degenerate
tetraploid resulting from a whole-genome duplication that
occurred after the divergence of Saccharomyces from
Kluyveromyces. In P. misakiensis, it is possible to assume
that the genetic variation may have also come from neutral or
less harmful mutations accumulated during asexual genera-
tions, as suggested by nucleotide substitutions in P-serpin 2.

Sniegowski (1997) predicts that optimal mutation rates
will evolve only in asexual populations. In Polyandrocarpa, as
mentioned earlier, buds are endowed with a small number of
parental epithelial cells during their growth (cf., Figs. 2,3). If
only normal cells are transferred to the bud from the parent
that is a carrier of deficient genes, the mutation will be extin-
guished in the next asexual animal (Fig. 2A). On the other
hand, if some of those cells transferred have a deficient gene,
the mutation will be emphasized in the subsequent asexual
generations, thus fixing genetic polymorphism very promptly
in a clonal population. Therefore, our conclusion is that asexual

Fig. 4. Two examples of polymorphism in Polyandrocarpa genes. (A) Four isoforms of TC 14 lectins from white spot strain. Red arrow shows
the N-terminus of mature secretory proteins. Blue letters show carbohydrate-binding amino acids. (B) Four isoforms of P-serpins from white spot
strain. Red letters show six, nine or 18 nucleotide inserts.
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reproduction can give rise to genetic variation.

Is cell renewal the privileged phenomenon for sexual repro-
duction?

Unlike immortal germ cells, normal somatic cells have a
finite life span. Nonetheless, nuclear transplantation experi-
ments have shown that somatic cell nuclei are capable of
resetting the developmental clock and resuming ontogeny after
introduced into enucleated oocytes of frogs (King and Briggs,
1956; Gurdon, 1962), sheeps (Wilmut et al., 1997) and mice
(Wakayama et al., 1998). This reversible aging of somatic cell
nuclei has recently been accounted for in relation to the struc-
ture of chromosomal extremities (telomeres). Cell division
accompanies the progressive shortening of telomeres (Harley
et al., 1990; Hastie et al., 1990). It has been first discovered in
Tetrahymena that the chromosomal integrity is maintained by
telomerase, a ribonucleoprotein that is capable of synthesiz-
ing telomeric repeats (Greider and Blackburn, 1985, 1987).
Telomerase is a kind of terminal transferase (Morin, 1989)
with the activity of reverse transcriptase (Lingner et al., 1997).
It is expressed strongly in germline of Xenopus (Mantell and
Greider, 1994) and human (Wright et al., 1996), in immortal
and cancer cells (Kim et al., 1994) and in stem cells such as
hematopoietic progenitors (Chiu et al., 1996). On the other
hand, it appears to be stringently repressed in normal human
somatic cells (Kim et al., 1994). Telomerase-deficient mouse
cells showed chromosomal abnormalities including end-to-end
fusion (Blasco et al., 1997). When the catalytic subunit of
human telomerase is expressed in telomerase-negative nor-
mal cells, the telomerase-expressing clones can extend the
length of telomeric DNA and exceed their life-span (Bodnar et
al., 1998, Vaziri and Benchimol, 1998). These results provide
evidence for the telomere hypothesis that telomere shorten-
ing is the molecular clock that triggers replicative senescence
(Harley, 1991).

Sexual reproduction appears to reset telomere shorten-
ing at each generation, as telomerase is expressed in germline.
It is quite in a mystery if telomerase also operates in asexual
reproduction, but our recent EST (expressed sequence tag)
data suggested that it might be the case. Out of about 2,000
ESTs in P. misakiensis (Kawamura et al., 1998 and our
unpublished data), four matched to retrotransposon and
retroviral reverse transcriptase with very high similarity (Table
1), although full length of cDNAs remains to be analyzed. As
already mentioned, telomerase has the enzyme activity of
reverse transcriptase related to retrotransposon and retroviral
reverse transcriptase (Cech et al., 1997).

Another mechanism is known to influence cell aging in
asexual reproduction of P. misakiensis. We would like first to
refer to a dedifferentiation system for asexual reproduction
(Fig. 5A). In botryllid and polystyelid tunicates, a bud consists
of outer and inner epithelia (Kawamura and Watanabe, 1982a,
b), of which the inner epithelium evaginates or invaginates to
form various organs such as the brain, pharynx and gut
(Kawamura and Nakauchi, 1984; Kawamura and Sugino,
1999). It is evident, therefore, that the inner, atrial epithelium

of the bud is developmentally multipotent (Kawamura
and Nakauchi, 1984; Fujiwara and Kawamura, 1992). In P.
misakiensis, the inner, multipotent epithelium expresses sev-
eral differentiation markers such as pigment granules and
alkaline phosphatase in the cytoplasm or on the cell surface
(Fujiwara and Kawamura, 1992, Kawamura and Fujiwara,
1994). The cell has a prolonged doubling time of more than
170 hrs (Kawamura et al., 1988). At stages of morphogen-
esis, on the other hand, cells of organ placodes lose the dif-
ferentiation markers and enter rapid cell cycling of about 13
hrs, indicating that transdifferentiation should occur (Fujiwara
and Kawamura, 1992; Kawamura and Fujiwara, 1994).

In hydras (Bosch and David, 1991) and planarians
(Baguñà et al., 1989; Shibata et al., 1999), stem cell systems
are used for asexual reproduction and regeneration (Fig. 5A).
They are very sensitive to ionizing radiation (Fradlin et al.,
1978; Baguñà et al., 1989). In P. misakiensis, on the other
hand, irradiated colonies resume bud formation and bud
development in temporal accordance with the restoration of
mitotic activity even after irradiation at 80 Gy (Kawamura et
al., 1995). This remarkable resistance to ionizing radiation
affords another evidence for dedifferentiation system in
asexual reproduction of Polyandrocarpa.

Several factors have been identified to regulate dediffer-
entiation and cell division of multipotent cells in P. misakiensis.
One is TC14 lectins. Mature proteins are secreted into the
hemolymph during budding and cause mesenchymal cell
aggregation to form epithelial tissues (Kawamura et al., 1991).
As already mentioned, our published and unpublished stud-
ies revealed four kinds of isoforms (TC14-1, TC14-2, TC14-3,
TC14-4) (Suzuki et al., 1990; Shimada et al., 1995). They form
homo- or heterodimers (Poget et al., 1999). Heterodimers of
TC14-2 and TC14-3 isolated from living animals exhibited a
remarkable effect on multipotent cells in vitro (Matsumoto et
al., in preparation). When cells growing at log phase were
treated with TC lectins, they became swollen, ceased to
divide and expressed the inner epithelium-specific antigen.
This activity of the lectins was blocked by D-galactose. By
preparing recombinant proteins, Matsumoto et al. (in prepa-
ration) found that only TC14-3 caused cell cycle arrest and
induced cell differentiation. These results have shown that
TC14-3 acts as autocrine factor to give replicative senescence
to the multipotent epithelium. Interestingly, C-type lectins that
TC14s belong to have the three-demensional structure related
to angiogenesis inhibitor endostatin, although almost no
sequence similarity has been found (Hohenester et al., 1998).

A few factors that counteract with TC lectins have been
known so far in P. misakiensis. Both retinoic acid (RA) and
proteases are able to induce in vivo the secondary bud axis
when applied to growing buds (Hara et al., 1992; Kawamura
and Watanabe, 1987; Kawamura et al., 1993). Although RA
did not directly cause in vitro dedifferentiation of the atrial epi-
thelium, the conditioned medium of RA-treated mesenchymal
cells caused dedifferentiation of explants of the atrial epithe-
lium (Kawamura et al., in preparation). The conditioned
medium showed the increased activity of trypsin-like serine
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Table 1. ESTs coding for possible nuclear proteins in P. misakiensis.

EST number Putative identification Frequencies

5
1
1
1
3
1
2
1
1
1
2
4
3
1
1
1
1
1
3
1
1
2
1
2
1
2
1
2
1
1
2
1
1
4
1
2
1
1
2
1
1
1
1
1
1
1
1

72

Pm13161 ATP-dependent rRNA helicase SPB4
Pm12654 brain-specific homeobox/POU domain protein
Pm11972 balbiani ring protein 3 precursor
Pm12031 chromosome assembly protein XCAP-C
Pm01109 cleavage and polyadenylation specificity factor
Pm00951 CREB-binding protein
Pm01535 DNA-directed RNA polymerase II
Pm20820 DNA ligase 1
Pm11266 DNA-repair protein
Pm13516 EBNA 2 nuclear protein
Pm12401 14-3-3 protein
Pm01014 GTP-binding nuclear protein RAN/TC4
Pm00312 histone H1
Pm20502 homeobox protein OM (1D)
Pm11435 homeobox protein OTX 1
Pm01065 immediate-early protein
Pm00672 nitrogen regulatory protein
Pm01020 20kd nuclear CAP binding protein
Pm00535 nuclear localization sequence binding protein
Pm00458 nuclear transition protein 2
Pm01574 nucleolar transcription factor 1
Pm10208 nucleophosmin
Pm10439 nucleoprotein TPR
Pm11970 nucleoporin
Pm01023 octapeptide-repeat protein T2
Pm13356 oocyte zinc finger protein
Pm01082 pre-mRNA processing protein PRP39
Pm00612 protamine
Pm01216 protein HGV2
Pm13452 protein kinase CLK2
Pm20574 proto-oncogene DBL precursor
Pm10306 putative 90.2 KD zinc finger protein
Pm00549 putative tumor suppressor luca 15
Pm11068 retrovirus-related pol polyprotein from transposon
Pm12155 RNA-directed DNA polymerase
Pm00554 RNA polymerase b subunit
Pm12132 shuttle craft protein
Pm12713 60 KD TAT interactive protein
Pm10159 small nuclear ribonucleoprotein SM D2
Pm10494 sperm histone
Pm21031 splicing factor SC35
Pm10164 suppressor of zeste protein
Pm20704 thyroid receptor interacting protein
Pm20842 transposon TX1 hypothetical 149 KD protein
Pm00774 ubiquitin carboxyl-terminal hydrolase
Pm00863 yeast nuclear protein
Pm00864 zinc-binding protein A33

Total

protease (Kawamura and Fujiwara, 1995). RA is one of
endogenous retinoids in P. misakiensis (Kawamura et al.,
1993). In developing buds, the enzymatic activity of possible
retinoic acid synthase is expressed in the epidermis around
the dedifferentiating tissue (Kawamura et al., 1993). Both
retinoic acid receptor (Hisata et al., 1998) and retinoid X
receptor (Kamimura et al., 2000) are induced to express in
mesenchymal cells by RA. These results suggested that RA
is the primary signal to trigger bud development. RA-treated
mesenchymal cells might secrete the secondary signal to

induce dedifferentiation of the atrial epithelium.
Recently, cDNA fragments have been isolated from RA-

treated mesenchymal cells by differential display technique
(Ohashi et al., 1999). One of them had sequence similarity to
trypsin. A full-length cDNA had a serine protease domain at
the C-terminus of deduced amino acid sequence (Fig. 5B). At
the N-terminus, on the other hand, multiple functional domains
were located. The boundary between N- and C-termini had
the recognition site cut by plasmin, plasminogen activator and
other serine proteases, suggesting that the protein attains to
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Fig. 5. Dedifferentiation systems of multipotent cells in P. misakiensis. (A) Comparison of a dedifferentiation system with a stem cell system.
(B) Primary structure of TRAMP protein involved in dedifferentiation. 1, signal peptide; 2, 7, Scavenger receptor; 3, 4, 6, Low density lipoprotein
receptor; 5, kringle domain-like hairpin loop; 8, serine protease. (C) Circuit of differentiation and dedifferentiation of multipotent cells regulated by
TC lectin and TRAMP in culture.

functional maturity after enzymatic modification. Thus, this
multi-functional protein is called tunicate retinoic acid-induc-
ible modular protease (TRAMP) (Ohashi et al., 1999).

Recombinant protein of the TRAMP catalytic domain has
promoted cell growth and cell motility in a dose-dependent
manner (Ohashi et al., 1999). Cells became smaller and lost
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cytoplasmic granules, suggesting that dedifferentiation might
occur. TRAMP showed trypsin-like enzyme activity, while
authentic trypsin did not show any mitogenic activity (Ohashi
et al., 1999). This result suggested that the sequence respon-
sible for the mitogenic activity should be located outside the
conserved region of serine proteases.

Urokinase-type plasminogen activator (uPA) is the well-
known vertebrate protease that has the mitogenic activity
(Kirchheimer et al., 1988). Human uPA consists of 411 amino
acids except for signal peptide. Like TRAMP, it is a modular
protease with EGF-like domains and kringle motifs at the N-
terminus and with a catalytic domain at the C-terminus (Leslie
et al., 1990). Many investigators agree with the notion that the
mitogenic activity of uPA is independent of the enzymatic
activity (Kirchheimer et al., 1987). Glycosylated EGF and/or
kringle domains of uPA at N-terminus have the mitogenic
effect on melanoma cells (Koopman et al., 1998) and osteosa-
rcoma cells (Kirchheimer et al., 1987). In these cases, the
growth signal of uPA is mediated by high affinity uPA recep-
tors (Rabbani et al., 1992). On the other hand, a N-terminal
polypeptide is insufficient for the growth of normal fibroblasts
(De Petro et al., 1994), and a full length of uPA is required by
the vascular smooth muscle cells (Kanse et al., 1997). Here,
uPA seems to use a signal transduction system other than
the high affinity receptor. A similar system may work on tuni-
cate cells, as TRAMP recombinant proteins lacking the N-
terminal region still have growth-promoting activity.

In the dedifferentiation system of P. misakiensis, the
multipotent epithelium is regulated to differentiate by counter-
acting factors such as TC14 lectins and serine protease (Fig.
5C). In the quiescent state or in the presence of TC14s,
multipotent cells have the doubling time of more than 170 hr,
at least 13-fold longer than that of dedifferentiated cells
(Kawamura et al., 1988). We assume that this slow cell
cycling of the multipotent epithelium is practically effective in
suppressing cell aging.

Conclusion
Unlike empirical hypotheses, we could not find any seri-

ous demerits of asexual reproduction for survival in P.
misakiensis. Asexual reproduction involves the removal of a
large number of somatic cells in the process of budding. Clonal
animals budded have recognizable genetic variations includ-
ing gene redundancy and polymorphism. A few polypeptides
can regulate differentiation states of the multipotent cells, which
would serve to retard their aging. It is interesting to ask how
many years hereafter the clones of P. misakiensis can con-
tinue their asexual lives. We are also interested in the differ-
ence in genomic composition between the subclone of Usa
and that of Shimoda that have been isolated from each other
for just 20 years.
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