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Using a grass of the Anthropocene as
a functional guide to restore

sagebrush-steppe

By Erik P. Hamerlynck and Chad S. Boyd

On the Ground

» Native perennial grass restoration in the Great
Basin is limited by low seedling establishment.
* Native seedling establishment is decreased by in-
creased competition from exotic annual grasses
and altered fire regimes and have not had sufficient
time to adapt.
Non-native bunchgrasses like crested wheatgrass
have adapted to human management of grazing
systems and possess physiological traits that in-
crease seedling establishment in dynamic range-
lands.
We review ecophysiological traits underlying
crested wheatgrass success in the Great Basin
and suggest these could guide native bunchgrass
plant material selection and development.
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Recently, Svejcar et al.! identified technical challenges
to restoring native species in sagebrush steppe and sug-
gested developing strategic frameworks combining seed coat-
ing/packaging technology with specific planting methods,
seeding rates, and timing of planting to overcome seasonal
stresses and phenological/demographic bottlenecks to im-
prove establishment of native plant populations. However,
Svejcar et al.' did not directly address developing similar
frameworks to guide improvement and selection of plant ma-
terials. They did summarize findings showing how crested

2021

wheatgrass (Agropyron cristatum), a Eurasian exotic widely
planted across US sagebrush steppe, historically gained popu-
larity and posited some of the mechanisms by which it does so,
but did not examine where or why these features originated.
Our purpose is to show that even a cursory examination of
the systems crested wheatgrass occurs in provides consider-
able insight into what is needed to select and develop native
plant materials with comparable versatility in the Great Basin
sagebrush steppe.

Across rangeland systems of the Central Plains, Inter-
mountain West, and Pacific Coast regions, Native North
Americans were skilled land managers, and practiced
landscape-scale practices like burning to encourage forage
production, with distinct effects on North American plant
community structure and dynamics.”* But, especially in com-
parison to Central Plains grasslands, there is evidence that
Great Basin sagebrush steppe was not as intensively man-
aged, principally because it did not regularly support large
populations of grazing herbivores” This stands in marked
contrast with Eurasian steppe systems where crested wheat-
grass evolved. Although modern humans have been in North
America and Eurasia for millennia, Eurasian grassland and
steppes have a longer history of larger, more intensive and di-
verse pastoral grazing systems across a broad swath of range-
land plant communities that developed in dramatically differ-
ent soils and climate regimes.” ' Starting in at least 8,500 to
8,000 BCE, grazing lands across Eurasia came under increas-
ingly intensive human management under a wide range of so-
cio/politico/economic systems, most of which were structured
to support traditional year-long grazing regimes in grass-
land and rangeland that first reduced in area after expansion
of other agrarian land-use practices, and then in secondary
rangelands developing after abandonment of these converted
agrarian areas.!?"1®

Thus, in addition to adapting to a huge range of natu-
ral biotic and abiotic variation, crested wheatgrass success-
fully adapted to complex, extensive, and shifting mosaics
of anthropogenic land use management practices that var-
ied in intensity, duration, and extent. There is evidence the
Eurasian crested wheatgrass complex, consisting of crested
wheatgrass (which combines fairway crested wheatgrass
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[Agropyron cristatum] with standard or desert crested wheat-
grass [A. desertorum] as crested wheatgrass) and Siberian
wheatgrass (4. fragile) represent a single gene pool, comprised
of diploid, tetraploid, and hexaploid forms of a common
genome, with a high degree of hybrid fertility between ploidy
levels.'”?" As crested wheatgrass is largely reproductively self-
incompatible and relies extensively on outcrossing,'” locally
developed adaptive traits could have readily spread across
Eurasia, with ploidy levels modulating trait expression and ef-
fectiveness.

We consider the influence of human activity as a likely key
in the development of adaptive plant characteristics that make
crested wheatgrass so successful as a sagebrush steppe restora-
tion species. Although North American sagebrush steppe also
encompasses a similarly broad range of climate and edaphic
diversity as Eurasian steppes, large swaths of North Ameri-
can sagebrush steppe went from seasonal use from nomadic
herbivores to intensively, and in many cases continuously,
grazed in just a few decades after the introduction of do-
mestic livestock."” No doubt this had a profound direct ef-
fect on native perennial grasses in these impacted areas, as
did the subsequent introduction and spread of annual grasses
which, with no native counterpart, instituted extremely strong
competitive regimes, accelerated fire cycles, and altered soil
processes and nutrient cycling.”>*!">* In less than a genera-
tion for some native perennial bunchgrasses,24’25 a signifi-
cant proportion of sagebrush steppe abruptly went from the
late Pleistocene/early Anthropocene to the middle Anthro-
pocene. Compared with the millennia plant adaptations to
these pressures unfolded in Eurasian steppes, it is no won-
der developing native plant materials capable of readily es-
tablishing into degraded sagebrush steppe is so problematic.
We need to look on crested wheatgrass’s success as reflecting
it as fully a grass of the middle Anthropocene. Recognizing
the human element shaped the functional characteristics of
this grass—beyond subsequent material selection and modi-
fication after its introduction to North America?®?’—could
provide us with a meaningful plant functional framework to
assess and select native grass plant material for deployment
into human-modified sagebrush steppe rangelands.

Since the advent of European settlement and the spread
of invasive annual grasses, native perennial bunchgrasses have
shown evidence of rapid evolution of improved competitive
ability with invasive annuals, at least at a localized popula-
tion level 231 In addition, there has been considerable ef-
fort to develop and release native plant materials with plant
traits to better endure abiotic stress and/or compete against
non-native grasses under stressful conditions3*3 Still, de-
spite these ongoing natural processes and human efforts, get-
ting native grasses to establish readily from seed remains one,
if not the, major barrier to restoring sagebrush steppe ecosys-
tem functionality and resilience.*® Given the diverse Eurasian
pastoral systems crested wheatgrass has adapted to, we posit
multiple natural and anthropogenic pressures have resulted in
traits and functional attributes that span the demographic cy-
cle from seed germination, seedling emergence and establish-
ment, juvenile and adult vegetative growth, and seed produc-

tion beyond what has been required of native North Amer-
ican perennial grass species. Given the rapid pace of biotic
change in Great Basin plant communities, and the great spa-
tial and temporal range in abiotic environments in which they
exist, these adaptations may provide a useful framework for
improvement of native plant materials. By establishing the
functional mechanisms at each demographic step in crested
wheatgrass, we could gain insights into the mechanisms un-
derlying localized variation in the competitive ability in na-
tive grasses, as well establishing at what point in their demo-
graphic life cycle native grass species fall short.

Here we present results from our recent research that show
such an approach can be useful. A key attribute to crested
wheatgrass’s success is its ability to consistently produce vi-
able seed cohorts, and, although germination rates are simi-
lar to native species, crested wheatgrass seedlings are better
able to survive through seedling emergence, which poses a
strong demographic bottleneck to native grasses.”>*"*% Four
potential mechanisms for how emergence success could be
attained are 1) greater investment to reproductive effort, 2)
greater energetic seed reserves, 3) seedling tissue quality and
relative allocation to aboveground and belowground growth,
and 4) higher seedling physiological stress tolerance. We have
tound crested wheatgrass has seed heads with four-fold higher
specific mass (g mass/m? surface area) compared with native
grasses, and concurrent with seed head photosynthetic capac-
ity and carbon fixation efficiency that was not only greater
than in the native grasses studied, but equaled or exceeded
its own flag leaves.*” This higher per unit allocation to re-
productive effort and greater capacity for carbon fixation at
the site of seed production are consistent with 1) and 2)
above and could result in greater investment to both seed
quantity and quality, a feature apparently lacking in native
grasses.”” We also found emergent crested wheatgrass and
bluebunch wheatgrass (Psuedororegnaria spicata) seedlings in-
creased photosynthetic rates in response to defoliation; in
the native bluebunch wheatgrass this decreased intrinsic wa-
ter use efficiency (i(WUE =ratio of net photosynthesis to
stomatal conductance to water vapor) but increased iWUE
in crested wheatgrass,"" which could facilitate higher car-
bon fixation under drying soil conditions that typically af-
fect seedling survival.*” Moreover, defoliation induced a shift
to lower root:shoot ratios in crested wheatgrass concurrent
with higher aboveground tissue specific mass, and root spe-
cific mass was unaffected and considerably lower than in
bluebunch wheatgrass, which allocated more biomass to be-
lowground growth.”’ These photosynthetic and tissue allo-
cational responses are consistent with 3) and 4). Moreover,
these findings for bluebunch wheatgrass are consistent with a
species adapted to persis¢ within a variable environment. How-
ever, measures of evolutionary success in the Anthropocene
may be more about establishment and reproduction in an en-
vironment of increased biotic competition from non-native
species and increased abiotic stress from altered fire regimes
and greater interannual climate variability.

Our findings also suggest compensatory photosynthetic
responses to herbivory that do not seem to aftect herbivory
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tolerance in adult plants43 an may carry over from the seedling

stage, when they clearly do. Ultimately, the fact that crested
wheatgrass has greater reproductive photosynthetic capacity
likely underlies its seedling success, because this could ensure
production of seeds with greater energetic reserves to sup-
port post-germination seedling growth and would impart a
longer emergence and establishment window compared with
native grasses. Given the grazing-intensive nature of the di-
verse pastoral steppe systems crested wheatgrass originated
from, developing the ability to withstand loss of parental
plant foliage and maintain seed production and supplying
seeds with energetic reserves would be particularly advanta-
geous, given that long-term persistence and population dy-
namics of bunchgrasses are driven primarily by sexual repro-
duction2*?® As factors that define both the ecological and
evolutionary success of desired vegetation change, we, as a
profession, should re-consider and refine the attributes used
to assess fitness of plant materials. We believe this process
can benefit significantly from examining key physiological
traits at critical demographic stages of successful non-native
species, such as crested wheatgrass, that have evolved under
stressors comparable to modern-day sagebrush steppe. This
is a paradigm shift from apparent indicators of success, such
as plant biomass, to more mechanistic and basal indicators of
a plant’s ability to physiologically cope with specific, and in
some cases novel stressors in a world increasingly dominated
by the direct and indirect effects of human activity.
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