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Introduction

Since the industrial revolution, oceans have absorbed 
approximately 50% of anthropogenic CO2, thus lower-
ing the pH of surface seawaters. This is known as “ocean 
acidification” (e.g. Kawahata et al., 2019). The process 
of ocean acidification has been shown from various 
simulations, hydrographic surveys, and time-series data 
(Caldeira and Wickett, 2003; Key et al., 2004; Raven et 
al., 2005; Kump et al., 2009). Although absorption by 
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Abstract. Ocean acidification is now progressing, primarily due to the fact that the oceans have absorbed 
about 50% of the anthropogenic CO2 emitted since the industrial revolution. Many marine calcifying organ-
isms, such as foraminifers and coccoliths, are known to build their shells using carbonate ions present in the 
seawaters surrounding them. Carbonate saturation state has a crucial influence on foraminiferal calcification, 
and foraminiferal shell production is known to be sensitive to increase in ocean pCO2. Moreover, ocean warming 
is also progressing along with acidification. Therefore, both environmental changes could affect foraminiferal 
shell formation. However, the relationship between foraminiferal shell parameters (i.e., size, weight, volume, 
and density) and ocean pCO2 or sea surface temperature (SST), or both, remains unclear. In this study, we used 
fossil planktic foraminifer Globigerinoides ruber (white) in a late Quaternary sediment core (MD98-2196) from 
the East China Sea to investigate a relationship between the shell parameters and oceanographic properties 
estimated based on the proxies from the same core. The foraminiferal shells were scanned using high-resolution 
micro-X-ray computed tomography (MXCT) to determine shell volume and density. The results showed that 
the size-normalized weight and the size-normalized volume of the shell had a negative correlation with the SST 
and atmospheric pCO2. The negative correlation between weight/volume and atmospheric pCO2 agrees with the 
previous laboratory experiments and geological record during the Pliocene. However, the correlation between 
weight/volume and SST should be interpreted with caution because it might be an artifact due to the correlation 
between SST and atmospheric pCO2. On the other hand, shell density is only weakly or insignificantly correlated 
with SST and pCO2, suggesting that these environmental parameters do not exert any impact on shell density. 
Thus, future ocean acidification will negatively affect the carbonate productivity of planktic foraminifers, even 
if it will not affect shell density. The temperature effect on the shell formation of the planktic foraminifers might 
be much less than ocean acidification considering controversial results of the temperature sensitivity in previous 
studies.

Keywords: atmospheric pCO2, Globigerinoides ruber, shell density, shell volume, size-normalized weight, SST

seawater mitigates the increase in atmospheric pCO2, 
oceanic uptake has reduced the surface seawater [CO32−], 
and consequently, decreasing the calcite and aragonite 
saturation states (Orr et al., 2005; Kawahata et al., 2019).

Some marine organisms such as, coccolithophorids, 
and foraminifers build up their shells using carbonate 
ions in ambient seawaters. Evidence has shown that the 
carbonate saturation state is correlated with the rate of 
marine calcium carbonate production (Kleypas et al., 
1999) and is sensitive to elevated pCO2 (Kleypas et al., 
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1999; Riebesell et al., 2000; Barker and Elderfield, 2002; 
Orr et al., 2005; Raven et al., 2005; Ridgwell and Zeebe, 
2005; Moy et al., 2009). Foraminifers are among the most 
abundant protists in the world’s ocean, and their shells 
comprise a significant portion of inorganic carbon depos-
its on the seafloor (Langer, 2008); specifically, they con-
stitute 32–80% of the total deep-marine calcite budget in 
the global carbonate cycle (Schiebel, 2002).

Consequently, it is critical to understand the effect of 
ocean acidification on the calcification of planktic fora-
minifers. Ever since Barker and Elderfield (2002) showed 
that ambient [CO32−] and planktic foraminiferal size-
normalized weight (SNW) are positively correlated with 
high confidence, SNW has been used as a proxy for cal-
cification of foraminiferal shells. Thereafter, the SNW of 
foraminifers was used to reflect the surface carbonate sys-
tem (Bijma et al., 2002; Mekik and Raterink, 2008; Moy 
et al., 2009; Naik et al., 2010; Marshall et al., 2013, 2015; 
An et al., 2015; Osborne et al., 2016). On the other hand, 
on the assumption that the surface carbonate system has 
little effect on foraminiferal calcification, foraminiferal 
shell weight was used as a tracer for carbonate saturation 
state of bottom waters based on differences in dissolution 
after deposition (Lohmann, 1995; Broecker and Clark, 
2001). The reliability of SNW as a proxy for surface sea-

water [CO32−] is often obscure, thus it is crucial to prop-
erly understand the relationship between foraminiferal 
calcification and carbonate chemistry. The SNW of fora-
miniferal shells has been ambiguously attributed to the 
density or thickness of the shell wall, or both (de Villiers, 
2004). However, it is not possible to give a precise value 
of the shell wall thickness from cross-sectional images 
because the shell wall thickness varies from chamber to 
chamber (de Villiers, 2004).

To date, it has been difficult to directly measure or cal-
culate foraminiferal shell volume accurately due to the 
tiny size. For marine sediment samples, it is paramount 
to evaluate post-depositional alteration such as dissolu-
tion and secondary calcite precipitation of foraminiferal 
shells because the application of SNW may be confus-
ing (Marshall et al., 2013; Osborne et al., 2016). Recent 
advances in micro-X-ray computed tomography (MXCT) 
have provided a novel approach to observe foraminif-
eral shells (Görög et al., 2012; Briguglio et al., 2016; 
Kinoshita et al., 2017), and MXCT investigations com-
plete the role in estimating the post-depositional alteration 
(Johnstone et al., 2010; Iwasaki et al., 2015; Kontakiotis 
et al., 2017). Furthermore, because of their μm-level high-
resolution and three-dimensional (3D) scanning capacity, 
MXCT measurements of foraminiferal shells enable us 

Figure 1. The core location of MD98-2196.
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to obtain datasets of shell volume, density, surface area, 
and diameter of foraminiferal individuals (Speijer et al., 
2008; Briguglio and Hohenegger, 2014; Iwasaki et al., 
2018; Eder et al., 2019; Hohenegger et al., 2019; Ujiié 
et al., 2019).

In this study, we measured and calculated shell vol-
umes and densities of Globigerinoides ruber (white), 
which is a typical tropical species of planktic foramini-
fers (e.g. Bé, 1977; Hemleben et al., 1989; Schiebel and 
Hemleben, 2017) using MXCT, and we compared these 
parameters and SNW with the previously reconstructed 
sea surface temperature (SST) and atmospheric pCO2 for 
investigating response of G. ruber (w) shells to ocean 
environmental change during the last 100 kyr. Addition-
ally, we examined the controlling factor (shell density 
or shell wall thickness or both) of changing of the size-
normalized weights.

Material and methods

Sample selection
The piston core MD98-2196 used in this study was 

collected during the IMAGES-IV cruise in 1998. This 
core was drilled in the Okinawa Trough, East China Sea 
(29°52.58′N, 128°36.50′E) (Figure 1), with a water depth 
of 951 m. This water depth is much shallower than the 
depth of the modern lysocline (~1,600 m) in the East 
China Sea (Horikawa et al., 2015). Thus, expectedly, 
foraminiferal shells were not severely dissolved.

The core has a total length of 3,888 cm and generally 
comprises homogeneous clay to silty clay, interrupted by 
12 tephra layers, and four fine silt layers (Ujiié and Ujiié, 
2006; Ujiié et al., 2016). The chronology was obtained 
based on a graphic correlation between the reference 
curve LR04 (Lisiecki and Raymo, 2005) and stable oxy-
gen isotope ratio (δ18O) of the planktic foraminifer Glo-
bigerinoides sacculifer (Ujiié and Ujiié, 2006; Ujiié et 
al., 2016) before 50 ka and accelerator mass spectrometer 
(AMS) 14C ages for the last 50 kyr (Ujiié et al., 2016). 
We used an age model that had been established by Ujiié 
et al. (2016). AMS 14C age analysis was performed on 
planktic foraminiferal shells of Neogloboquadrina duter-
trei from samples at 0 cm and 92 cm. Also, MARINE13 
calibration curve in the CALIB 7 radiocarbon calibration 
program (Reimer et al., 2013) without ΔR correction was 
used for converting 14C ages into calendar ages (error 
is ±0.2 kyr). Core MD98-2196 is covering over the last 

Figure 2. Reconstructed environmental parameters; SST 
(A), pCO2 (B) and pH (C) according to age. The reconstructed 
atmospheric SST (Ujiié et al., 2016) and pCO2 (Petit et al., 1999) 
are shown. pH was calculated by assuming that the total alkalinity 
was constant during the last 100 kyr.

Table 1. Reconstructed pCO2 and SST.

Age  
(kyr)

Atmospheric  
pCO2 (ppmv) 1

Mg/Ca-derived  
SST (°C) 2

3.1 277.3 26.4

10.1 261.7 24.3

20.0 189.2 20.3

30.8 203.3 20.6

39.8 209.1 22.5

49.9 209.1 21.8

60.2 204.3 21.8

70.3 213.7 23.2

79.7 220.1 24.4

87.7 216.0 23.1

102.4 233.5 24.7

1 Petit et al., 1999; 2 Ujiié et al., 2016
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190 kyr in a time interval from the end of marine isotope 
stage (MIS) 7 to the Holocene. The average sedimenta-
tion rate was 30.4 cm/kyr during glacial periods. On the 
other hand, during interglacial periods it was 16.9 cm/kyr 
(Ujiié et al., 2016). For correlation investigation, reported 
SST (Ujiié et al., 2016) was used (Figure 2A). Concerning 
past ocean pCO2, there is no available reconstructed pH 
record around the North Pacific including the East China 
Sea for the last 100 kyr, we utilized a global atmospheric 
pCO2 record (Petit et al., 1999) to estimate the variability 
of the ocean surface pH (Figure 2B, C). Assuming that the 
total alkalinity was constant during the last 100 kyr, pH 
was calculated using CO2calc v4. Strictly speaking, the 
local pH is determined by complicated carbonate chem-
istry including global and local processes, but we regard 
this calculated pH as a rough estimation of the past local 
pH in the East China Sea.

Foraminiferal collection and weight-size measurement
Sediment samples (5–8 cm3) were dried at 40°C for 

12 h, and then washed and sieved through a 63 μm mesh. 
The dried >  63 μm fractions were sieved again through 
a 250 μm mesh sieve, and all the shells of G. ruber (w) 
were picked from the samples under a stereomicroscope 
(Olympus SZX12, Olympus Optical Co., Ltd., Tokyo, 
Japan). The weights of every shell of G. ruber (w) were 
measured individually with a microbalance (Orion Cahn 
C-35, Thermo Scientific, USA). The analytical preci-
sion during the weight measurements was 0.4 μg (±  1σ) 
(n =  20). Every foraminiferal shell from each sample 

Table 2. Shell weight, maximum shell diameter and shell size-normalized weight of G. ruber (w). SD, standard deviation.

Age  
(kyr)

Count
Shell weight (μg) Shell diameter (× 102 μm)

Size-normalized weight 
 (× 10−2 μg/μm)

mean SD max. min. mean SD max. min. mean SD max. min.

3 15 11.7 4.9 23.5 4.6 3.68 0.54 4.75 2.92 3.10 0.90 5.16 1.58

10 23 12.8 3.7 20.7 5.3 4.05 0.59 5.08 2.96 3.13 0.62 4.29 1.58

20 11 14.0 5.4 25.7 8.5 4.01 0.62 4.87 3.28 3.40 0.96 5.38 2.36

30 15 17.9 7.7 29.9 5.8 4.14 0.54 5.41 3.52 4.19 1.44 6.27 1.57

40 17 16.1 5.1 24.9 8.6 4.24 0.53 5.22 3.30 3.76 1.04 6.33 2.56

50 21 15.5 4.5 25.1 6.8 4.27 0.55 5.14 3.12 3.59 0.77 5.13 2.18

60 17 13.8 5.9 27.6 4.3 3.70 0.58 4.69 2.70 3.58 1.10 5.89 1.59

70 18 12.8 3.8 19.9 6.3 3.92 0.58 5.06 3.07 3.23 0.64 4.78 1.97

80 22 12.5 4.8 22.4 6.1 3.95 0.57 5.17 2.91 3.07 0.80 4.94 1.86

90 23 15.7 5.9 26.1 6.6 4.31 0.58 5.37 3.21 3.55 0.94 5.43 2.06

100 23 12.8 4.6 22.6 6.4 4.00 0.50 4.99 3.10 3.12 0.81 5.05 1.96

Figure 3. Time series of shell parameters (size, weight, vol-
ume and density) of G. ruber (w) in core MD98-2196. Error bars 
show standard deviation.
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Micro-X-ray computed tomography scanning
MXCT scanning was performed at the Center for 

Advanced Marine Core Research, Kochi University. The 
high-resolution MXCT ZEISS Xradia 410 Versa (Carl 
Zeiss X-ray Microscopy, Inc., Germany) was used to 
observe the internal ultrastructures and density distribu-
tion of the shells of G. ruber (w) with high-resolution 
settings (X-ray tube voltage 80 kV, X-ray tube current 
125 μA, resolution 1.0 μm/pixel, detector array size 
1,000 ×  1,000 pixels, rotation step 0.18°). MXCT mea-
surements are time-consuming and hence were not per-
formed on all specimens. Thus, from each sample, three 
to six specimens (in which the SNW value was close 
to the mean value) were selected for MXCT measure-
ments. To cover the variation range of pCO2, [CO32−], 
and pH over the last 100 kyr, six sample horizons were 

was photographed with the stereomicroscope for size 
(i.e., maximum diameter) analysis. Digital images of all 
the shells were obtained with a digital microscope cam-
era (Olympus E-PL6, Olympus Optical Co., Ltd., Tokyo, 
Japan), and the maximum diameters of the shells were 
determined with graphics process software (CorelDRAW 
X8, Corel Co. Ltd. USA).

For calculating the shell SNW of each specimen, equa-
tion 1 was used according to the traditional method (Keul 
et al., 2013).

w′ =w/s .........................(1)

where w′ is the SNW, s and w are the observed shell size 
and weight.

Table 3. Size-normalized weight and MXCT investigations of G. ruber (w).

Sample ID
Shell weight  

(μg)
Shell diameter  

(×102 μm)
Shell volume  
(×10−3 mm3)

Shell density  
(mg/mm3)

Size-normalized weight  
(× 10−2 μg/μm)

Size-normalized volume  
(× 10−5 mm3/μm)

3ka-05 8.2 3.38 4.60 1.78 2.42 1.36

3ka-09 7.8 3.50 4.98 1.56 2.23 1.42

3ka-13 8.0 3.07 4.11 1.94 2.61 1.34

10ka-03 10.0 3.85 5.64 1.77 2.60 1.46

10ka-06 11.4 4.43 7.17 1.59 2.57 1.62

10ka-07 13.1 4.66 7.23 1.81 2.81 1.55

20ka-03 19.9 4.79 10.47 1.90 4.15 2.18

20ka-04 18.6 3.98 9.96 1.87 4.68 2.50

20ka-11 14.4 3.89 7.50 1.92 3.70 1.93

70ka-03 10.5 3.27 5.34 1.97 3.21 1.64

70ka-08 13.4 4.13 7.59 1.76 3.25 1.84

70ka-15 11.2 3.55 5.96 1.88 3.15 1.68

90ka-02 13.5 3.79 7.07 1.91 3.56 1.87

90ka-06 12.8 3.97 6.59 1.94 3.22 1.66

90ka-12 13.2 4.07 6.78 1.95 3.25 1.67

90ka-19 17.1 4.67 8.45 2.02 3.66 1.81

90ka-21 15.0 4.73 7.85 1.91 3.17 1.66

90ka-23 12.2 3.95 7.25 1.68 3.09 1.84

100ka-01 12.9 4.16 7.43 1.74 3.10 1.78

100ka-04 8.7 3.37 4.55 1.91 2.58 1.35

100ka-08 13.3 4.46 7.97 1.67 2.98 1.79
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selected from the core MD98-2196 (Table 1). Specimens 
were glued onto the top of the sample stage, made with 
a pencil core using water-soluble glue (tragacanth gum) 
(Appendix 1); therefore, specimens could be recovered 
afterward. The 3D imaging software MolcerPlus (White 
Rabbit Corp., Tokyo, Japan) was used for visualizing the 
3D CT image.

Measurements of foraminiferal shell volume and den-
sity

3D images of each foraminiferal shell were generated 
based on tiff image stacks made up as pixels. Because the 
length of one side of the voxel depends on the resolution 
of MXCT scanning (1.0 μm in this study), the volume of 
each voxel can be estimated. The total number of voxels 
of the whole cell was added up and the total volume was 
displayed as the MXCT-based shell volume of each fora-
miniferal shell. Since it is also a size dependent parame-
ter, shell volume was size-normalized similarly to weight. 
The size-normalized volume (SNV) V ′ was calculated by 
the equation 2.

V′ =V/s .........................(2)

where V is the shell volume. The shell density ρ was 
calculated using the equation ρ=w/V. Calculations and 
statistical investigations (Student’s t-distribution) were 
performed in Excel (Microsoft Office 2010).

Results

Shell weight and size measurement
The shell weight and size of 205 G. ruber (w) speci-

mens in core MD98-2196 were measured. Table 2 and 
Figure 3 show the results of the measurements. The shell 
weight ranged from 4.3–29.9 μg, and the average value 
was 14.1 μg. The heaviest individual was in a sample at 
30 ka, and the maximum average shell weight of each 
sample was also observed at 30 ka (17.9 μg). The shell 
size ranged between 2.70 ×  102 –5.41 ×  102 μm, the 
average value was 4.04 ×  102 μm, and the largest individ-
ual was observed at 30 ka. Conversely, the lightest value 
was observed at 60 ka (4.3 μg). This sample also included 
the smallest individual (2.70 ×  102 μm). The mean shell 
size showed more constant values than the mean shell 

Figure 4. Correlations of the size-normalized weight of G. 
ruber (w) in core MD98-2196 with concomitant atmospheric pCO2 
(A) and SST (B). Error bars show standard deviation.

Figure 5. Correlations of the size-normalized shell volume 
of G. ruber (w) with concomitant atmospheric pCO2 (A) and SST 
(B).

Downloaded From: https://complete.bioone.org/journals/Paleontological-Research on 13 Jun 2025
Terms of Use: https://complete.bioone.org/terms-of-use



Shunichi Kinoshita et al.396

weight (Figure 3).
The shell weight of G. ruber (w) showed higher cor-

relation to each diameter at all samples (Appendix 2; R 
values were over 0.78 except for the 40 ka sample, which 
showed R (correlation coefficient) =  0.59). The mean 
value of the SNW (Table 2) peaked at 30 ka with 4.19 × 
10 −2 μg/μm. It showed the lowest value at 80 ka (3.07 × 
10 −2 μg/μm).

MXCT measurement
In all, 21 specimens were scanned by MXCT, and each 

of their shell volumes were calculated (Table 3, Figure 
3). The smallest shell volume (4.11 ×  10 −3 mm3) was 
observed at 3 ka. The other two specimens at 3 ka that were 
from the same sample also showed relatively smaller shell 
volume (4.60 ×  10 −3 mm3 and 4.98 ×  10 −3 mm3). The 
maximum value of the shell volume (10.47 ×  10 −3 mm3) 
was observed at 20 ka, and the other individual from the 
same sample provided the second largest value (9.96 × 
10 −3 mm3). Because MXCT can precisely measure each 
shell volume, it provides precise mean shell densities 
(Table 3, Figure 3). The shell densities showed a much 
smaller range (only less than 30% changed) than the other 
shell parameters: from 1.56–2.02 mg/mm3 (Table 3, Fig-
ure 3). This result suggests that the shell density remains 
relatively constant and is consistent with the higher cor-
relation coefficient between shell volume and weight (R = 
0.97) throughout the study period.

Statistical results
After these measurements and calculations, correlations 

between foraminiferal shell parameters (SNW, SNV, and 
shell density) and environmental parameters (pCO2 and 
SST) were tested by using Student’s t-distribution. The 
SNW showed good correlations to such environmental 
parameters (pCO2 and SST), the correlation coefficients 
were R =  −0.60 (p =  0.053, n =  11) and R =  −0.75 
(p <  0.01, n =  11), respectively (Figure 4). The p-value 
of correlation between pCO2 was not low enough to cer-
tify their correlation.

The shell volumes were also used with size-normalized 
value in a correlation test. It showed higher negative cor-
relation with environmental parameters (Figure 5), R = 
−0.79 (p <  0.0001, n =  21) with pCO2, and R =  −0.85 
(p <  0.0001, n =  21) with SST. A weak negative cor-
relation of shell density (R =  −0.49, p <  0.05, n =  20) 
was observed with pCO2 (Figure 6A), this is a significant 
correlation. However, the slope of the regression line is 
0.0022, it showed nearly horizontal line, meaning shell 
densities were constant. The correlation between shell 
density and SST was insignificant (p =  0.061, n =  20), 
and it also was constant in figure (Figure 6B). In addition, 
the higher linear correlation coefficient of shell volume 

and weight (R =  0.97) also suggested that the shell den-
sity remains relatively constant through the whole period.

Discussion

Post-depositional alteration
To apply SNW as a proxy for environmental condi-

tions, it is necessary to consider the extent to which 
foraminiferal shells are preserved in marine sediments 
(Barker et al., 2004; Gibbs et al., 2010). Above the lyso-
cline, acidification and undersaturated carbonate states of 
the pore water produced by oxidation of organic mate-
rial in sediments contribute to carbonate dissolution 
(Archer and Maier-Reimer, 1994; Martin and Sayles, 
1996). Conversely, under high salinity and oversaturated 
carbonate conditions, the precipitation of secondary cal-
cite on the outer crust of foraminiferal shells may show 
overestimated SNW with the addition of shell weight 
(Marshall et al., 2013). Therefore, post-depositional 
alterations such as partial dissolution or the secondary 
calcite precipitation of foraminiferal shells should be 
examined thoroughly before being used to indicate sur-
face seawater carbonate chemistry. In previous studies, 

Figure 6. Correlations of the shell density of G. ruber (w) 
with concomitant atmospheric pCO2 (A) and SST (B).
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several semi-quantitative methods have been developed 
to evaluate post-depositional dissolution of foraminiferal 
shells in marine sediments, such as the fragmentation 
ratio method (Berger, 1970; Metzler et al., 1982; Le and 
Shackleton, 1992; Mekik and François, 2006). However, 
post-depositional dissolution of foraminiferal shells often 
initiates from the inner chambers, it may not be possible 
to detect the post-depositional alteration by observing 
only from the outside of the shells (Brown and Elderfield, 
1996; Iwasaki et al., 2015). Johnstone et al. (2010) used 
MXCT to examine the post-depositional dissolution of 
foraminiferal shells from core sediments. Based on the 
appearance of MXCT images, the post-depositional dis-
solution process was divided into five stages. This study 
also showed that dissolution was initiated from the inner 
chambers of the shell.

In this study, samples were collected from shallower 
depth (951 m) than the present depth of the lysocline 

(~1,600 m; Horikawa et al., 2015). Therefore, expect-
edly, the post-depositional dissolution on shells of G. 
ruber (w) in the sediments should be very limited. Actu-
ally, because these MXCT images (Figure 7) and SEM 
surface images (Appendix 3) showed that the test wall 
and the pores appeared distinct and the smallest inner 
chambers remained, those specimens were classified as a 
well-preserved sample (Johnstone et al., 2010).

Which shell density or shell wall thickness is reflected 
in the shell size-normalized weight?

The SNW of planktic foraminiferal shells has been 
interpreted as a change in either shell density or wall 
thickness. It is still an unsolved issue as to which param-
eter the SNW actually represents. Assuming that the 
foraminiferal shell wall thickness is invariant and inde-
pendent of growth environmental settings, Broecker and 
Clark (2002) investigated the SNW of planktic foraminif-

Figure 7. Top views of MXCT sectional models of G. ruber (w) specimens. The shell walls and pores can be clearly observed 
and some smallest chambers either remained (10, 90 and 100 ka). The color contrast reflects the absorption of X-rays. Scale bar 100 μm.
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eral shells to estimate the [CO32−] of Atlantic upper deep 
water. However, Bijma et al. (2002) expected that surface 
seawater [CO32−] would affect shell wall thickness and 
predicted that SNW is a proxy of this relationship. But 
they provided no direct evidence.

As a substitute value, we used the MXCT-based shell 
volume, reflected as the mean shell wall thickness, to 
examine the relationship between shell wall thickness 
and SNW. As it is expected from constant density, good 
correlation between shell SNV and SNW was observed 
(R =  0.93, Figure 8A). On the other hand, shell density 
related to SNW, but showed only weak correlation (R = 
0.48, Figure 8B). However, as there was no clear slope, 
it suggests constancy of density and that SNW might not 
track shell density. Therefore, the SNW of G. ruber (w) 
is mainly controlled by mean shell wall thickness (shell 
volume) and is less affected by shell density. The effect of 
size might not have completely disappeared in the valida-
tion of the relationship between SNV and SNW. Thus, 
it is necessary to elucidate a more precise interpretation 
of SNW and how SNW follows shell volume when shell 

density changes in the future study such as a laboratory 
experiment.

Response of planktic foraminiferal shells to changes 
of pCO2 and SST

The influence of ocean environmental conditions on 
planktic foraminiferal calcification rate was investigated 
by comparing the shell SNW, the shell SNV and the 
shell density of G. ruber (w) in core MD98-2196 to the 
variation in atmospheric pCO2 and SST during the last 
100 kyr. The shell SNV of G. ruber (w) was negatively 
correlated with pCO2 (R =  −0.79, Figure 5A) and SST 
(R =  −0.85, Figure 5B). Seawater temperature has been 
considered one of the controlling factors on the size varia-
tion of foraminiferal shells, with warmer seawaters pro-
ducing relatively larger shells (Bé et al., 1973; Schmidt et 
al., 2004). It means that shell weight and volume would 
get larger with increase in seawater temperature. How-
ever, in this study, the SNW and the SNV of G. ruber (w) 
in core MD98-2196 seemingly showed a negative corre-
lation with SST (Figures 4B, 5B). As SST increased from 
20.6 or 20.3 to 26.4°C, despite being within the optimum 
range of temperature (14–32°C; Bijma et al., 1990), the 
mean shell SNW and SNV decreased from 4.19 to 3.10 × 
10 −2 μg/μm and from 2.21 to 1.37 ×  10 −5 mm3/μm, 
respectively. Such reduction in SNW and SNV may have 
occurred because the investigated specimens contained 
the effect of SST with those of many other natural con-
ditions (e.g. carbonate states, food availability, ontoge-
netic effect, and so on). Particularly on the investigated 
samples, high temperature environment was a higher 
pCO2 environment. Another presented result indicated 
that higher pCO2 made their shell SNV lower (Figure 
5A), and the SNW also showed negative correlation with 
pCO2 although it was not statistically significant (Figure 
4A). This result agrees with previous studies of G. ruber 
(w) (An et al., 2015; Todd et al., 2020) and Globigerina 

Table 4. Correlation between shell parameters (volume, 
density and size-normalized weight) and environmental param-
eters (atmospheric pCO2 and SST). R is correlation coefficient and 
(*) shows non-significance.

pCO2 SST

Size-normalized volume √√√ √√√

R (p-value) −0.79 (<0.0001) −0.85 (<0.0001)

Size-normalized weight √√ √√

R (p-value) −0.60 (0.053)* −0.75 (<0.01)

Density √ √

R (p-value) −0.49 (0.029) −0.42 (0.061)*

Figure 8. Correlations of the size-normalized weight of G. 
ruber (w) in core MD98-2196 with shell size-normalized volume 
(A) and shell density (B).
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parameter of shell wall thickness (mean shell volume). 
Finally, our results suggest that when using planktic 
foraminiferal shells as environmental pCO2 proxies, it is 
more reasonable to use not only the SNW of the shells 
but also the SNV. Nevertheless, our results suggested that 
pCO2 possibly has more effects on foraminiferal shells, 
more specific investigation is required of effects of single 
environmental parameters.
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Appendix 1. Experimental settings of MXCT measurements. The sample holder was made of a pencil core, with foraminiferal shell 
individuals glued onto the top of the sample holder using water-soluble glue (tragacanth gum) so that the shells could be later recovered.
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Appendix 2. Correlations of the size and weight of G. ruber (w) in each sample from core MD98-2196.
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Appendix 2. Continued. Appendix 3. SEM images of G. ruber (w) specimens in 
core MD98-2196. In both the full view (A) and the enlarged view 
(B), the pores are not filled up, and it does not form secondary 
calcite by deposition.

A

B
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