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Spatiotemporal dynamics of mesocarnivore populations

Xingan and Guiming Wang

Xingan, College of Grassland Resources and Environments, Inner Mongolia Agricultural Univ., Saihan District, Hohhot, PR China. – G. Wang 
(guiming.wang@msstate.edu), Dept of Wildlife, Fisheries and Aquaculture, Mail stop 9690, Mississippi State Univ., Mississippi State, MS 39762, 
USA.

Mammalian mesocarnivores play critical roles in ecosystems via trophic interactions. The fluctuation of mesocarnivore 
abundance may cause trophic cascading throughout the ecosystems. However, little was known about density dependence 
and spatiotemporal dynamics of mesocarnivore populations. Northern raccoon Procyon lotor is a common mammalian 
mesocarnivore in North America, and is the host of many human infectious diseases. Few studies have investigated den-
sity dependence and hierarchical spatiotemporal dynamics of raccoon populations. We used 23-year time series of rac-
coon relative abundance from 14 wildlife management areas in Mississippi, USA, to test for spatial synchrony of raccoon 
populations with nonparametric correlation functions. We developed non-Gaussian state space models to detect density 
dependence of raccoon populations, and also used dynamic factor analysis (DFA) to determine the structure of the spa-
tiotemporal dynamics of raccoon populations. The 14 raccoon populations lacked common trends, and were not synchro-
nized. Strength of density dependence varied among raccoon populations, but was not related to the amount of hardwood 
forests. Differences in the structure of density dependence probably prevented populations from being synchronize by 
climatic variability. The raccoon populations exhibited greater local or idiosyncratic variability than regional variability in 
Mississippi. Northern raccoons have plastic life history traits permitting their population dynamics to closely track local 
variations in resource availability.

Animal populations of the same species inhabiting hetero-
geneous landscapes may become distinct in their tempo-
ral patterns with increasing distance between populations 
(Kareiva et al. 1990). Differences in climate, habitat con-
ditions, and interspecific interactions may differentiate 
demography and dynamic patterns among multiple popu-
lations over space (Kareiva et al. 1990, Ranta et al. 1998, 
Michel et al. 2016). On the other hand, dispersal, climatic 
changes, and predation that operate on large spatial scales 
may synchronize the dynamics of many populations over 
landscapes (Bjørnstad et al. 1999, Zuur et al. 2003, Lieb-
hold et al. 2004). The regional dynamics of many geographi-
cally distinct populations may be scale-dependent, including 
one or several common trends or population growth trajec-
tories and local or population-specific variability (Zuur et al. 
2003, Fauchald et al. 2017). Therefore, studies of the 
regional dynamics of multiple populations may shed light 
on the spatially hierarchical patterns as well as regional and 
location management of animal populations.

Population spatial synchrony is a phenomenon where 
abundances or growth rates of many populations are posi-
tively correlated within certain geographic distances or 
are more correlated if the populations are geographically 
closer (Liebhold et al. 2004). Long-distance dispersal 
may homogenize the dynamics of multiple populations. 
Likewise, mobile predators can synchronize the dynamics 
of multiple geographically separated populations of prey 
(Haynes et al. 2009, Koenig and Liebhold 2016). Further-
more, climatic variability may also synchronize the dynam-
ics of many populations (Moran’s effect) on large spatial 
scales (Moran 1953, Ranta et al. 1997). Nonetheless, the 
Moran effect requires that the synchronized populations 
share the similar structure of density dependence with the 
same lagged terms of density of similar strengths or values 
of coefficients (Moran 1953). We explicitly extended the 
statistical assumptions of the Moran effect to: 1) the shared 
or similar population growth trajectory; and 2) residual 
correlations among synchronized population time series 
and with climatic drivers.

Northern raccoons Procyon lotor (hereafter referred to as 
raccoons) are a common mammalian mesocarnivore in the 
United States (US) (Lotze and Anderson 1979). The rise and 
fall of raccoon populations and other mesocarnivores may 
cause trophic cascading throughout ecosystems (Gehrt and 
Clark 2003, Ritchie and Johnson 2009, Suraci et al. 2016). 
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Additionally, raccoons are the host of infectious diseases, 
such as rabies and yellow distemper, causing public health 
concerns (Jones et al. 2003, Smith et al. 2002). Therefore, 
understanding the regional dynamics of raccoon populations 
are important for regional wildlife management. However, 
studies of the spatiotemporal dynamics of raccoon popula-
tions have been hindered by the lack of multiple long-term 
population time series (Gehrt 2002). Despite the critical 
roles, few studies have investigated the density dependence 
of mesocarnivores compared to large herbivores and small 
mammals (Troyer et al. 2014a). Little was known regarding 
the population ecology of raccoons (Troyer et al. 2014b). 
In this study, we used 14 23-year capture per unit effort 
(CPUE) time series of raccoons collected from 14 wildlife 
management areas (WMAs) to investigate the spatiotemporal 
dynamics of raccoon populations in Mississippi, USA. First, 
we tested if 14 raccoon CPUE time series were synchronized. 
Second, we determined the structure of density depen-
dence of the 14 raccoon populations. Findings of this study 
enhance understanding the population ecology of raccoons, 
but also help plan regional management of raccoons.

Methods

Raccoon capture per unit effort

We used the raccoon CPUE time series of 14 WMAs 
across Mississippi from 1983 to 2005 (see Fig. 1 of 
Davis et al. 2017 for the geographic locations of the 14 
WMAs). The 14 WMAs ranged from 11 140 ha to 86 
910 ha in size (Table 1). Annual raccoon hunting sea-
sons of Mississippi lasted from 1 July to 30 September. 
Each hunter was required to purchase a hunting permit 
from the Mississippi Dept of Wildlife, Fisheries and Parks 
(MDWFP) with a bag limit of one raccoon. It was man-
datory that hunters completed and returned permit cards 
to self-service stations to report the number of raccoons 
harvested and the number of hunting days during a sea-
son. The MDWFP maintained the database of annual 
raccoon hunting statistics, including the total number of 
raccoons harvested by hunters and the total number of 

hunter days, for each WMA. We divided the annual total 
number of harvested raccoons by the annual total num-
ber of hunter-days to calculate annual CPUE for each 
WMA. We indexed the relative abundance of raccoon 
populations using CPUE.

Data on landscape forest composition

We computed proportions of forest by WMA using the 
National Land Cover Database (NLCD) 1991, 2001 and 
2006 classified by the Multi-Resolution Land Characteris-
tics Consortium (< www.mrlc.gov/ >). The NLCD 1991, 
2001 and 2006 were developed based on the LandSat images 
taken in 1990, 2000 and 2005, respectively (Fry et al. 2011, 
Homer et al. 2007). We reclassified NLCD deciduous forest 
and woody wetlands as hardwood forest (i.e. deciduous trees 
as the dominant form of vegetation).

Average dispersal distance of northern raccoon ranged 
from 10 km to 20 km (Gehrt and Fritzell 1998, Rosatte et al. 
2010). We calculated proportion of hardwood forest within 
a 10-km and 20-km circular buffer centered at the centroid 
of each WMA, respectively. We averaged proportion of 
hardwood forest over the NLCD 1992, 2001 and 2006 for 
each buffer size (hereafter, 10-km and 20-km proportion of 
hardwood forest, respectively).

Statistical analysis of spatial synchrony

We used non-parametric spatial correlation to detect the 
regional synchrony of the 14 raccoon CPUE time series 
(Bjørnstad et al. 1999). Spatial correlation between CPUE 
time series was computed using the function Sncf() in the 
R package ncf (Bjørnstad 2016). The Sncf function esti-
mates spline spatial correlograms (i.e. spatial correlation 
as a function of geographic distance between WMAs) to 
demonstrate the pattern of between-population correlation 
with increasing geographic distance (Bjørnstad 2016). We 
used the bootstrap option of 2000 iterations to compute 
the 95% confidence interval (CI) of regional synchrony. If 
the bootstrapped 95% CI of regional synchrony excluded 
zero, we concluded that raccoon CPUE time series were 
synchronized among the 14 WMAs.

Table 1. Area, dominant vegetation type, and geographic coordinates for 14 wildlife management areas (WMAs), Mississippi, USA.

WMA Area (ha) Vegetation type Longitude Latitude

Bienville 10 830 pine forest –89.57 32.38
Chickasawhay 11 750 pine forest –88.78 31.58
Choctaw 86 910 hardwood forest –89.12 33.25
Copiah Country 26 670 pine forest –90.66 31.81
Leaf River 16 760 pine forest –88.92 31.08
Little Bilox 58 340 pine forest –89.26 30.65
Malmaison 34 540 crop –90.09 33.72
O’Keefe 25 780 crop –90.24 34.08
Old River 59 780 woody wetland –89.80 30.77
Sandy Creek 68 730 hardwood forest –91.15 31.43
Shipland 19 650 crop –91.12 32.76
Sunflower 25 220 crop –90.71 32.92
Tallahala 11 140 pine forest –89.34 32.24
Upper Sardis 19 320 hardwood forest –89.32 34.37
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Non-Gaussian state space models of raccoon 
population dynamics

We assumed the number (Nt) of raccoons harvested per season 
to have a Poisson distribution with the number of hunter 
days (i.e. effort) as offset (Et), N Poisson Et t t∼ λ( ) , where 
λt is the Poisson parameter that quantifies mean CPUE. 
Furthermore, we used the framework of generalized linear 
mixed effect models, assuming log λt tX= , where Xt is the 
non-observable true state of population dynamics (Thorson 
and Minto 2015). We used the Gompertz model of order-1 
autoregression (i.e. AR (1)) to represent the dynamics of 
raccoon population (Gompertz 1825, Royama 1992):

X a b X et t t= + + +−( )1 1′  (1)

where a is intercept; b¢ represents the effect of direct den-
sity dependence; and et is an independent normal variate, 
e Nt e∼ 0 2,σ( ) . The variance σe

2  measures the strength of 
environmental stochasticity. When the sign of b¢ is nega-
tive, the coefficient b (= 1 + b¢) of term Xt–1 is less than 
1.0. When b¢ < 0 ([1+b¢]<1.0), increases in its magnitude 
(i.e. absolute value) indicate increasingly strong, negative 
feedback between population density and per capita popula-
tion growth rate. We also considered a state space model of 
density independence (Eq. 2):

X a X et t t= + +−1  (2)

where a is intercept; and the coefficient of term Xt–1 is 1  
with b¢ = 0. We fit Eq. 1 and 2, respectively, to the time 
series Nt and Et of raccoons for each WMA, and used 
model selection to detect the density dependence for 
each raccoon population. Previous simulations and 
empirical studies have demonstrated that the Gompertz 
model is more powerful than the Ricker model and other 
population models of nonlinear density dependence 
(Herrando-Pérez et al. 2012).

We used the template model builder (TMB) to fit Eq. 1 
and 2 to the time series Nt and Et (Kristensen et al. 2016). 
The R function optim was used to maximize the likelihood 
function of state space models to estimate unknown param-
eters a, b (=1 + b¢), and σe

2  for each raccoon population 
(Bolker et al. 2013, Kristensen et al. 2016). We checked if 
the optimization algorithm converged for each fitting. The 
maximized likelihood value was used to compute Akaike 
information criterion corrected for small sample size (AICc) 
and ΔAICc for each of the two models (Burnham and 
Anderson 2002). The best approximating model has the 
lowest AICc. A model with ΔAICc < 2.0 is a competing 
model for a raccoon population.

Dynamic factor analysis

Dynamic factor analysis (DFA) represents N (N = 14) pop-
ulation time series with M (1 ≤ M ≤ N) common latent 
trends (Zuur et al. 2003). A common trend is modeled by 
random walk. Each population time series is a linear com-
bination of the M common trends with a factor loading 
(or coefficient) for each time series on each common trend 

(Zuur et al. 2003). Dynamic factor analysis can be expressed 
in the form of:

Dimensionreduction:Ntimeseries
linearcombinationof trends=
+

M
mmeasurement error,

  

Random walk: processerrort t 1X X= +− ,   

where Xt is the latent states of the dimension M × 1. 
Therefore, DFA is a dimension-reduction analysis of mul-
tivariate time series similar to traditional multivariate factor 
analysis (Holmes et al. 2012, Zuur et al. 2003). The num-
ber of latent trend M indicates the hierarchical structure 
or the number of clusters of regional wildlife populations. 
The variances of process error indicates local population 
variability.

We used the natural log transformation to normalize the 
CPUE time series for DFA. Then, the transformed CPUE 
time series were standardized or z-scored before DFA to 
facilitate model convergence, following Zuur et al. (2003) 
and Ohlberger et al. (2016). There are five physiographic 
regions in Mississippi; thus, we fit five DFA models having 
1-5 common trends to each of the 14 CPUE time series, 
respectively (Davis et al. 2017, Pettry 1977, Strickland and 
Demarais 2008). Each of the five models was fit with two 
different types of measurement error covariance matrices R, 
equal measurement error and no covariance (i.e. the form 
‘diagonal and equal’) and unequal measurement error and 
no covariance (i.e. ‘diagonal and unequal’), respectively 
(Holmes et al. 2012). The R package MARSS was used in R 
ver. 3.2.2 to analyze the time series to estimate the unknown 
parameters, including factor loadings, variance of measure-
ment error, and variance of process error (Holmes et al. 
2012). Information-theoretic approaches were used to select 
the number of common trends with AICc and ΔAICc.

We regressed coefficient b against 10-km and 20-km 
proportions of hardwood forest, respectively, using linear 
models. Significance of linear regression slope was tested at 
the significance level of 0.05.

Results

Long-term means of raccoon CPUE averaged 0.69 and 
ranged from 0.31 to 0.81 over WMAs. Raccoon CPUE time 
series were not synchronized (regional synchrony = 0.08, 
95% CI = –0.02–0.19; Fig. 1). Model selection indicated 
that all raccoon populations but the O’Keefe, Old River 
and Sandy Creek WMAs had density dependence, with the 
AICc of density dependent models being less than that of 
density independent models by 2.0 or more (Table 2). The 
state space model had good fit with the R2 of the regression 
of observed CPUEs against predicted CPUEs being >0.95 
except for the O’Keefe (0.58) and Upper Sardis (0.81) 
WMAs (Supplementary material Appendix 1 Fig. A1). The 
strength of density dependence was different among the rac-
coon populations (Fig. 2). The 95% CIs (b SE� ±1 96. ) of 
the coefficient b of several raccoon populations did not over-
lap (Fig. 2). Strength of density dependence was not related 
to 10-km proportion of hardwood forest (slope = 0.36, 

Downloaded From: https://complete.bioone.org/journals/Wildlife-Biology on 15 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



4

p = 0.73, df = 12), nor to 20-km proportion of hard-
wood forest (slope = 0.13, p = 0.93, df = 12). Additionally, 
three out of the 14 raccoon populations had non-negative 
intercept (Table 2). Therefore, raccoon populations had 
different structures of density dependence.

Dynamic factor analysis suggested one or two common 
trends for the 14 raccoon CPUE time series (Table 3, 
Fig. 3). The two-trend DFA had the lowest AICc; however, 
single-trend DFA had its ΔAICc of 0.65 and was a compet-
ing model. The R2 of the regression of the observed CPUEs 
combined over the 14 WMAs against the combined CPUE 
predictions of the single-trend DFA was 0.22, but was 0.36 
for the two-trend DFA. The residuals of the single-trend 
DFA were not synchronized (regional synchrony = 0.01, 
95%CI = –0.07 – 0.06). Furthermore, five of the 14 raccoon 
CPUE time series were related to the single common trend 
with negative factor loadings, whereas nine raccoon CPUE 
time series were positively related to the single common 
trend (Fig. 4). Therefore, the raccoon populations appeared 
to have substantially different population growth trajectories.

Discussion

The 14 raccoon populations, indexed by capture per unit 
effort, of Mississippi exhibited more localized or site-specific 

population variability than regional trends. The 14 rac-
coon populations were not synchronized, differing in the 
deterministic trajectories of population growth. Although 
we found evidence for density dependence in 11 of the 14 
raccoon populations, variability in the strength of density 
dependence suggested a localized population dynamics 
shaped by site-specific carrying capacities. Consequently, 
regional climatic variability did not synchronize raccoon 
populations in Mississippi. Our non-Gaussian state space 
models for density dependence allowed for missing observa-
tions of bag size and used the Poisson distribution for counts 
or numbers of harvested raccoons to avoid transforma-
tion for data normalization. Our non-Gaussian state space 
models represent a natural way to model capture per unit 
effort data.

Raccoons are habitat generalists and are distributed 
in nearly all types of terrestrial ecosystems (Fritzell 1978). 
Raccoons have plastic, flexible life history traits, which allow 
raccoons to adapt to local ecological conditions. Owing to 
high plasticity, raccoon populations are sensitive to locally 
(e.g. at the patch scale) spatial and temporal variations in 
resource availability and landscape structure (Beasley et al. 

Figure 1. Spatial correlogram of capture per unit effort time series 
of northern raccoons in 14 wildlife management areas, Mississippi, 
USA, from 1983 to 2005.

Table 2. Model selection of non-Gaussian state space models for density independence and density dependence of raccoon populations in 
14 wildlife management areas of Mississippi, USA. Letters ‘a’ and ‘b’ represent intercept and coefficient measuring density dependence. 
Symbol AICc is Akaike information criterion corrected for small sample size.

Sites

Density Independent Density dependent

∆AICca AICc a b AICc

Bienville –0.03 (0.11) 191.84 –0.42 (0.19)  0.32 (0.27) 185.73 6.12
Chickasaw  0.02 (0.26) 304.42 –0.01 (0.20)  0.02 (0.22) 290.57 13.85
Choctaw  0.01 (0.15) 233.83 –0.37 (0.12) –0.22 (0.21) 213.81 20.02
Copiah  0.03 (0.21) 213.57  0.00 (0.15) –0.21 (0.23) 195.50 18.07
Leaf River  0.07 (0.17) 188.85 –0.80 (0.36)  0.36 (0.23) 179.60 9.25
Little Biloxi  0.07 (0.18) 177.53 –0.74 (0.26)  0.17 (0.21) 165.23 12.31
Malmaison  0.02 (0.08) 240.62 –0.21 (0.12)  0.51 (0.20) 235.37 5.25
O`Keefe –0.02 (0.04) 161.12 –0.07 (0.07)  0.60 (0.25) 159.34 1.78
Old River –0.09 (0.07) 221.37 –0.09 (0.07)  0.86 (0.14) 220.98 0.38
Sandy Creek –0.04 (0.08) 206.09 –0.10 (0.10)  0.79 (0.18) 205.38 0.70
Shipland –0.04 (0.09) 172.45  0.29 (0.13) –0.21 (0.32) 161.76 10.68
Sunflower –0.04 (0.07) 288.61  0.00 (0.07)  0.65 (0.20) 286.40 2.21
Tallahala  0.00 (0.10) 248.45 –0.45 (0.16)  0.23 (0.23) 239.17 9.28
Upper Sardis  0.00 (0.07) 221.45 –0.09 (0.07)  0.25 (0.25) 213.09 8.37

Figure 2. Coefficient b measuring strength of density dependence 
in the Gomperz population models for 14 northern raccoon popu-
lations in Mississippi, USA, from 1983 to 2005.
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2011). In this study, dynamic factor analysis identified two 
competing models: single- and two-trend models. The two-
trend model had slightly higher explanatory power than 
the single-trend DFA. However, more than 60% of the 
spatiotemporal dynamics of the 14 raccoon populations was 
not explained by the common trends of DFA, indicating 
more local population variability than regional variability.

Raccoons use tree cavities for resting and maternal den-
ning during the reproductive season (Owen et al. 2015). 
However, our study suggested that raccoon populations 
were not limited by the overall availability of hardwood 
forests in Mississippi. It is large, mature trees, as a critical 
habitat attribute, that provide raccoons with sufficiently 
large tree cavities for reproduction and denning (Chamber-
lain et al. 2002, 2003, Henner et al. 2004). Abundance of 
female raccoons was positively related to den tree density 
in the agricultural landscape of north central Indiana, USA 
(Beasley et al. 2012). Raccoons are the effective predators of 
avian nests and small mammals, and also scavenge for food 
from human residence in the rural areas. It is reasonable to 
expect raccoon populations increase in the landscape dis-
turbed by human residential establishment and agriculture 
owing to enhanced food availability (Beasley et al. 2011, 
Troyer et al. 2014b). With increasing raccoon population 
size and limited number of mature trees for maternal den-
ning, raccoon populations may become density dependently 
regulated and become stabilized at the carrying capac-
ity (Beasley et al. 2012). Raccoon populations reached an 

equilibrium with the finite rate of increase being stabilized at 
1.0 in a protected area in Florida, USA (Troyer et al. 2014b). 
Model simulations demonstrated that raccoon populations 
of density dependence were characterized with the stabilized 
dynamics (Broadfoot et al. 2001). Furthermore, population 
sizes from 1994 to 2007 suggest that raccoon populations 
may have undergone density dependence in the Niagara 
Falls, ON, Canada (Rosatte et al. 2010). Raccoon popula-
tions on the 14 WMAs of Mississippi may have different 
carrying capacities, exhibiting variable strength of density 
dependent regulation.

Several studies estimated the population density and 
demography of raccoons using capture recapture methods 
and rigorous statistics (Beasley et al. 2011, 2012, 2013, 
Troyer et al. 2014b). However, these studies collected rac-
coon population data either from 10 or more sites only for a 
few years or only from a couple sites for 12–13 years. Precise 
estimates of spatiotemporal dynamics often require long-
term (e.g. 10 or more years) data from 10 or more studies 
sites located across a large spatial scale. Long-term relative 
abundance indices, such as spot light survey count, harvest 
indices (often without harvest effort), and capture per unit 
effort from hunting bags and hunter’s efforts like those used 
in this study, provide a useful source of multiple long-term 

Table 3. Model selection of dynamic factor analysis with different 
combinations of measurement error covariance matrix structures 
and different numbers (1–5) of common trends.

Model
No. of unknown 

parameters Covariance matrix R
No. of 
trends ΔAICc

1 15 diagonal and equal 1 0.65
2 28 diagonal and equal 2 0.00
3 40 diagonal and equal 3 19.08
4 51 diagonal and equal 4 44.03
5 61 diagonal and equal 5 69.85
6 28 diagonal and unequal 1 13.89
7 41 diagonal and unequal 2 8.88
8 53 diagonal and unequal 3 27.90
9 64 diagonal and unequal 4 55.49

10 74 diagonal and unequal 5 85.60

Figure 3. (a) Singe- and (b) two-latent common trends of dynamic factor analysis for capture per unit effort time series of northern raccoons 
in 14 wildlife management areas, Mississippi, USA, from 1983 to 2005.

Figure 4. Factor loading of the single-trend dynamic factor analysis 
for the capture per unit effort time series of northern raccoons in 14 
wildlife management areas, Mississippi, USA, from 1983 to 2005. 
Factor loadings are the coefficients relating the common trend to 
observed capture per unit effort at each wildlife management area.
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time series of relative abundance (Rolley and Lehman 1992, 
Beasley et al. 2012, Hagen et al. 2014). However, we caution 
that relative abundance indices may underestimate popula-
tion abundance (Beasley et al. 2012, Leclerc et al. 2016). 
Capture per unit effort is assumed to be positively related 
to true population abundance. Violation of this assumption 
leads to biased index of population abundance. Furthermore, 
non-random failure to report hunting efforts may result in 
a biased index of wildlife abundance. Hunting bags without 
correction for hunting effort may reflect variation in hunt-
ing effort. Nevertheless, we used CPUE time series to index 
the long-term population dynamics of raccoon populations. 
Additionally, the conservative bag limit of one raccoon per 
hunter per season did not appear to alter survival, move-
ment, and spacing behavior of raccoons in central Missis-
sippi (Chamberlain et al. 1999, 2007).

Our findings also have important management implica-
tions. First, raccoon populations exhibited substantial popu-
lation variability from site to site (this study; Rosatte et al. 
2010, Beasley et al. 2011). Thus, population monitoring 
needs to be conducted at many survey locations in a region 
for better understanding the spatiotemporal dynamic pat-
terns of raccoon populations (Rosatte et al. 2010). Second, 
population control needs to be prescribed based on local 
ecological conditions at individual sites because substantial 
local dynamic components and high plasticity of raccoon 
populations. Last, substantial spatial variability in rac-
coon population productivity may create a metapopulation 
dynamics under managemental control (Broadfoot et al. 
2001). Highly productive populations may rescue locally 
eradicated raccoon populations within annual dispersal dis-
tance (Broadfoot et al. 2001, Rosatte et al. 2010). Therefore, 
a systematic metapopulation control for regional raccoon 
management is desired for the effective control of high-den-
sity raccoon populations (Broadfoot et al. 2001).

In summary, we demonstrated a violation of the assump-
tion of the Moran effect in the unsynchronized raccoon 
populations of Mississippi. The raccoon populations had 
different structures of density dependence (Table 2, Fig. 2), 
preventing climatic variability from synchronizing raccoon 
populations. Dynamic factor analysis also demonstrated that 
the raccoon populations had different patterns of popula-
tion growth trajectories. The residuals of the single-trend 
DFA were not synchronized among the 14 sites. Our study 
represented one of few studies that explicitly modeled the 
discordant trajectories of unsynchronized populations using 
a hierarchical modeling approach.
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