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COMPROMISE PROGRAMMING IN FOREST MANAGEMENT
BORIS POFF, Mojave National Preserve, HC1 Box 515, Nipton, CA 92364;
AREGAI TECLE, School of Forestry, Northern Arizona University, PO Box 15018 Flagstaff, AZ 86011; 
DANIEL G. NEARY and BRIAN GEILS of the US Forest Service, Southwest Forest Science Complex,
2500 S. Pine Knoll Drive, Flagstaff, AZ 86001 

ABSTRACT
Multi-objective decision-making (MODM) is an appropriate approach for evaluating a forest  management scenario

involving multiple interests. Today’s land managers must accommodate commercial as well as non-commercial objec-
tives that may be expressed quantitatively and/or  qualitatively, and respond to social, political, economic and cultural
changes. The spatial and  temporal characteristics of a forest ecosystem and the huge number of variables involved
require the management of such a system in a spatiotemporal MODM framework. The particular  MODM technique used
in this paper is Compromise Programming. This technique is used to determine the most satisfactory management option.
Compromise Programming uses a common management response indicator to solve a forest ecosystem management
scenario in a fair and equitable manner. 

INTRODUCTION
Forest ecosystems in the United States present

land managers and decision makers with many  con-
flicting management objectives related to societal,
ecological, environmental and economic values.
These objectives include improving desirable objec-
tives, such as aesthetic quality, forage  for livestock
and wildlife, recreational use, quantity and quality of
water, and reducing undesirable objectives, such as
fire and flood hazards, invasive exotic plant species,
etc. Often these conflicting objectives are noncom-
mensurable, and change with time and space. The
goal  of the forest-planning process is to reach satis-
factory achievement levels of all objectives. The
primary motivation for this paper is the use of a
spatio-temporal multi-objective decision-making
(MODM) modeling effort as a planning tool for a
forest land-management planning process. 
 In an adaptive forest-planning process, land
managers acknowledge that the ecosystem they
manage will be different in the future and are will-
ing to deal with changing circumstances  (Gregory
et al. 2006). However, it may be difficult to assess
the achievement level of objectives through time.
Objectives pertaining to both human and natural
systems are interdependent, as the systems them-
selves are and should be treated as such (Folke et al.
2002). Consequently, it can be problematic to engage
multiple decision makers with varying interests in the
forest management decision-making process, espe-
cially when the future abounds with ecological and
social uncertainties. It is essential to establish objec-
tives and criteria to implement scientifically cred-
ible and defensible management alternatives that
have widespread acceptance by decision makers and
stakeholders. Yet, in order to achieve management
goals and objectives, it is inevitable that future
adjustments to management will be required. Here
active adaptive management can be combined with

scenario modeling to become a learning exercise
and to test hypothesis (Gregory et al. 2006). With
the availability of temporal and spatial software for
use in forest planning and considering the complex-
ity and number of variables involved in ecosystem
management, it is appropriate to model forest man-
agement in a spatio-temporal MODM framework.
Ecosystem management would be much simpler if
there was only one objective of  concern. But in
actuality management must take into consideration
multiple objectives to mitigate conflicts (Gregory et
al. 2006). Adaptive decision making in forest man-
agement across spatio-temporal scales allows for
exposure of long-term, cross-scale consequences. 

Multi-Criteria Decision Making (MCDM) has
its origin in the field of Operations Research
(Zeleny 1982), which was initially developed for
military use during the Second World War to opti-
mize submarine warfare in the Atlantic Ocean
(Morse 1986). Since then, MCDM has been devel-
oping into a discipline with its own concepts,
approaches and methods to aid decision makers
(DMs) to identify, describe, evaluate, sometimes
sort, rank, and select or reject alternatives, based on
evaluation processes that involve several criteria
(Colson and De Bruyn 1989, Tecle and Duckstein
1994). MCDM basically is a technique that deter-
mines the performance levels of alternative manage-
ment actions in achieving desired management
objectives and thereby differs from other linear pro-
gramming techniques used in forest management,
such as goal programming (Dyer et al. 1979, Field
1973). The MCDM description is made in the form
of constructing a matrix of criteria versus alterna-
tives. The technique may be divided into two broad
classes (Zimmermann 1996, Phoa and Minowa
2005): (1) Multi-attribute decision making, which
evaluates a finite feasible set of alternatives and
selects the best one based on the scores of a set of
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COMPROMISE PROGRAMMING POFF ET AL. 45

attributes; and (2) Multi-objective decision making,
which selects the best alternative on the basis of its
performance levels in achieving a set of conflicting
objectives. Both processes can be used by a single
DM or a group of DMs (Phoa and Minowa 2005).  
 One of the reasons MCDM techniques have not
been fully exploited in natural-resource manage-
ment is that managers are still unfamiliar or feel
uncomfortable with the tools and methods (Pomerol
and Bara-Romero 2000). The problem in forest
management is mostly due to unfamiliarity with or
the lack of expertise on the approach. The low num-
ber of MCDM techniques applied so far, has pri-
marily been to determine optimal timber harvesting
methods (Duerr et al. 1979, Dekluyer et al. 1980,
Garcia 1990, Diaz-Balteiro and Romero 1998).
While MCDM techniques have been primarily
assuming homogeneity within a study area and were
basically aspatial (i.e., Poff 2002, Phoa and Minowa
2005), many MCDM problems in reality vary across
space (Tkach and Simonovic 1997, Malczewski
1999a).

Even though MCDM integration into GIS
received considerable attention among urban plan-
ners (Carver 1991, Malczewski 1996) and in land
allocation problems (Jansen and Rietveld 1990,
Eastman et al. 1995, Yeh and Li 1998), relatively
few studies have employed MCDM with GIS tech-
niques in forest management planning (Phoa and
Minowa 2005). In the past few years, GIS have
been used to find solutions to natural-resource man-
agement and planning problems, such as the Patux-
ent Landscape Model (PLM 1995, Costanza et al.
2002, Voinov et al. 2003). This has opened the door
for GIS-based multicriteria decision making (Ratsia-
tou and Stefanakis 2001), leading to the develop-
ment of spatial decision support systems that incor-
porate forest planning models into a GIS format
(Næsset 1997).
 Malczewski (1999b) suggests that visualization of
spatial MCDM analysis outcomes are important in
attempts to integrate MCDM tools with GIS. This has
led to several prototypes in the past decade (Jansen
and Rietveld 1990, Carver 1991, Faber et al. 1995,
Jankowski 1995, Lotov et al. 1997, Tkach and Simon-
ovic 1997, Wu 1998, Jiang and Eastman 2000).  
 As with simulation software, there are three
basic ways of integrating MCDM into GIS software:
(1) The first one involves incorporating MCDM
tools within the GIS software (Jiang and Eastman
2000), (2) the second one imbeds GIS techniques
and tools within the MCDM software (Fisher et al.
1996), and (3) the third integrates both at the operat-
ing system level (Jankowski et al. 1997). According
to Morris and Jankowski (2000) the main problem
with MCDM-GIS integration is that the approach
used to assign criterionweights is either somewhat

arbitrary or assumes that the criteria are strictly
Boolean.

One MCDM technique that has been success-
fully used with GIS to deal with spatial variability
is Compromise Programming (Rogowski and Eng-
man 1996, Tkach and Simonovic 1997, Bukenya
2000, Simonovic 2002, Thinh and Hedel 2004).
However, none of these examples involve dynamic
models and primarily focus on either cleaning up
remotely sensed data or determining land suitability
for various natural resource management problems.
That is because this area of modeling involves
methods that are being used to optimize some set of
goals or objectives, in terms of planning, design,
policy and management. Commonly planning and
management processes are regarded as so complex
that it is thought to be not possible to build a spatial
model optimized in a fashion that meets the diver-
sity and complexity of political aspirations of deci-
sion makers (Batty 2005). Some dynamic decision
support tools that have been applied on landscape
scales include the Everglades Landscape Model
(ELM 1997) and the Land Use Evolution and
Impact Assessment Model (LEAM 1999). These
models have allowed decision makers, stakeholders
and concerned citizens to visualize and test impacts
of management actions on urban, environmental,
social and economic systems (Maxwell and Voinov
2005). However, none of these models use the class-
ical MCDM/MODM techniques as defined above.
 Until well into the 1990s, forest management
was dominated by timber production, even though
multiple-use forest management had been intro-
duced by the middle of the last century (Bengston
1994). This relatively recent paradigm shift from
traditional single objective oriented forest manage-
ment to ecosystem based forest management on
public lands has presented land managers and DMs
with multiple competing and/or conflicting objec-
tives and values which have to be addressed in a
forest-planning process. Forest management DMs
need to have a tool allowing them to figure out how
different forest-management prescriptions provide
for these diverse values and objectives. There needs
to be the ability to identify specific and groups of
objectives by interest or category. This provides an
opportunity to structure differences in objectives’
behaviors, relations and risks. Further, it is neces-
sary to have a common indicator that is reflective of
the values of interest, be responsive to management
actions/treatments, is a metric for the state of a key
ecosystem driver and which can be used to create a
mathematical response functions. Such a tool should
allow for the assignment of different weights to dif-
ferent values and objectives by different interest
groups and or stakeholders. Ideally there should also
be a metric that allows for a variation in how these
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46 COMPROMISE PROGRAMMING POFF ET AL.

different interests and stakeholders are compensated
for their differences. There is also a need to define
the spatial and temporal extent and resolution over
which these values and objectives are assessed. Is
this plan for on a forest-stand scale or a watershed
scale; does it span a decade or a century; does it
give an opportunity for stratification? How well can
DMs address uncertainty? Do the objectives and
values contained in the planning and modeling pro-
cess include diversity of interests and differences in
response? Are created response functions mindful of
interactions and thresholds? Can various scenarios
be modeled that reflect natural or social regime
change? 
 To achieve a spatiotemporal MODM modeling
of forest management, which takes the factors des-
cribed above into consideration, this study inte-
grated Compromise Programming with spatial and
dynamic computer algorithms to arrive at manage-
ment solutions that address spatiotemporal variabili-
ties of forest resources. The approach presented here
fits into the current institutional planning process as
well as adaptive management. 

COMPROMISE PROGRAMMING
Compromise Programming (CP) employs the

concept of distance to analyze multiple-objective
problems. This distance is not limited to the geo-
metric sense of distance between two points; it is
rather used as a proxy to measure degrees of human
preferences. CP selects a nondominated preferred
solution from a feasible set, on the basis of the solu-
tion’s closeness to an infeasible ideal point (Zeleny
1973). A nondominated solution in a MODM prob-
lem is one that cannot produce any improvement in
any one of the objectives without making at least one
other objective worse (Tecle et al. 1988, Tecle and
Duckstein 1994), while an ideal point represents 
the joint location of the individual maximum values
of all the objectives. Therefore, arriving at a com-
promise solution can be viewed as minimizing a
DM’s regret for not obtaining the ideal solution.
The general formulation of a CP approach is
expressed as follows: 

[1]

Here lp is the distance metric, for any p in which
0<p< . It is the measure of a solution’s closeness to
the ideal point Z*, which is the set of all the maxi-
mum values of all objective functions. Zij is the
value of objective i under a specific discrete value
of decision variable j. I is the number of objectives
within categories and ranges from one to four. J is
the number of discrete decision variable values. Zi

*

is the maximum value for objective i and it is
determined using the equation:

[2]

where ƒi is a response function and x is the decision
variable in which fi is expressed. 
 To avoid scale effects and to make all objective
function values commensurable, the objective  func-
tions are normalized by dividing the right hand side
by the expression (Zi

* – Zi
**), where Zi

** is the worst
value of objective i, which is also determined in
equation [2].
 The normalized objective functions are
expressed in the following manner: 

Zij = (Zij-Zi
*)/(Zi

*-Zi
**),i = 1,..., I and j = 1, , J [3]

where the Zij on the left hand side of the equation
represents the normalized elements of the original
pay-off matrix Zij on the right hand side of the equa-
tion. This normalization process guarantees the Zij
on the left hand side of the equation to have values
between 0 and 1. 
 The weight Wi in equation [1] signifies the
importance of objective i relative to the other objec-
tives. The p is the metric parameter. Different values
of p represent different aspects of a compromise
programming algorithm. For p=1, all deviations
from Zi

* are directly proportional to their magnitude.
For 2<p< , the largest deviation has the greatest
influence. Varying p from 1 to  , allows to move
from having a perfect compensation among the
objectives (i.e., minimizing the sum of individual
regrets) to having no compensation among the
objectives in the decision making process (i.e., mini-
mizing the maximum regret). The greater the conflict
between different decision makers is, the smaller the
possible compensation (Zeleny 1974, 1982; Goicoe-
chea et al. 1982; Szidarovszky et al. 1986).  
 To illustrate the use of CP in forest manage-
ment, the authors employ multi-objective manage-
ment of the ponderosa pine forest in northern Ari-
zona as an example. Land managers and scientists
consider the southwestern ponderosa pine forest to be
above its historical stand density and prone to cata-
strophic forest fires (Covington et al. 1997, USFS
2006). Management of the study area is further
complicated by the number of stakeholders and
other interested parties with strong feelings and
mostly conflicting objectives in the way the forest
should be managed (Tecle et al. 1995). These facts
lend this forest ecosystem management challenge to
be an ideal candidate for a study of the use of CP in
forest management.  

CP is adapted here to perform a two-level trade-
off analysis of the ecosystem management problem.
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In the first level, equation [1] is used to seek a com-
promise solution within those objective categories
that have more than one objective. In the second
level, equation [4] is applied to determine the com-
promise solution for the objective categories: 

[4]

Zkj is the normalized value of objective category k
under decision variable level j, and Zk

* is the best
normalized value for objective category k. K is the
number of objective categories and all others are as
defined previously. The weight Wk in equation [4]
signifies the importance of objective category k in
comparison to the other objective categories.  

For p= , the largest deviation is the only one
considered and the problem becomes a min/max
problem. As a result equation [4] reduces to
equation [5], where: 

l =max{Wk (Zk
* - Zkj )}, k =1,...,K and j =1,..., J [5]

All the variables in equation [5] are as described
above.

METHODOLOGY
The modeling approach in this study consists of

several steps. First ecosystem management objec-
tives that reflect the needs and aspirations of stake-
holders need to be identified and structured in terms
of specifications, criteria and criterion scales as
shown in Table 1. After appropriate management
decision variables with levels that can be evaluated
are identified, a set of response functions can be
developed and be used in a CP-spatiotemporal
framework. A response function is a mathematical
expression of a management objective or forest eco-
system component response to certain management
action(s). In this study, the management objectives
are linked to varying levels of forest stand densities
and solved using CP, Forest Vegetation Simulator
(FVS; a forest growth and yield model) and ArcGIS
(a geographic information system model). FVS is an
individual-tree growth model used by forest man-
agers in the USDA Forest Service in developing
land management plans. Other forest planning tools
such as Remsoft or Spectrum could be used as well.
ArcGIS is a geographic information system used by
land managers and analysts for creating, storing,
analyzing and managing spatial data and associated
attributes. ArcGIS is used here as the spatial projec-
tion component of the modeling effort which
assigns CP analysis results to polygons. These three
components are combined to achieve one purpose: to
solve a multi-objective forest management scenario

in a dynamic and spatially varied framework to
reflect a real world situation.

Response Functions
The management objectives described in this

paper represent the interests of various stakeholders.
Because the preferred values of many of these
objectives are arrived at different forest stand den-
sity levels, they are in conflict with each other.
Under this situation, it is impossible to optimize one
objective without adversely affecting another.
Hence, a trade off analysis using CP is performed to
determine a preferred stand density level that will
result in the most satisfactory solution with respect
to all management objectives. In order to use CP,
the individual management objectives are described
in the form of mathematical response functions. The
individual forest management objectives, their spec-
ifications, criteria and criterion scales used in this
study are shown in Table 1. Tree basal area (m2/ha)
is the management variable used to develop and
express the different objective functions. To be
meaningful to managers the decision variable must
be susceptible to alteration by management actions.
Hence, all response functions in this study are
expressed in terms of tree basal area (BA) that range
from 6 through 45 m2/ha. The minimum density
required for the forest in the study area to qualify as
“a forest” under UN guidelines (FAO 2006) is 6
m2/ha, while 45 m2/ha is the average upper limit
density of the majority of the data available for
creating the response functions (Poff 2002).

Figure 1 represents the trend curves for the 20
different management objectives expressed as
response functions in Table 2. Each graph in the
figure represents a change in management objective
function values with varying tree basal area levels
expressed in m2/ha. The management objectives
were normalized and brought into the same optimi-
zation direction before performing CP analysis.

Temporal Projection
Using Forest Vegetation Simulator

The dynamic analysis part of the modeling
effort is handled using the US Forest Service's
Forest Vegetation Simulator (FVS). FVS is a large-
scale forest management tool, which is employed to
summarize current stand characteristics, and to
predict future stand conditions under various man-
agement scenarios (Dixon 2002). Its output can be
utilized as an input into forest planning models and
other analytical and spatial analysis tools such as the
geographic information systems used in this work
(GIS) (McMahan et al. 2002). Refer to Essential
FVS: A User's Guide to the Forest Vegetation Sim-
ulator (Dixon 2002) for a more detailed description.
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48 COMPROMISE PROGRAMMING POFF ET AL.

While FVS served as the temporal projection
tool in this study, any software that performs similar
functions such as Tree And Stand Simulator (TASS)
(Mitchell 1975) could be used instead. FVS was
chosen because it has been commonly used to simu-
late growth of southwestern ponderosa pine stands
by forest land management agencies in the South-
west (Dixon 2002). FVS computes future forest
stand density based on measured original stand den-
sity. In its most basic form FVS can be expressed
as:

Ti+1 =Ti + f(var.), i =1, , I [6]

where Ti is the stand density at time step i and var.
represents a set of variables ranging from physical
and spatial characteristics such as slope, aspect and
conditions of adjacent stands, to biological condi-
tions such as tree mortality and management actions
such as a thinning treatment. 

The user defines the time scale for the growth
simulation in FVS. In this analysis, a common cycle
length of 10 years, a starting date of 2007, in which
the selected treatment was applied, and an ending

year of 2127 were chosen. FVS uses three stand
density descriptors, namely basal area per acre,
crown competition factor and basal area percentile.
However, only tree basal area per acre was used,
because it is the only decision variable used to
express all the response functions in this study. To
compute basal area, FVS simply sums the product
of trees per acre and tree basal area across all tree
records. This is then computed for each stand in the
simulation (Dixon 2002).

Spatial Projection Using
Geographic Information System (GIS)

ESRI's ArcGIS was used to handle the spatial
projection part of the CP modeling process. The
ModelBuilder extension of ArcGIS allows the user
to build a model using a diagram that resembles a
flowchart (Krivoruchko and Gotway-Crawford 
2005, Maidment et al. 2005, Miller et al. 2005). In
this feature of ArcGIS, the model consists of a set of
spatial processes that convert input data into an
output layer. ModelBuilder is not dynamic as of
version 9.1, however, it can simulate changes with

Table 1. Objective categories, specifications, criteria, and criterion scales for the spatiotemporal CP analysis of the
southwestern ponderosa pine forest ecosystem.

Objective categories Specifications Criteria Criterion scale

Maximize social benefits Aesthetic quality
Cultural resources
Recreational use

Scenic beauty index
Willingness to pay
Willingness to pay

Ordinal
US$/BA/ha
US$/BA/ha

Minimize insects and diseases Roundheaded pine beetle attacks
Bark beetle

Dwarf mistletoe infection

Beetle attacked trees
Hazard rating

% of BA killed
Composite stand
Hazard values
10-yr infestation rate

Minimize exotics Invasive plant reduction Individual exotic plants Plants/ha

Maximize forage Herbage production  Amount of herbage t/ha

Maximize timber Timber growth Timber yield m3/ha

Minimize costs Costs Cost of tree removal US$/ha

Minimize fire Forest fire Crown fuel load
Heat intensity
Crown fire

t/ha
kJ/m2

% crown burned

Achieve desirable 
hydrological condition

Maximize water quality
Maximize water yield
Minimize flood hazard

Sediment yield
Streamflow
Peak flow

t/ha/yr
m3/sec
m3/km2

Optimize wildlife habitat Nongame species
Threatened/endangered species
Game species
Forest Service sensitive species

Abert squirrel
Mexican spotted owl
Mule deer
Northern goshawk

Ordinal
Ordinal
Ordinal
Ordinal
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Table 2. Summary of response functions.

Objectives (based on) Mathematical formulations of management objective
r2

value
Equation

no.

Social concerns
Aesthetic value (Brown et al.
1974,Tecle et al. 1998)
Cultural resources (Loomis
1996)
Recreation (Loomis 1996)

Z1=1.144-0.001974(x/0.2296) +0.004718(x/0.2296)2 -
0.000004356(x/0.2296)3+0.000000001059(x/0.2296)4

Z2 = -59.334+10.221x-0.206x2

Z3 = -16.03+2.706x-0.054x2

Where
Z1 = Scenic Beauty Index (SBE)
Z2 = Willingness to pay for forest preservation at given
basal area/ha
Z3 = Willingness to pay for recreational experience in
given basal area/ha
x = tree basal area m2/ha

N/A
N/A
N/A

8
9

10

   Insects and diseases
Roundheaded pine beetle
(Negrón et al. 2000)
Dendroctonus bark beetle
(McMillin pers.comm.)
Dwarf mistletoe infestation rate
(Geils and Mathiasen 1990)

Z4 = 0.453+0.044x-0.000025x2-0.0000021x3

Z5 = 1+0.218x+0.00000000000000231x2-
0.000000000000000033x3

Z6 = 0.697+0.013x-0.0000007x2

Where
Z4 = Percent ponderosa pine basal area killed from
roundheaded pine beetle
Z5 = Composite Stand Hazard Values from bark beetle
infestation
Z6 = 10-year dwarf mistletoe infestation rate/ha
x = Tree basal area m2/ha

0.88

1.00

N/A

11

12

13

Minimize exotic species ( USFS
1999 [data, Coconino NF])

Z7 = 36.57-2.097x+0.053x2-0.0005x3

Where
Z7 = Number of Scotch thistle observations/ha
x = Tree basal area m2/ha

0.55 14

Maximize herbage production
(Covington and Fox 1991, Tecle
et al. 1998)

Z8 = {(45+24a/25.4+55d)(exp(-0.0289(x/0.23))}*1.1208
Where
Z8 = herbage production
a = annual precipitation (= 762 mm average for study
area)
d = depth of soil to impedance layer (cm) (= 30 cm
average for study area)
x = tree basal area m2/ha

N/A 15

Maximum timber production
(Ronco et al. 1985, Tecle et al.
1998)

Z9 = 17.06(x/0.2296)-0.03369(x/0.2296)2*0.06997
Where
Z9 = Merchantable timber growth volume in m3/ha
x = tree basal area m2/ha

N/A 16

Minimum operational costs
(Turner and Larson 1974)

Z10 = 1486.35-33x
Where
Z10 = Cost of thinning to desired basal area expressed
in 2000 US$
x = tree basal area m2/ha

N/A 17

Minimum fire hazard and effects
(Fulé et al. 2001a, b)

Fire hazard
Heat generated
Size of fire

Z11 = -0.37+0.34x
Z12 = 1.763+8.54x-0.398x2+0.008x3

Z13 = 5.818+0.212x+0.041x2

Where
Z11 = Crown fuel load (t/ha)
Z12 = Heat generated (kJ/m2)
Z13 = Percent of crown burned (%)

0.96
0.75
0.52

18
19
20
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Objectives (based on) Mathematical formulations of management objective
r2

value
Equation

no.

Hydrological concerns
Water quality (Brown et al.
1974)
Water yield (Rogers et al.
1984, Tecle et al. 1998)
Flood hazard (Brown et al.
1974, Ffolliott and Thorud
1975, USFS 1977, Tecle
1991, Tecle et al. 1998)

Z14 = 14.82-0.34x
Z15 = 1.19{-5.72+0.83Pw/25.4+42r-0.24r(Pw/25.4)0.92-
0.007Pw2(1-exp[-(x/0.23)/45)]3}-0.47
Z16 = 76.27-1.04x
Where
Z14 = Sediment yield in t/ha
Z15 = Annual streamflow in cfs
Z16 = m2/km2 of water flow
Pw = Winter (1 Oct-30 Apr) precipitation (= 610 mm
average for study area)
R = Insolation index (= 19 INI for study area)
x = tree basal area m2/ha

N/A
N/A
N/A

21
22
23

Wildlife habitat condition
Abert squirrel (Patton 1984,
McTague 1991) 
Mexican spotted owl  (Tecle et
al. 1998, Ganey 1988)
Mule deer (Wallmo and
Schoen 1981,  Leckenby et al.
1982,  Severson and Medina
1983)
Northern goshawk (Reynolds
et al. 1992, Block et al. 1994)

Z17 = 0.857+0.02713x+0.0003027x2

Z18 = 0.056-0.033x+0.0044x2-0.00005x3

Z19 = 1.659+0.386x-0.017x2+0.0002x3

Z20 = 0.459-0.295x+0.025x2-0.0004x3

Where
Z17 = Abert squirrel habitat index
Z18 = Mexican spotted owl habitat index
Z19 = Mule deer habitat index
Z20 = Northern goshawk habitat index
x = tree basal area m2/ha

N/A
0.47
0.74
0.86

24
25
26
27

N/A = r2 value is not available because the original response function has been developed by respective authors
and value was not given.

K = 1....K, where K = 9
Each k has 1 - 4 specific objectives, represented by I.
When I 2 a first stage evaluation is performed using the CP algorithm given in equation 1, to arrive at a joint
response function value for each objective category.
When I = 1, no first stage CP evaluation is performed on the objective category, instead each objective category’s
values are determined for use in the second stage CP evaluation.

time by running a model multiple times using
different inputs. This was pursued in this study for
each time step simulated in FVS. Using the query
function in Modelbuilder eleven layers were created
for each time-step output given in the FVS table.
Here ArcGIS was used to assign the level of close-
ness to polygons based on their basal area values.
This measure of closeness of CP solution to the
ideal point serves as a surrogate for the achievement
levels of the management problem. Each layer
represents a group of forest stands with the same
achievement level. This can be expressed as:

[7]

where Li
TS is the layer created in time step i and

ALj
BA are the polygons of achievement level j given

their basal area values. 
There are a total of thirteen, 10-year time steps

(from 2007-2127) plus pre-existing stand conditions
in this simulation. The 11 layers, for each time step,
are color coded in accordance to the color key given

in the respective figures displaying the results of the
simulation. As illustrated in Figure 7, in the results
section, the user can see at a glance which forest
stands in the project area have the best possible
basal area that can satisfy all management objec-
tives simultaneously. One can also easily see which
stands have too high of a stand density and which
stands have too little and by how much. In other
words, the spatiotemporal CP output is displayed by
the individual stands across the landscape in the
project area using a color coded scheme to show the
percentage of the achievement level.

Problem Analyses
To evaluate the different forest management

alternatives with respect to their ability to achieve
the desired objectives, the 20 objective response
functions were categorized into nine objective cate-
gories on the basis of their similarity in addressing
related issues as shown in Table 1. The process
involves translating all response functions into the
same optimization direction, namely maximization,

Downloaded From: https://complete.bioone.org/journals/Journal-of-the-Arizona-Nevada-Academy-of-Science on 13 Jun 2025
Terms of Use: https://complete.bioone.org/terms-of-use



52 COMPROMISE PROGRAMMING POFF ET AL.

Figure 3. The outcomes of CP analysis under the 3 different
sets of Wi (equal, varying and extreme) and for p = 1.

Figure 4. The outcomes of CP analysis under the 3 different sets
of Wi (equal, varying and extreme) and for p = 2.

where the higher the value of a response function,
the higher the achievement level becomes. 

The application of the CP algorithm in the first
level leads to a compromise solution within each
objective category that consists of multiple objec-
tives. There were five objectives categories with
two or more objective functions evaluated at this
level. Equal weights and a p-metric value of 2 were
used at this level of analysis to better show the
difference between the individual objectives. Figure
2 shows the first level CP evaluation results for the
nine different objective categories in the form of
trend curves.

The second level of CP analysis involves eval-
uating the nine objective categories. This consists of
calculating the level of closeness for each value of
the decision variable, and then determining the most
preferred forest stand density under three different
weighting scenarios. The first case assumes all
objectives to have equal weights or importance; the
second case involves assigning varying weights to
the different objective categories; and the third case
uses extreme weights. The third indicates a situation
where a particular DM is primarily interested in one
of the management objective categories. In all cases
the CP solutions are determined for p-values of 1, 2
and  to show the sensitivity of the CP solution to
p-values.

CP RESULTS AND SENSITIVITY ANALYSIS
The use of three sets of weights (Wi) and the

three sets of the metric parameter p-values deter-
mines the sensitivity of the modeling effort to
changes in the two parameters. The first set of
weights consists of equal weights for each of the
objective categories. The second set of weights con-
sists of actual weights assigned by a USDA Forest
Service Interdisciplinary Team on the Coconino
National Forest in northern Arizona. The weights
assigned to each objective category vary from 1-10,

where a weight of 1 indicates least important and 10
most important. The third set of weights consists of
an extreme case, where one objective category (in
this case Optimization of Wildlife Habitat) was given
a weight of 10, while each of the eight remaining
objective categories received a weight of 1. Figures
3, 4 and 5 display the sensitivity of the CP algo-
rithm under the three different sets of weights and
for the metric values of p = 1, 2 and , respectively.
The most preferred forest density (expressed in
basal area) under each weighting scheme and the
three p-values are listed in Table 3. 

In Figures 3, 4 and 5 each weighting scheme
(extreme, varying and equal weights) is representedFigure 2. Standardized response function curves for the nine

objective categories in their individual desired optimization
directions.

Figure 5.The outcomes of CP analysis under the 3 different sets
of Wi (equal, varying and extreme) and for p = .
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by a trend curve. The decision variable values
(expressed in the form of tree basal area in m2/ha)
displayed on the x-axis serve as the vegetation man-
agement alternatives (thinning to a given level or
allowing vegetation to reach a given density). The
y-axis is a standardized level of closeness to the
ideal point, which ranges from zero to one, where 1
represents the infeasible ideal point. The decision
variable values with the highest level of closeness
(i.e., the peaks of the trend curves) represent the most
preferred management alternatives with respect to all
objectives under the different weighting schemes.
Because the level of closeness values are very small,
their differences for decision making purposes are
better viewed in at least three decimal places other-
wise many values may round up to the same number. 

The trend curves under the extreme weighting
scheme in Figures 3, 4 and 5 indicate that the CP
analysis results are most robust for a metric param-
eter value of p=1 and most sensitive for p=2 and .
The extreme weighting scheme is used here only for
sensitivity analysis purposes and does not necessarily
represent a realistic forest management scenario.

Figure 6 displays the same results in a different
manner, allowing for further interpretation of the
sensitivity analysis. The CP results under extreme
weighting scheme are not displayed in Figure 6 as
it is not realistic to use this weighting scheme in
actual decision making procedures. The columns in
Figure 6 represent the management alternatives (in
tree basal area) ranging from 6 to 45 m2/ha, whereas
the individual rows represent the CP results under
different weighting schemes and metric parameter
p-values. The most preferred vegetation manage-
ment alternatives-in terms of the decision variable
values-under a given weighting scheme are colored

in dark green. As the colors shift from dark green to
yellow and orange, the stand densities become
increasingly too dense to satisfy all management
objectives simultaneously. On the other side, as the
colors shift from dark green to green, blue and
purple, the stand densities decrease steadily and
satisfies all management objectives less and less.
Each change in color away from the dark green
signifies a 5% decrease in the CP achievement level.
Red and pink signify achievement levels of less than
80%, either on the increasing or decreasing trends in
tree basal area, respectively. The same color coding
is used later in the ArcGIS analysis.

The results displayed in Figures 3, 4, 5 and 6
indicate that the MODM technique employed in this
modeling effort is sensitive to both the decision
makers’ preference structure (expressed in the form
of weights) and the p-metric values. This is espec-
ially true for p=2 and  and all weighting schemes.
At the same time the technique is robust because it
does not allow one set of weights to strongly
influence any solution under p=1. Figures 3 to 6 in
particular, show using p=  is not useful in deter-
mining a particular most preferred vegetation man-
agement alternative that satisfies all 20 objectives
simultaneously.

ILLUSTRATIVE EXAMPLE RESULTS
To illustrate the application of the modeling

effort presented in this paper, the most robust
parameter value of p=1 and equal objective weights
were used to analyze the forest management exam-
ple using CP. The CP analysis suggests a most pre-
ferred tree basal area of 27 m2/ha (see Fig. 6 and
Table 3). Table 4 lists the resulting objective

Figure 6. The columns represent the varying decision variable values, whereas each row represents CP results under different
weighting scheme and p-values. The most preferred solutions for a given weighting scheme are colored in a dark green. "V"
indicates varying weights assigned to the different management objectives and "Eq." indicates weighting all objective categories
equally.
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Table 4. Values for each one of the 20 forest management objectives corresponding to the most preferred vegetation
management alternative under p = 1, 2 and . The best and worst values for each objective are also shown in the last two
columns, respectively. Because there are multiple preferred management levels of 6, 25, 38 and 45 m2/ha for p = , only the
values for 6 and 45 as well as 25 (same as p = 2) are shown.

Criteria Criterion scale
p = 1 p = 2 p = Best

Value
Worst
Value27 m2/ha 25  m2/ha 6  m2/ha 45  m2/ha

Scenic Beauty Index Ordinal (1-3) 2.48 2.39 1.34 1.71 2.39 1.34
Willingness to pay1 US $/ha 66.67 67.62 0.00 0.00 67.45 0.00
Willingness to pay2 US $/ha 17.66 17.87 0.00 0.00 17.87 0.00
Beetle attacked trees % of BA killed 1.62 1.54 0.72 2.19 0.72 2.19
Bark beetle rating Ordinal (1-12) 6.89 6.45 2.31 10.81 2.31 10.81
Dwarf mistletoe rating 10-yr infection rate 1.05 1.02 0.77 1.28 0.77 1.28
Individual exotic plants plants/ha 8.95 9.63 25.79 3.96 3.96 25.79
Amount of herbage kg/ha 139.22 164.63 1,298.64 59.65 1,298.64 59.65
Timber yield m3/ha 107.77 102.03 29.38 143.40 143.40 29.58
Cost of tree removal  US $/ha 594.54 660.60 1,288.17 1.35 1.35 1,288.17
Crown fuel load t/ha 8.81 8.13 1.67 14.93 1.67 14.93
Heat intensity kJ/m2 99.51 91.38 40.39 309.11 40.40 309.11
Crown fire % crown burned 41.73 37.00 8.58 98.38 8.57 98.38
Sediment yield t/ha/yr 5.64 6.32 12.78 0.00 0.00 12.78
Streamflow m3/sec 8.79 9.27 17.44 6.76 17.44 6.76
Peak flow m3/km2 48.19 50.27 70.03 29.47 29.47 70.03
Abert squirrel habitat Ordinal (1-5) 1.81 1.72 1.3 2.69 2.69 1.03
Mexican spotted owl
habitat

Ordinal (1-5) 1.27 1.08 0.00 2.79 2.79 0.00

Mule deer habitat Ordinal (1-5) 3.69 3.87 3.41 3.02 4.32 2.85
Northern goshawk habitat Ordinal (1-5) 3.00 2.59 0.00 1.78 3.87 0.00
1Willingness to pay for forest conditions based on forests as cultural resource.
2Willingness to pay for forest conditions based on forests as a recreational resource.

Table 3. The most preferred tree basal area with respect to its performance in achieving all 20 management
objectives simultaneously under the three different weighting schemes and three values of p.

P Parameter “p”

1 2

Weighting scheme
Most preferred basal area

in m2/ha
Most preferred basal area 

in m2/ha
Most preferred basal area

in m2/ha

Equal 27 25 6, 25, 38, 45

Varying 26 18 6

Extreme 36 38 38
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function values for the 20 management objectives
under the most preferred tree basal area treatment.
The last two columns of the table also show the best
and worst objective function values used in the CP
analysis.

A target basal area of 27 m2/ha was chosen with
a thinning-from-below prescription for the FVS
simulation. Sample results of the modeling effort for
each individual stand in the project area through
time are displayed spatially in Figure 7. Treatment
was simulated in 2007. Figure 7a shows the
achievement level the individual stands in the
project area belong prior to the simulated treatment.
Figure 7b illustrates the same immediately follow-
ing the simulated treatment. Since trees continue to
grow, stand densities are generally expected to
increase. As time progresses the performances of
most individual stands change adversely with
increases in their tree density (Figure 7 c-f). Only
forest stands which had a stand density below the
most preferred solution, obtained by CP, eventually
grew into the most preferred solution and at times
may continue to grow beyond it. Table 5 indicates
that the simulated treatment for 2007 reduces the
forest stand areas classified as too dense (less than
90% of the achievement level) by about half. Areas
with a stand density below the target basal area
remained untreated and grew through the most
preferred tree density level with time.

CONCLUSION
The modeling effort presented in this paper uses

CP in a temporal and spatial framework. Twenty
objective response functions related to one specific
stand density decision variable, tree basal area, are
constructed to represent various ecosystem com-
ponents. The 20 response functions are then evalu-
ated using CP to: (1) determine the most preferred
decision variable value, and (2) to assign a level of
closeness to an ideal solution for stand densities that
did not represent the most preferred solution. FVS
was employed as the temporal component, to pro-
ject the values of the decision variable in the study
into the future under a variety of other variables that
influence the future development of the particular
decision variable used in this study. ArcGIS was
used next to assign an achievement level to poly-
gons representing forest stands, based on the deci-
sion variable. This was done in a series of time steps
and the results were displayed spatially as they
changed through time. 

Even though only 20 objective response func-
tions are presented here, it does not mean that they
are the only objectives to use. Other objective
response functions can be added or replace existing
ones to make the analysis more holistic as new
information becomes available. In the modeling

effort presented here, the 20 response functions
were assigned equal, varying and extreme weights,
and evaluated using p-metric parameter values of 1,
2 and  to determine the sensitivity of the CP tech-
nique to changing weights and p-values. The results
indicate that though CP is fairly robust, it is
sensitive to both the decision makers' weights and
the p-metric values. 

The output from CP indicates that the most
preferred tree basal area when all objectives have
equal weights and under a p-value of 1 is 27 m2/ha.
When the individual management alternatives
(expressed in tree basal area) are evaluated in terms
of their level of closeness to the most preferred
alternative (Figs. 3-6), the differences between the
preference structures becomes more apparent. How-
ever, the technique is easy to use. Also CP uses a
straightforward computation, which makes is easy
to handle using a spreadsheet.

The use of FVS as the temporal module in the
modeling process has several advantages. Generally
the software is widely used by land managing
agencies, such as the US Forest Service and is easily
understood and trusted by decision makers and
stakeholders (Dixon 2002). The interactive nature of
the modeling effort presented in this paper allows
analysts to plug in FVS simulations results to
receive a spatiotemporal MODM output with very
little extra effort.

The advantage of this model, compared to other
growth and yield models described in the literature
(Miner et al. 1988, Edminster el al. 1991, Dixon
2002) is its ability to visually display how well
numerous forest ecosystem management objectives
are met simultaneously on a forest-stand basis,
across an entire project over a landscape. It allows
decision makers and land managers to see into the
future, which stands may require additional treat-
ment and which stands do not. However, one short
coming of this modeling effort is the absence of
interaction at the ArcGIS stage among the spatially
distributed results. While FVS takes interactions
between different forest stands into account, ArcGIS
does not. The displayed analysis results are purely
based on the basal area calculated in CP and then
simulated in FVS. This issue should be explored in
future modeling efforts.

Today's computing power allows us to realize
possible management scenarios that in previous
decades had been only considered as concepts.
ArcGIS Modelbuilder, for example, allows the user
to combine the outputs of the CP analysis with those
of the dynamic forest vegetation growth simulator
FVS and display them on a stand by stand basis
across an entire landscape. In other words, it allows
us to model forest ecosystem management in a
spatiotemporal multi-objective decision making
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Figure 7. Different levels at which individual forest stands in the project area meet all management objectives simultaneously under
equal weights and the p-value of 1. a) Prior to treatment b) At the time of treatment in 2007; and c) through f) represent the simulated
performance at the indicated time steps. White areas are either indicative of non-Forest Service lands or non-ponderosa pine
dominated stands.
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framework that addresses the needs of multiple
interests through time.
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