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Abstract

Diversity is key for sustainable weed management and can be achieved via both chemical and
nonchemical control tactics. Genetically modified crops with two-way or three-way stacked
herbicide-tolerant traits allow use of herbicide mixtures that would otherwise be phytotoxic
to the crop. Early weed management (EWM) strategies promote the use of PRE herbicides with
residual activity to keep the field free of weeds early in the season for successful crop establish-
ment. To evaluate the respective sustainability and practicality of the two chemical-based
management tactics (i.e., stacked traits and EWM), we used a population model of waterhemp,
Amaranthus tuberculatus (Moq.) Sauer (syn. rudis), to simulate the evolution of resistance in
this key weed species inmidwestern U.S. soybean [Glycine max (L.)Merr.] agroecosystems. The
model tested scenarios with a varying number of herbicide sites of action (SOAs), application
timings (PRE and POST), and preexisting levels of resistance. Results showed that both tactics
provided opportunity for controlling resistantA. tuberculatus populations. In general, each pass
over the field should include at least two effective herbicide SOAs. Nevertheless, the potential
evolution of cross-resistance may void the weed control programs embraced by stacked traits
and diverse herbicide SOAs. Economic calculations suggested that the diversified programs
could double long-term profitability when compared to the conventional system, because of
improved yield and grain quality. Ultimately, the essence of a sustainable herbicide resistance
management strategy is to be proactive. Although a herbicide-dominated approach to diversi-
fying weed management has been prevalent, the increasing presence of weed populations with
multiple resistancemeans that finding herbicides to whichweed populations are still susceptible
is becoming increasingly difficult, and thus the importance of reintroducing cultural and
mechanical practices to support herbicides must be recognized.

Introduction

Genetically modified (GM) herbicide-tolerant (HT) crops are one of the most revolutionary
developments in agricultural technology. They allow in-crop use of some herbicides that were
previously not employed due to limited selectivity (Heap 2014). Additionally, GM crops with
two-way or three-way stacked HT traits provide flexibility and convenience in use of herbicide
mixtures. Examples include corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and cotton
(Gossypium hirsutum L.) cultivars with stacked traits providing tolerance to glyphosate,
glufosinate, auxins, and/or 4-hydroxyphenylpyruvate dioxygenase inhibitors (HPPD) inhibi-
tors, some of which have already been commercialized, while others are under development
(Green 2014). While GM crops bring benefits and convenience to modern agriculture, there
are concerns that their use may exacerbate selection for herbicide resistance in weeds, because
they promote frequent herbicide applications. Furthermore, GM crops may deter the adoption
of more complex alternative weed-management techniques that supplement herbicide-based
programs.

PRE herbicides with residual activity have been used in agriculture for decades, especially
when highly effective POST product options were limited. As the battle against herbicide resis-
tance in weeds, for example, Palmer amaranth (Amaranthus palmeri S.Watson) and waterhemp
[Amaranthus tuberculatus (Moq.) Sauer (syn. rudis)], becomes increasingly challenging, PRE
herbicides have attracted growing attention. These herbicides do not necessarily stop weed
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germination but interfere with the formation of new root or shoot
cells in very early growth stages of some weedy plants (Vats 2015).
For successful crop establishment, it is essential to apply effective
weed-management practices early in the season; this concept is
known as early-season weed control (Page et al. 2012) or early weed
management (EWM). To achieve optimum yield, a field should be
kept weed-free, especially in the first 30 d after crop emergence
(Swanton et al. 1999). However, growers are usually hesitant to
implement proactive management tactics (Norsworthy et al. 2012)
such as applying herbicides before weeds appear in the field.
Besides, with more than two decades of adoption of glyphosate-
tolerant cropping systems, practical skills and expertise of using
soil-applied residual herbicides is currently lacking among many
growers and agronomists.

Both stacked HT traits and residual herbicides enable more
diversity in the way herbicides are used. Other diverse tactics
include cultural andmechanical practices such as tillage, crop rota-
tion, planting cover crops, interrow hoeing, and harvest weed
seed destruction (Harker et al. 2016; Walsh et al. 2018). A grower’s
choice of which tactic to use is usually based on a balance between
crop safety, commodity prices, product availability, effectiveness,
cost, practicality, and sustainability. Conventionally, the short-
term effectiveness of a weed control program is tested in field trials.
In recent years, there has been growing awareness that the sustain-
ability, that is, the long-term effectiveness, of a program is equally
important and should be evaluated before it is recommended to
growers. Simulation models are useful tools for fulfilling such an
evaluation (Neve et al. 2014; Renton et al. 2014; Thornby et al.
2018). Predictions from the models usually include weed popula-
tion density and the risk of resistance evolution. In an earlier study,
a generic modeling framework was developed for assessing herbi-
cide resistance in annual weed species (Liu et al. 2017). The present
study accounted for both quantitative resistance and single-gene
effects in order to investigate the following questions: (1)What role
do crops with stacked HT traits have in weed control with and
without the presence of cross-resistance to multiple herbicide
SOAs in weeds? (2) What are the benefits of using residual
herbicides? (3) What are the economic implications of a proactive
resistance management strategy?

Materials and Methods

Species Studied

The model was parameterized for A. tuberculatus, which is one of
the most widespread and problematic weed species in midwestern
U.S. soybean and corn production systems (Bensch et al. 2003;
Steckel and Sprague 2004; USDA 2018). Life-history parameters
used in the model are summarized in Liu et al. (2017).

Model Description

The published model implemented the basic intra- and interannual
population dynamics of A. tuberculatus using an individual-based
modeling approach (Liu et al. 2017) and was programmed in the
NetLogo modeling environment (Wilensky 1999). A prolonged
A. tuberculatus emergence ranging from April to July was simu-
lated, with late-emerging individuals having higher naturalmortality
and lower fecundity as a result of competition with crops. Random
mating was assumed in this dioecious species. The model was vali-
dated using a worst-case glyphosate-only management scenario,
and the predicted time for glyphosate resistance matched field
observations (Liu et al. 2017).

Simulation Scenarios

The focus of the present study is to test the herbicide resistance
risks in different weed management situations, adopting either
stacked HT traits or the EWM strategy. The scenarios were
designed based on commonly observed herbicide efficacy values,
and the genetic parameters were assumed based on representative
field populations (Table 1). Five representative herbicides were
hypothesized as H, W, X, Y, and Z. Herbicides W and Z were used
PRE, and H, X, and Y were used POST. Genetic basis for resistance
in the present study was modeled either in a quantitative manner
(H, X, and W) or as a single dominant-gene effect (Y and Z). The
former was to represent non–target site resistance or gene ampli-
fication and the latter to represent target-site resistance inherited
in Mendelian fashion (Table 1). The model simulates a 100-ha
(250-acre) soybean field in each run. In general, one PRE applica-
tion with soil-residual activity and three POST applications are
possible; however, not all are needed in each herbicide program.
Residual herbicides W and Z provided 99.5% control (i.e., full
efficacy) during the time when they have full residual activity,
and during the degradation phase, efficacy was assumed to decline
linearly from 99.5% to 60% (i.e., reduced efficacy), after which no
activity (0% efficacy) was assumed. Additionally, one mechanical
control method was included, and the efficacy was assumed
to be similar to herbicide applications for direct comparison.
Simulation scenarios are detailed in Table 2. Three initial levels
of quantitative resistance to POST herbicide H were assumed:
1%, 20%, and 80%, which correspond to populations with low,
medium, and high resistance levels, respectively, due to prior her-
bicide exposure. Each year, there is an influx of seeds (1% of the
initial seedbank size) from neighboring fields, the resistance level
of which was assumed to be the same as the initial population.

The simulations were run under several assumptions:
(1) Evolution of resistance to each individual herbicide was assumed
to be independent of other herbicides, except for scenarios pre-
sented in Figure 1D–F. In Figure 1D–F, H and X were assumed
to have cross-resistance, implemented via a bivariate log-normal
distribution of their phenotypic values (correlation coefficient =
50%). (2) Efficacy values were based on “normal” weather occur-
ring during the season, that is, adequate rainfall or irrigation being
received. (3) All A. tuberculatus that emerged before planting were
removed either by tillage or preplant burndown and hence do not
contribute to resistance evolution. Crops were planted in clean
(i.e., weed-free) fields.

Model Output

The model outputs include time series of population density
(plants m−2), total percentage of resistant individuals, and the per-
centages of A. tuberculatus resistant to each herbicide SOA used
in the programs. Each scenario was run with 100 replicates. Aman-
agement program was considered to fail when A. tuberculatus
population density exceeded 1 plant m−2, and the year of control
failure was recorded.

Cost–Benefit Calculations

Herbicides and GM seeds available on the U.S. market were used as
examples in the economic calculations to demonstrate the cost of
different herbicide-based management programs and the conse-
quent weed control effectiveness, as well as the profits made by dif-
ferent quality and yield of grains (Table 3). Scenario H represents
a POST-only scenario with a solo herbicide SOA, which failed after
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7 yr of practice due to evolved resistance, at which time crop yield
and grain quality were affected negatively. The other scenarios
represent two sustainable herbicide programs for which the resis-
tance risk was low and weed population density was maintained
at desired low levels for at least 20 yr: scenario HþXþY used
three-way stacked HT traits with three POST applications, while
scenario EWM(ii) used a residual herbicide PRE followed by
one POST application in a two-way stacked system (Table 3).
The three calculations exemplified scenarios presented in the sus-
tainability evaluation; however, note that the weed populations
were assumed to be pristine in the economic calculations while
1%, 20%, and 80% preexisting levels of resistance were assumed
in Figures 1 and 2. Calculation of costs was based on the estimated
price of herbicides, adjuvants, GM seeds, labor, and application of
herbicides. Calculation of benefits accounted for commodity price,

which was influenced by grain quality, as well as yield potential,
which was impacted by both the short- and long-term effectiveness
of herbicide programs. For simplicity, the calculation did not con-
sider the cost of fertilizers, insecticides, fungicides, irrigation, or
land rental.

Results and Discussion

Stacked Traits and Multiple POST Herbicide SOAs

A program relying on a single POST herbicide SOA, H, led to a
control failure in less than 4 yr if the field already contained resist-
ant weeds (Figure 1). In reality, this has been demonstrated by
Norsworthy et al. (2014) with repeated applications of glyphosate
in cotton fields containing glyphosate-resistant A. palmeri. Using a

Table 1. Population genetic attributes, herbicide application rates, and residual activity in the model.a

Herbicide Dose Initial LD50 sigma h2 Initial R-allele freq
Duration of residual
activity (full/reduced)

––––g ai or ae ha−1–––– weeks
H 1,000 200 0.5 0.3 — None
W 1,000 100 0.8 0.3 — 3/4
X 500 100 0.5 0.4 — None
Y 500b — — — 5.0 × 10−5 None
Z 200b — — — 1.0 × 10−5 1/2

aResistance to H, W, and X was endowed by quantitative traits; resistance to Y and Z was endowed by single target-site mutation. H, W, X, Y and Z all had
different herbicide SOAs. LD50, median lethal dose; sigma, standard deviation of the log-normal distribution of resistance phenotypes; h2, heritability.

Table 2. Simulation settings and the consequent percent exposure in the tested scenarios.

Scenario Parameter PRE 1st POST 2nd POST 3rd POST

H Herbicide — H H H
Application date (DAPa) — 14 28 42
% exposureb — 34 27 (34) 7 (61)
Efficacyc (%) — 99.5 99.5 99.5

X Herbicide — X X X
Application date (DAPa) — 14 28 42
% exposureb — 34 27 (34) 7 (61)
Efficacyc (%) — 90 90 90

HþX Herbicide — HþX HþX HþX
Application date (DAPa) — 14 28 42
% exposureb — 34 27 (34) 7 (61)
Efficacyc (%) — 99.95 99.95 99.95

HþXþY Herbicide — HþXþY XþY XþY
Application date (DAPa) — 14 28 42
% exposureb — 34 27 (34) 7 (61)
Efficacyc (%) — 99.99 99.5 99.5

H, X & Mechanical Herbicide/mechanical — Mechanical Mechanical HþX
Application/practice date (DAPa) — 14 28 42
% exposureb — 34 61d 7 (61)
Efficacyc (%) — 90 90 99.95

EWM(i) Herbicide W HþX — —

Application date (DAPa) 0 35 — —

% exposureb 50 (11) 16 (50) — —

Efficacyc (%) 99.5 99.95 — —

EWM(ii) Herbicide WþZ HþX — —

Application date (DAPa) 0 35 — —

% exposureb 50 (11) 16 (50) — —

Efficacyc (%) 99.5 99.95 — —

aDAP, days after planting.
bThe % exposure is derived from the weed emergence curve and the application/practice dates. Before planting, 32% of the total population emerged and was
controlled by preplant burndown or cultivation. Values listed here are % exposure with full efficacy, and in parentheses % exposure with reduced efficacy due to
larger plant size or degradation of PRE herbicides.
cFull efficacy of herbicides on sensitive individuals or efficacy of mechanical control regardless of herbicide resistance.
dAll emerged individuals are exposed to the mechanical practice, i.e., independent of growth stage.
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different SOA, X, but applied alone, led to control failure in 7 yr
due to evolved resistance to X. Provided that there was no
cross-resistance between H and X, the sustainability of X alone
was independent of the initial resistance level to H (Figure 1A–C).

Deploying stacked HT traits andmultiple herbicide SOAs could
add more diversity in management programs and give rise to more
effective and sustainable weed control. For example, West et al.
(2018) showed the value of using mixtures of 2,4-D and glyphosate
to control glyphosate-resistant A. palmeri; however, this was only
valid at an extremely low proportion (i.e., 0.02%) of glyphosate-
resistant weeds in a population. Our simulations showed that
the advisability of using two herbicide SOAs, HþX in mixtures,
for better control than X alone depended upon both the current
resistance level to H and cross-resistance between H and X.
When 80% of the population was dominated by H-resistant weeds,
the added value of using HþX mixture was inconsequential
(Figure 1C and F). Similarly, Bagavathiannan et al. (2014) sug-
gested that once herbicide resistance has evolved, growers should
stop using that herbicide SOA to avoid negative impact on other
spray options. Despite the minor contribution of H to the program
at a high resistance level, some growers may still choose to include
H in their program to control other weed species.

To some growers, a simple strategy may be to use efficient tools
repeatedly until they fail, for example, using H solo until failure
then switching to X solo. As demonstrated by Figure 1A and C,
such a strategy is likely to induce high risk—at the time when H
failed, the population would have already reached a problemati-
cally high density level. Using X in this situation would result in
7 yr of suboptimal control at best; not to mention if H and X
are cross-resistant, scenario X would fail within 2 yr (Figure 1F).
Repeated use of the same herbicide SOA, the lack of rotation of
crops with different phenologies, applying products at suboptimal
rates or time, and the absence of nonchemical control methods
have resulted in resistance to 167 different herbicides in 255 weed
species around the world to date (Heap 2019). Resistant
A. tuberculatus populations to various herbicide SOAs have been
reported, including acetolactate synthase inhibitors (WSSA SOA
Group 2), synthetic auxins (Group 4), photosystem II (PSII)

inhibitors (Group 5), 5-enolpyruvylshikimate-3-phosphate syn-
thase inhibitors (Group 9), protoporphyrinogen oxidase inhibitors
(Group 14), HPPD inhibitors (Group 27), and long-chain fatty-
acid inhibitors (Group 15), in the form of both single and multiple
resistant traits (Bell et al. 2013; Heap 2019; Ma et al. 2013; Owen
et al. 2014).

For control of the highly H-resistant (i.e., 80%) populations, an
additional effective herbicide SOA, Y, was needed, had the relevant
stacked trait been available (Figure 1C). As expected, the same
scenario, HþXþY, was able to control populations with lower
resistance levels to H (1% and 20%) sustainably for at least
20 yr (data not shown in Figure 1). The use of multiple effective
herbicide SOAs helps to avoid overreliance and high selection pres-
sure on any individual compound at any one time (Norsworthy
et al. 2012).

In reality, there may not be many effective herbicides or stacked
traits that are commercially available in a particular market.
Nevertheless, replacing herbicide Y with a cultural or mechanical
control method (Table 2, H, X & Mechanical) would have been a
valuable nonchemical alternative to the available herbicides
(Figure 1C).

The aforementioned weed control improvement enabled by the
stacked HT traits (Figure 1A–C) would not be as great had there
been cross-resistance between H and X.When cross-resistance was
assumed, all tested scenarios failed within 8 yr (Figure 1D–F). In
particular, the mixture of HþX did not sustain any longer than H
alone in the highly H-resistant (80%) field, due to the coselection
betweenH and X (Figure 1F). The deficiency of H and X shifted the
selection pressure to Y in the HþXþY scenario and resulted in
control failure within 6 yr. In contrast, mechanical control method
was intact and the scenario H, X & Mechanical was affected to a
lesser extent (Figure 1F). Since the 1980s, there has been mounting
evidence of metabolic resistance underpinned by a common suite
of metabolic genes, such as cytochrome P450monooxygenases and
glutathione S-transferases, affecting a wide range of herbicide SOAs
(Heap and Knight 1986; Nandula et al. 2019). In this sense, stacked
traits can potentially lead to more rapid selection of non–target site
resistance, often a quantitative trait, as for H and X. The resulting

Figure 1. Sustainability of the POST-only programs, as influenced by the number of herbicide SOAs and the initial level of quantitative resistance to herbicide H. Cross-resistance
between herbicides H and X is included in D–F. Results are presented as the year of weed control failure; bars represent the mean, and error bars represent the range of
100 replicates. Herbicide scenarios are detailed in Table 2. r-HX, correlation coefficient between phenotypic values of H and X.
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cross-resistance will likely reduce the sensitivity of a broad range of
herbicides from similar or dissimilar chemical classes, as well as void-
ing new chemicals that are yet to be discovered (Nandula et al. 2019;
Yu and Powles 2014). Simulations presented in Figure 1D–F were
simplified scenarios. The actual impact of cross-resistance on weed
population dynamics depends on a range of factors, such as the
level of correlation between the herbicides (here a bivariate corre-
lation coefficient of 50% was presented only for demonstration
purpose), gene expression level, variation among the metabolic
genes, and weed species (Gaines et al. 2014). A further complica-
tion and challenge for model parameterization is the coexistence of
and possible interaction between metabolic resistance and target-
site resistance (Nakka et al. 2017).

With the sequential evolution demonstrated by multiple resis-
tance (Figure 1A–C) and simultaneous evolution demonstrated by
cross-resistance of H and X (Figure 1D–F), our model is among the
first few that address genetic or ecological interactions in the pre-
diction of herbicide resistance, for example, pleiotropic effects
(Colbach et al. 2016) or multiple weed species (Thornby et al.
2018). Other forms of interaction include chemical interaction,
such as synergy and antagonism. For instance, HPPD- and PSII-
inhibiting herbicides are synergistic, manifested by interactions
on photosynthesis, resulting in potentially better control of atrazine-
resistant weeds when atrazine is applied with mesotrione (Abendroth
et al. 2006; Woodyard et al. 2009). Model functions to address this
phenomenon should be developed where relevant herbicide SOAs
are involved.

Early Weed Management with Residual Herbicides

The POST-only scenario HþXþY was sufficient to maintain the
A. tuberculatus population at acceptable low density for at least
20 yr, which, however, was accompanied by 30% probability
(out of 100 replicates) of evolved resistance to themixture partners,
X or Y (Figure 2B, purple crosses). Alternatively, growers can use
residual herbicides to clean up fields early, followed by POST
products as a backup, rather than as the first line of defense, asTa

b
le

3.
Co

st
–b

en
ef
it
ca
lc
ul
at
io
n
of

th
re
e
ex
am

pl
e
w
ee
d
co
nt
ro
ls
ce
na

ri
os

us
in
g
pr
od

uc
ts

av
ai
la
bl
e
on

th
e
U
.S
.s
oy
be

an
m
ar
ke
t.
a

Co
st
s

R
es
is
ta
nc
e
an

d
yi
el
db

Co
m
m
od

it
y
pr
ic
ec

N
et

ga
in

pe
r
ye
ar

N
et

ga
in

in
20

yr
Sc
en

ar
io

H
er
bi
ci
de

sd
Ad

ju
va
nt
se

Se
ed

sf
La
bo

r/
m
ac
hi
ne

g

D
ur
at
io
n

of
go

od
co
nt
ro
l

G
oo

d
yi
el
d

B
ad

yi
el
d

G
oo

d
qu

al
it
y

gr
ai
n

P
oo

r
qu

al
it
y

gr
ai
n

P
er

go
od

ye
ar

P
er

ba
d

ye
ar

b

––
––
––
––
––
––
––
––
––
––
U
S$

ha
−
1h
––
––
––
––
––
––
––
––
––

ye
ar
s

––
–L

h
ha

−
1 –
––

––
––
––
U
S$

L−
1 –
––
––
–

––
––
––
––
––
U
S$

ha
−
1 –
––
––
––
––
––

Ex
am

pl
e

H
er
bi
ci
de

Q
(2
×
P
O
ST

)
=
30

×
2

=
5
×
2

10
0

=
20

×
2

5
6,
09
5

2,
61
2

0.
23

0.
17

1,
19
2h

23
4i

9,
47
0j
,k

H
G
ly
ph

os
at
e
so
lo

(3
×
P
O
ST

)
39

15
10
4

55
7

6,
09
5

2,
61
2

0.
23

0.
17

1,
18
9

23
1

11
,3
26

H
þX

þY
G
ly
ph

os
at
eþ

2,
4-
D
þg

lu
fo
si
na

te
(1
×
P
O
ST

)
64

11
12
8

55
>
20

6,
09
5

N
A

0.
23

N
A

1,
02
7

N
A

20
,5
40

2,
4-
D
þg

lu
fo
si
na

te
(2
×
P
O
ST

)
95

22
EW

M
(ii
)

SM
O
C
þf

om
es
af
en

(P
R
E)

26
0

11
4

37
>
20

6,
09
5

N
A

0.
23

N
A

1,
18
2

N
A

23
,6
40

G
ly
ph

os
at
eþ

2,
4-
D
(1
×
P
O
ST

)
32

11

a N
ot
e
th
at

th
e
ca
lc
ul
at
io
ns

he
re

ar
e
on

ly
pr
es
en

te
d
as

fig
ur
at
iv
e
ex
am

pl
es

an
d
do

no
t
ai
m

to
pr
om

ot
e
an

y
pa

rt
ic
ul
ar

he
rb
ic
id
e.

b G
oo

d
yi
el
d
w
it
ho

ut
he

rb
ic
id
e
fa
ilu

re
or

ba
d
yi
el
d
(o
r
ba

d
ye
ar
)
du

e
to

re
si
st
an

ce
/w

ee
d
co
nt
ro
lf
ai
lu
re
.

c C
on

si
de

ri
ng

im
pa

ct
s
of

w
ee
d
se
ed

co
nt
am

in
at
io
n
an

d
gr
ai
n
qu

al
it
y.

d B
as
ed

on
En

lis
tO

ne
®(

Co
rt
ev
a
Ag

ri
sc
ie
nc
e,
W
ilm

in
gt
on

,D
E)
,E
nl
is
tD

uo
®(

Co
rt
ev
a
Ag

ri
sc
ie
nc
e,
W
ilm

in
gt
on

,D
E)
,L
ib
er
ty
®2

80
SL

(B
AS

F
Co

rp
or
at
io
n,
R
al
ei
gh

,N
C)
,P
re
fix
®(

Sy
ng

en
ta

Cr
op

P
ro
te
ct
io
n,
In
c.
,G

re
en

sb
or
o,
N
C)
,a
nd

R
ou

nd
up
®P

ow
er
M
ax

(B
ay
er

Cr
op

Sc
ie
nc
e,

St
.L

ou
is
,M

O
).

e B
as
ed

on
N
-P
ak
®
AM

S
(S
ou

rc
e
AM

S
34

2
×
2.
5.

W
in
fie

ld
®
U
ni
te
d,

St
.P

au
l,
M
N
)
an

d
dr
ift

re
du

ct
io
n
ag

en
t
In
ta
ct
™
(2

×
2.
5.

P
re
ci
si
on

La
bs

In
c.
,N

or
th
br
oo

k,
IL
).

f B
as
ed

on
En

lis
t™

so
yb

ea
ns

(C
or
te
va

Ag
ri
sc
ie
nc
e,

W
ilm

in
gt
on

,D
E)
,E

nl
is
t
E3

™
so
yb

ea
ns

(C
or
te
va

Ag
ri
sc
ie
nc
e,

W
ilm

in
gt
on

,D
E)
,a

nd
R
ou

nd
up

R
ea
dy
®
2
so
yb

ea
ns

(B
ay
er

Cr
op

Sc
ie
nc
e,

St
.L

ou
is
,M

O
).

g B
as
ed

on
20
18

Io
w
a
Fa
rm

Cu
st
om

R
at
e
Su

rv
ey
.

h 1
ha

=
2.
47

ac
re
;1

L
=
0.
02
8
U
.S
.b

us
he

l.
i E
qu

al
s
(6
,0
95

L
×
U
S$

0.
23

L−
1 )
−
(U
S$

30
×
2
he

rb
ic
id
e
co
st
)
−
(U
S$

5
×
2
ad

ju
va
nt

co
st
)
−
U
S$

10
0
se
ed

co
st

−
(U
S$

20
×
2
la
bo

r
an

d
m
ac
hi
ne

co
st
).

j E
qu

al
s
(5

go
od

ye
ar
s
×
U
S$

1,
19
2)

þ
(1
5
ba

d
ye
ar
s
×
U
S$

23
4)
.

k E
qu

al
s
(2
,6
12

L
×
U
S$

0.
17

L-
1 )
−
(U
S$

30
×
2
he

rb
ic
id
e
co
st
)
−
(U
S$

5
×
2
ad

ju
va
nt

co
st
)
−
U
S$

10
0
se
ed

co
st

−
(U
S$

20
×
2
la
bo

r
an

d
m
ac
hi
ne

co
st
).

Figure 2. Sustainability of the programswith stacked HT traits or residual herbicides,
as influenced by application time (PRE and POST) and number of herbicide SOAs on
(A) weed density and (B) resistance evolution. Resistance evolution is presented as
% individuals that are resistant to at least one of the herbicides excluding H, either
in the form of single or multiple resistance. The populations consist of 80% individuals
resistant to H initially. Herbicide scenarios are detailed in Table 2. The simulations
were set to stop when weed density exceeded 1 plant m−2, hence the incomplete lines
of scenario EWM(i).
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recommended by the EWM strategy. However, the EWM pro-
grams need to be designed properly to ensure weed populations
are exposed to at least two effective herbicide SOAs in any given
time. A solo herbicide SOA, W PRE, resulted in evolved resistance
to W and control failure within 9 yr (Figure 2, EWM(i)). In con-
trast, the mixture of WþZ PRE followed by the same HþX POST
resulted in weed density <0.1 plants m−2 for 20 yr, with resistance
level <11% in all of 100 replicates, excluding preexisting resistance
to H (Figure 2, EWM(ii)). Although with 80% H resistance, there
was only one effective SOA POST, X, in the program, there was a
period of overlap between the residual activity of W and X during
the 4th week after sowing (Table 1). One additional advantage of
EWM(ii) is that it required one fewer application than the POST-
only scenario.

To enable programs like EWM(ii), the agrochemical industry
is expected to bring more innovative herbicides or SOAs to the
market. However, weeds evolve resistance faster than new herbi-
cides are invented (Gould et al. 2018). Moreover, with the increas-
ingly challenging regulatory environment, bringing new products
to the market has become more difficult and costly (Hillocks 2012;
McDougall 2016). In this respect, revisiting old chemistries with
new formulations or adjuvants, better application technology, or
mitigation options to alleviate their potential environmental influ-
ence may offer new opportunities. Another challenge is to change
the mind-set of growers and stakeholders to embrace the concept
of EWM, for which more educational campaigns and demonstra-
tion trials are required.

Economic Indications

Although the price difference between various products in Table 3was
small, with careful planning to avoid or delay resistance evolution, the
benefit could be substantial. A conventional system with a single
herbicide SOAmay appear to be economical enough during the first
few years; however, repeated use of a solo herbicide SOA would
result in rapid evolution of resistance (Figure 1, scenarioH), at which
time grain quality and yield potential would both be significantly
reduced. As a result, the average net gain in 20 yr was less than half
the initial annual gain (Table 3, scenario H).

In contrast, proactive herbicide programs, such as HþXþY and
EWM(ii), which required slightly more investment, proved to be
highly profitable, returning 1.8 to 2 times higher net gain than sce-
narioH in the long term (Table 3). In this particular case, usingmore
stacked traits with POST-only applications (scenario HþXþY) was
more expensive than the EWM(ii) scenario. This was because of
higher cost of the GM seeds with more stacked traits and a higher
frequency of herbicide applications, which was accompanied by
greater chemical use and labor costs. The figurative examples
might have differed had other herbicide products been used.

Additionally, sowing at higher seeding rates or narrower row
space increases seed costs but may be beneficial to weed control
and consequently increase yield. The actual cost of sowing and
harvesting may also be dependent on the herbicide program.
Harvesting can be greatly impacted by weed control, although this
is difficult to quantify, especially the additional time and fuel for
harvesting fields with higher weed population densities. Moreover,
commodity prices and grain yields fluctuate considerably from
year to year and field to field, hence there may be variations around
the absolute values presented in Table 3.

The battle against herbicide resistance is not only a research
subject, but also an important socioeconomic problem, the success
of which will eventually depend on the cooperation of each grower

(Ervin and Jussaume 2014). Therefore, a practical and realistic
cost–benefit calculation is key to an educational campaign of sus-
tainable weed control strategies.

Final Remarks

To conclude, in the case of POST-only programs, additional
chemical and nonchemical management approaches increased
the sustainability of stacked GM crops by reducing the selection
pressure. Preexisting resistance and potential cross-resistance
compromised control success and sustainability. In the case of
EWMprograms, the length and overlap of herbicide residual activ-
ity played a key role. The higher investment in stacked traits or
residual herbicides in earlier years proved to be worthwhile from
a long-term cost–benefit point of view.

The focus of this study was to demonstrate best management
principles for the mitigation of evolved resistance, in order to
provide practical and timely management directions for GM crop
varieties that may be available on the market. Examples presented
here, however, are specific to the parameter settings, such as weed
emergence pattern, residual activity, herbicide efficacies, and
genetic parameters. In reality, for any decision-making recommen-
dations, management practices need to be tested by the model on a
case-by-case basis.

Finally, whether it is using additional effective herbicide SOA(s)
on crops with stacked HT traits, or treating the field with residual
herbicides before weed emergence, the essence of a successful her-
bicide program is to be proactive. Nevertheless, herbicides alone
are not the solution to herbicide resistance. The necessity and value
of reintroducing nonherbicidal practices to complement chemical
solution was illustrated by the model.
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