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Using a grass of the Anthropocene as 

a functional guide to restore 

sagebrush-steppe 

By Erik P. Hamerlynck and Chad S. Boyd 

On the Ground 

• Native perennial grass restoration in the Great 
Basin is limited by low seedling establishment. 
• Native seedling establishment is decreased by in- 

creased competition from exotic annual grasses 

and altered fire regimes and have not had sufficient 
time to adapt. 
• Non-native bunchgrasses like crested wheatgrass 

have adapted to human management of grazing 

systems and possess physiological traits that in- 
crease seedling establishment in dynamic range- 
lands. 
• We review ecophysiological traits underlying 

crested wheatgrass success in the Great Basin 

and suggest these could guide native bunchgrass 

plant material selection and development. 
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Recently, Svejcar et al.1 identified technical challenges 
o restoring native species in sagebrush steppe and sug- 
ested developing strategic frameworks combining seed coat- 
ng/packaging technology with specific planting methods,
eeding rates, and timing of planting to overcome seasonal 
tresses and phenological/demographic bottlenecks to im- 
rove establishment of native plant populations. However,
vejcar et al.1 did not directly address developing similar 
rameworks to guide improvement and selection of plant ma- 
erials. They did summarize findings showing how crested 
021 
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heatgrass ( Agropyron cristatum ), a Eurasian exotic widely 
lanted across US sagebrush steppe, historically gained popu- 
arity and posited some of the mechanisms by which it does so,
ut did not examine where or why these features originated.
ur purpose is to show that even a cursory examination of 

he systems crested wheatgrass occurs in provides consider- 
ble insight into what is needed to select and develop native 
lant materials with comparable versatility in the Great Basin 
agebrush steppe. 
Across rangeland systems of the Central Plains, Inter- 
ountain West, and Pacific Coast regions, Native North 

mericans were skilled land managers, and practiced 
andscape-scale practices like burning to encourage forage 
roduction, with distinct effects on North American plant 
ommunity structure and dynamics.2-4 But, especially in com- 
arison to Central Plains grasslands, there is evidence that 
reat Basin sagebrush steppe was not as intensively man- 
ged, principally because it did not regularly support large 
opulations of grazing herbivores.5 This stands in marked 
ontrast with Eurasian steppe systems where crested wheat- 
rass evolved. Although modern humans have been in North 

merica and Eurasia for millennia, Eurasian grassland and 
teppes have a longer history of larger, more intensive and di- 
erse pastoral grazing systems across a broad swath of range- 
and plant communities that developed in dramatically differ- 
nt soils and climate regimes.6-13 Starting in at least 8,500 to 
,000 BCE, grazing lands across Eurasia came under increas- 
ngly intensive human management under a wide range of so- 
io/politico/economic systems, most of which were structured 
o support traditional year-long grazing regimes in grass- 
and and rangeland that first reduced in area after expansion 
f other agrarian land-use practices, and then in secondary 
angelands developing after abandonment of these converted 
grarian areas.13-18 

Thus, in addition to adapting to a huge range of natu- 
al biotic and abiotic variation, crested wheatgrass success- 
ully adapted to complex, extensive, and shifting mosaics 
f anthropogenic land use management practices that var- 
ed in intensity, duration, and extent. There is evidence the 
urasian crested wheatgrass complex, consisting of crested 
heatgrass (which combines fairway crested wheatgrass 
117 
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 Agropyron cristatum ] with standard or desert crested wheat-
rass [ A. desertorum ] as crested wheatgrass) and Siberian
heatgrass ( A. fragile ) represent a single gene pool, comprised
f diploid, tetraploid, and hexaploid forms of a common
enome, with a high degree of hybrid fertility between ploidy
evels.19 , 20 As crested wheatgrass is largely reproductively self-
ncompatible and relies extensively on outcrossing,19 locally
eveloped adaptive traits could have readily spread across
urasia, with ploidy levels modulating trait expression and ef-
ectiveness. 
We consider the influence of human activity as a likely key

n the development of adaptive plant characteristics that make
rested wheatgrass so successful as a sagebrush steppe restora-
ion species. Although North American sagebrush steppe also
ncompasses a similarly broad range of climate and edaphic
iversity as Eurasian steppes, large swaths of North Ameri-
an sagebrush steppe went from seasonal use from nomadic
erbivores to intensively, and in many cases continuously,
razed in just a few decades after the introduction of do-
estic livestock.1 , 5 No doubt this had a profound direct ef-

ect on native perennial grasses in these impacted areas, as
id the subsequent introduction and spread of annual grasses
hich, with no native counterpart, instituted extremely strong
ompetitive regimes, accelerated fire cycles, and altered soil
rocesses and nutrient cycling.5 , 21-23 In less than a genera-
ion for some native perennial bunchgrasses,24 , 25 a signifi-
ant proportion of sagebrush steppe abruptly went from the
ate Pleistocene/early Anthropocene to the middle Anthro-
ocene. Compared with the millennia plant adaptations to
hese pressures unfolded in Eurasian steppes, it is no won-
er developing native plant materials capable of readily es-
ablishing into degraded sagebrush steppe is so problematic.
e need to look on crested wheatgrass’s success as reflecting

t as fully a grass of the middle Anthropocene. Recognizing
he human element shaped the functional characteristics of
his grass—beyond subsequent material selection and modi-
cation after its introduction to North America 26 , 27 —could
rovide us with a meaningful plant functional framework to
ssess and select native grass plant material for deployment
nto human-modified sagebrush steppe rangelands. 

Since the advent of European settlement and the spread
f invasive annual grasses, native perennial bunchgrasses have
hown evidence of rapid evolution of improved competitive
bility with invasive annuals, at least at a localized popula-
ion level.28-31 In addition, there has been considerable ef-
ort to develop and release native plant materials with plant
raits to better endure abiotic stress and/or compete against
on-native grasses under stressful conditions.32-35 Still, de-
pite these ongoing natural processes and human efforts, get-
ing native grasses to establish readily from seed remains one,
f not the, major barrier to restoring sagebrush steppe ecosys-
em functionality and resilience.36 Given the diverse Eurasian
astoral systems crested wheatgrass has adapted to, we posit
ultiple natural and anthropogenic pressures have resulted in

raits and functional attributes that span the demographic cy-
le from seed germination, seedling emergence and establish-
ent, juvenile and adult vegetative growth, and seed produc-
18 
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ion beyond what has been required of native North Amer-
can perennial grass species. Given the rapid pace of biotic
hange in Great Basin plant communities, and the great spa-
ial and temporal range in abiotic environments in which they
xist, these adaptations may provide a useful framework for
mprovement of native plant materials. By establishing the
unctional mechanisms at each demographic step in crested
heatgrass, we could gain insights into the mechanisms un-
erlying localized variation in the competitive ability in na-
ive grasses, as well establishing at what point in their demo-
raphic life cycle native grass species fall short. 
Here we present results from our recent research that show

uch an approach can be useful. A key attribute to crested
heatgrass’s success is its ability to consistently produce vi-
ble seed cohorts, and, although germination rates are simi-
ar to native species, crested wheatgrass seedlings are better
ble to survive through seedling emergence, which poses a
trong demographic bottleneck to native grasses.25 , 37 , 38 Four
otential mechanisms for how emergence success could be
ttained are 1) greater investment to reproductive effort, 2)
reater energetic seed reserves, 3) seedling tissue quality and
elative allocation to aboveground and belowground growth,
nd 4) higher seedling physiological stress tolerance. We have
ound crested wheatgrass has seed heads with four-fold higher
pecific mass (g mass/m 

2 surface area) compared with native
rasses, and concurrent with seed head photosynthetic capac-
ty and carbon fixation efficiency that was not only greater
han in the native grasses studied, but equaled or exceeded
ts own flag leaves.39 This higher per unit allocation to re-
roductive effort and greater capacity for carbon fixation at
he site of seed production are consistent with 1) and 2)
bove and could result in greater investment to both seed
uantit y and qualit y, a feature apparently lacking in native
rasses.40 We also found emergent crested wheatgrass and
luebunch wheatgrass ( Psuedororegnaria spicata ) seedlings in-
reased photosynthetic rates in response to defoliation; in
he native bluebunch wheatgrass this decreased intrinsic wa-
er use efficiency (iWUE = ratio of net photosynthesis to
tomatal conductance to water vapor) but increased iWUE
n crested wheatgrass,41 which could facilitate higher car-
on fixation under drying soil conditions that typically af-
ect seedling survival.42 Moreover, defoliation induced a shift
o lower root:shoot ratios in crested wheatgrass concurrent
ith higher aboveground tissue specific mass, and root spe-
ific mass was unaffected and considerably lower than in
luebunch wheatgrass, which allocated more biomass to be-
owground growth.41 These photosynthetic and tissue allo-
ational responses are consistent with 3) and 4). Moreover,
hese findings for bluebunch wheatgrass are consistent with a
pecies adapted to persist within a variable environment. How-
ver, measures of evolutionary success in the Anthropocene
ay be more about establishment and reproduction in an en-
ironment of increased biotic competition from non-native
pecies and increased abiotic stress from altered fire regimes
nd greater interannual climate variability. 
Our findings also suggest compensatory photosynthetic

esponses to herbivory that do not seem to affect herbivory
Rangelands 
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olerance in adult plants 43 , 44 may carry over from the seedling 
tage, when they c lear l y do. Ultimatel y, the fact that crested
heatgrass has greater reproductive photosynthetic capacity 
ikely underlies its seedling success, because this could ensure 
roduction of seeds with greater energetic reserves to sup- 
ort post-germination seedling growth and would impart a 
onger emergence and establishment window compared with 

ative grasses. Given the grazing-intensive nature of the di- 
erse pastoral steppe systems crested wheatgrass originated 
rom, developing the ability to withstand loss of parental 
lant foliage and maintain seed production and supplying 
eeds with energetic reserves would be particularly advanta- 
eous, given that long-term persistence and population dy- 
amics of bunchgrasses are driven primarily by sexual repro- 
uction.24 , 25 As factors that define both the ecological and 
volutionary success of desired vegetation change, we, as a 
rofession, should re-consider and refine the attributes used 
o assess fitness of plant materials. We believe this process 
an benefit significantly from examining key physiological 
raits at critical demographic stages of successful non-native 
pecies, such as crested wheatgrass, that have evolved under 
tressors comparable to modern-day sagebrush steppe. This 
s a paradigm shift from apparent indicators of success, such 

s plant biomass, to more mechanistic and basal indicators of 
 plant’s ability to physiologically cope with specific, and in 
ome cases novel stressors in a world increasingly dominated 
y the direct and indirect effects of human activity. 
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