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ABSTRACT

China is the major producer of chestnut, with 1.84 million tons of chestnut production, resulting in
an enormous waste of chestnut shells. In the current study, shell biochar (SBC) was produced using
the inside shell covering fruit, and the outside shell with thorns was used to produce thorn biochar
(TBC). Both types of biochar were characterised through Brunauer–Emmett–Teller (BET) analysis,
scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). These analytical results
showed a more obvious smooth surface and micro-pore structure in SBC. The vibration of C=O/
C=C and C–O (phenolic) showed a significant difference between the two types of biochar.
Sorption experiments indicated that the adsorption capacity of the different types of biochar for
cadmium (Cd) did not differ significantly, whereas the adsorption capacity of TBC for lead was
better than that of SBC. In the pakchoi cultivation experiment (28 days), the application of TBC
(1.5%) promoted plant shoot weight, root weight, shoot length and root length by 465%, 143%,
109% and 97% respectively. The application of biochar effectively increased soil pH and reduced
the bioavailability and migration of heavy metals. Besides, membrane integrity and chlorophyll
content were enhanced because of the alleviation of oxidative stress. Noticeably, application of
TBC (0.1% and 1.5%) reduced the Cd concentration in the root by 40–60%, and enhanced
accumulation of Pb by 75–191%. Overall, our study demonstrated that 1.5% TBC has promising
potential for remediating Cd-contaminated soil. Our study has demonstrated the remediation
potential of chestnut and provided a clue for sustainable management of chestnut shell waste for
further development of chestnut resources.
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Heavy metal contamination is one of the environmental issues rapidly growing because of 
urbanisation and industrialisation (Zhao et al. 2015). In China, farmland soil contaminated 
with heavy metals covers and area of about 2 × 107 Hm2, causing an economic loss of about 
USD 3 × 109 (Li et al. 2014). In recent years, heavy metal contamination has attracted public 
attention because of its deleterious effects on human health (Rui et al. 2008a, 2008b). 
Besides, heavy metal contamination is a critical factor in restricting food yield (Rui et al. 
2007a, 2007b). It is worth noting that the global population is estimated to reach 9.73 billion 
after 30 years, resulting in roughly doubling human food demand (Mueller et al. 2012; United 
Nations 2019). Therefore, it is urgent to give attention to controlling heavy metal pollution. 

Biochar is obtained by the pyrolysis of different biomass feedstock at a particular range of 
temperatures under limited oxygen conditions (Gao et al. 2020a, 2020b). Because of the low 
cost and high adsorptive property of biochar, it is considered to be environmentally 
functional material (Zhou et al. 2017). Moreover, biochar has great potential to alleviate 
soil heavy metal stress and promote plant growth (He et al. 2019). 
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Castanea mollissima BL (Chinese chestnut), which belongs 
to the Fagaceae family, was once an essential food resource in 
the northern hemisphere (Yang et al. 2015; Zhou et al. 2021a, 
2021b, 2021c). According to latest statistics of Food and 
Agriculture Organiszation of the United Nations (FAO), China 
is the largest producer of chestnuts globally, with an area of 
3.3 × 105 hectares and an output of 1.84 million tons (FAO 
2019). The surface of the chestnut is covered with two shells, 
one of which wraps chestnut fruit, and another is covered with 
thorn. There are many discarded chestnut shells around the 
country, especially the spiny ones, which can be harmful to 
people or animals in the field (Liang et al. 2013). Considering 
a large amount of waste, these two types of chestnut shells were 
used for biochar production. Pakchoi (Brassica Chinensis) is  a  
common vegetable in China, which people pursue because 
of its unique flavour and high nutrition. 

In this study, two types of biochar were synthesised and 
characterised. Shell biochar (SBC) was produced from the 
inside shell covering the fruit, and the outside shell with thorns 
was used to produce thorn biochar (TBC). We hypothesised 
that biochar exposure could positively promote pakchoi 
seedling growth and further alleviate cadmium (Cd) and 
lead (Pb) phytotoxicity under soil culture conditions. The 
objectives of this study were to assess the alleviation effects 
of biochar on pakchoi with Cd and Pb co-exposure and broaden 
the application of biochar in the remediation of soil. To our 
knowledge, this is the first report to characterise the differences 
between two types of biochar derived from inside and outside 
chestnut shell. The effects of different types of biochar on the 
remediation and immobilisation of Cd and Pb are shown by 
pakchoi pot experiment. More importantly, the work has 
further demonstrated the remediation potential of chestnut 
shell biochar and provides clues for sustainable management 
of chestnut shell waste. 

Materials and methods

Preparation and characterisation of biochar

Two types of chestnut shells were obtained from a chestnut 
orchard in Huairou District, Beijing (116.505754°N, 
40.3413096°E). After chopping the shells to less than 1 cm 
sections, they were used as feedstock for biochar preparation. 
Biochar was produced by pyrolysis of the chestnut shell at 
600°C for 2 h in a muffle furnace (heating rate of 5°C min–1 

under limited oxygen supply). Then biochar was naturally 
cooled in the muffle furnace under a continuous nitrogen gas 
(N2) supply. Finally, the first type of biochar (SBC) was 
produced from the fruit shell, and the second type of biochar 
(TBC) was produced from the shell covered with thorns. To 
explore the combined effect of different types of biochar, 
SBC and TBC were mixed at a ratio of 5:5 to make a third 
kind of biochar (MBC). A graphic presentation of our 
experimental design is given in Fig. 1. 

The pH was tested by a pH meter (PH838, Smart Sensor Inc., 
China) at a ratio of 20 mL:1 g (deionized water:biochar). 
Surface and morphological features were characterised by 
SEM (SU-8100, Hitachi, Japan). The specific surface-area 
and pore-size distribution were determined by BET and 
Barret–Joyner–Halenda (BJH) methods with N2 adsorption 
isotherms (ASAP-2020 PLUS Automatic Physisorption 
Analyser, Micromeritics Inc., China). Fourier transform 
infrared (FT-IR; Nicolet iS20, Thermo Fisher Scientific Inc., 
USA) analysis was finished at a range of 400–4000 cm−1. 

Sorption experiment

The sorption experiment was followed by Fan et al. (2020). In  
brief, Cd2+ and Pb2+ isotherm experiments of adsorption were 
conducted in 250 mL conical flasks that contained a single 
metal ion (Cd2+ or Pb2+ , initial concentration level of 50, 75 
and 150 mg L−1) solution at a pH 5. Then 25 mg of biochar 
was added into the conical flasks with different treatments, 
and shaken at 180 rpm, 25°C, for 12 h. The compound 
solutions were filtered through 0.25 μm PTFE membrane and  
analysed by by inductively coupled plasma–mass spectrometry 
(ICP–MS; Detailed methods in section Determination of Cd and 
Pb contents). 

Pot experiment

The soil for the pot experiment was collected from an 
experimental station of Shangzhuang, Beijing. The surface 
soil (0–20 cm from the top) properties have been provided 
in Supplementary Table S1. After air-drying for 2 days and 
sieving with a 2-mm mesh, the soil was mixed with Cd 
(30 mg kg–1 of Cd) and lead (500 mg kg–1 of Pb) to create a 
co-contaminated condition of Cd and Pb. SBC, TBC and MBC 
were mixed with the contaminated soil to achieve 0.1%, 
0.5% and 1.5% concentrations. Each pot was filled with 
250 g of soil. Three biological replicates were established for 
each treatment. Co-contaminated soil without additional 
biochar was used as the control. 

Seeds of pakchoi (Brassica chinensis) were purchased from 
the Chinese Academy of Agricultural Sciences, Beijing. Before 
sowing, seeds were sterilised with 5% H2O2 for 15 min and 
rinsed with DI thoroughly. The seeds were put in a Petri dish 
and germinated in a climate incubator (18–22°C, 16/8 h 
light and dark cycle) for 7 days (Uslu et al. 2020). Seedlings 
of a uniform size were selected and placed into pots containing 
soil. The pakchoi seedlings were carefully harvested after 
28 days of soil cultivation. Then deionised water was used to 
thoroughly rinse seedlings, so as to remove the adhesive soil 
and biochar from the plant surface. Fresh weight of shoot, 
fresh weight of root, root length and height of pakchoi were 
determined separately, and the material was dried in an 
oven (105°C for  3 h and 80°C for 24 h). 
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Fig. 1. Experimental design and result display.

Biochemical analysis

The assay kits purchased from Nanjing Jiancheng Bio-
engineering Institute were used to test malondialdehyde 
(MDA) and the activity of antioxidative enzymes, including 
superoxide dismutase (SOD) and peroxidase (POD). Briefly, 
0.2 g of the fresh pakchoi leaf was ground into powder under 
low temperature. The powder was mixed with 0.8 mL of PBS 
and centrifuged at 10 000g and 4°C for 10 min, and the 
supernatant was used for measurement. The SPAD value was 
tested by using SPAS-502 plus (Konica Minolta, Japan). The 
first fully expanded leaf was selected for the test, and 10 
points near the main vein of each leaf were tested. 

Determination of Cd and Pb concentrations

The measurement of Cd and Pb concentrations was performed 
as described in Rui et al. (2007a, 2007b). In brief,  
approximately 0.1 g of the pakchoi dried sample of different 
treatments was prepared to determine Cd and Pb. First, the 
pakchoi dry samples were ground to powder and thoroughly 
digested in a solution mixture f nitric acid–hydrofluoric acid 
(1:2) by using a microwave digestion system (XT-9916, 
Shanghai Xintuo, China; Rui et al. 2008a, 2008b). Then, the 
digested solution was diluted by ultrapure water to 10 mL 
and the concentrations were determined by ICP–MS (DRCII, 
PerkinElmer, and Norwalk, USA; Shi et al. 2009). 

Data analysis

Statistical analyses were performed through one-way 
ANOVA in SPSS 20.0 (IBM, USA). The mean values for each 
treatment were compared using the Duncan's multiple-range 
test at a P = 0.05 confidence level. Data are expressed as 
means ± s.d. (n = 3). The different lowercase letters indicate 
significant differences at P = 0.05. 

Results and discussion

Characterisation of biochar

Our experimental design is presented graphically in Fig. 1. 
The skeleton of biochar is apparent, mainly in flakes and 
blocks. Smooth surface and micropore structures can be 
observed in SBC (Fig. 2c, f ), whereas the surface of TBC is 
rough, with a lot of different sizes of ash particle (Fig. 2a, d). 
BJH adsorption average pore width of SBC is smaller than that 
of TBC, and the above result is consistent with BET surface 
area; more pore area results in more specific surface area 
(Table 1, Fig. 2d, f ). The N adsorption capacity of TBC is 
more robust than that of SBC under the normal pressure 
(Fig. 3a), which is due to the bigger pore width in TBC. 

Abundant additional functional groups and carbonate 
were produced during the pyrolysis of organic substances, 

149

Downloaded From: https://complete.bioone.org/journals/Crop-and-Pasture-Science on 18 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use

www.publish.csiro.au/cp


P. Zhou et al. Crop & Pasture Science

Fig. 2. SEM micrographs of (a–c) SBC and (d–f ) TBC.

Table 1. Physicochemical properties of SBC and TBC.

Biochar type pH BET surface BJH adsorption average BJH desorption average Median pore
area (m2 g−1) pore width (nm) pore width (nm) width (nm)

SBC 9.52 18.1387 9.5938 8.4611 1.0381

TBC 9.71 14.5188 12.5131 10.5516 1.0606

which results in alkaline biochar (Yuan et al. 2011). In the 
present study, the pH of the two types of biochar was also 
alkaline, and there was no significant difference between TBC 
and SBC. The soil pH increased after applying alkaline 
biochar, thus reducing the bioavailability and migration of 
heavy metals in soil (Gao et al. 2020a, 2020b). Hannan 
et al. (2021) also demonstrated that biochar significantly 
increased the soil pH and reduced the bioavailability of nickel 
(Ni) concentration in soil, indicating that the alkalinity of 
biochar is significant for the remediation of heavy metals 
in soil. 

Functional groups of the biochar surface were identified by 
FT-IR (Fig. 3b), and the adsorption peak at 3430–3432 cm−1 

was attributed to the O–H stretching vibrations (Song et al. 
2020). The adsorption peak at 3430–3432 cm−1 was 
attributed to the C–H stretching vibrations or –CH2 

antisymmetric stretching vibration (Song et al. 2020). The 
significant difference between SBC and TBC appears in the 
wavenumber range of 400–1593 cm−1. In SBC, the peak at 
1593 cm−1 was attributed to the vibration of C=O/C=C (Tsai 
et al. 2012). In contrast, the peaks of TBC spectrum at 1423, 
1158 and 878 cm−1 were attributed to the vibration of C–O 
(phenolic), C–O (carboxylic)  and  =C–H respectively (Wang 
et al. 2015; Mandal et al. 2017). The significant difference 
was attributed to the vibration of C=O/C=C at  1593 cm−1. 

Surface functional groups containing oxygen, carboxyl and 
hydroxyl were confirmed in two types of biochar by FT-IR 
results. These surface functional groups have been shown to 
be beneficial to Cd, copper (Cu), Pb and Ni adsorption in 
previous studies (Yang et al. 2019; Silos-Llamas et al. 2020). 

Sorption experiment of Cd or Pb

The adsorption capacity for Cd2+ by the three kinds of biochar 
was increased with an increase in the initial concentration 
(Fig. 4a). Besides, all types of biochar had the same change 
trend, meaning that adsorption of Cd2+ by the different 
types of biochar showed little difference. The adsorption 
amount of Pb2+ by SBC and MBC decreased with an 
increase in the initial concentration. The adsorption amount 
of Pb by TBC reached the maximum value of 29.23 mg L−1 

when the initial concentration was 75 mg L−1 (Fig. 4b). The 
results showed that among the three kinds of biochar, TBC 
had the best adsorption effect on Pb2+ , which may be due 
to the larger median pore width of TBC biochar. In general, 
the adsorption effect of chestnut shell biochar on Cd2+ was 
significantly better than that on Pb2+ . Other researchers 
have reached similar conclusions, such as for the root of 
rose biochar and apricot atone activated carbon (Kobya 
et al. 2005; Khare et al. 2017). 
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Fig. 3. (a) Adsorption isotherm line of N2. (b) FT-IR spectra of SBC and TBC.

Fig. 4. Sorption of (a) Cd2+ and (b) Pb2+ on SBC, TBC and MBC in the single-metal systems.

Effects of biochar on plant phenotype under
heavy metal stress

After 28 days of cultivation with different treatments, the 
growth of pakchoi seedlings was significantly promoted 
compared with the control, especially in the high concentration 
treatment of TBC (Supplementary Fig. S1). The application of 
1.5% TBC increased plant shoot weight, root weight, shoot 
length and root length by 465.84%, 143.03%, 109.76% and 
97.04% respectively (Fig. 5). However, all low-concentration 
biochar treatments (0.1%) had no apparent effect on the 
biomass of root, shoot length and root length. Interestingly, 
the middle concentration treatments (0.5%) of both SBC and 
TBC had an apparent effect on promoting the shoot growth 
and alleviating heavy metal stress, whereas the MBC 
treatment did not (Fig. 5a, c). Except for the treatment with 
0.1% MBC and 0.5% MBC, all other treatments significantly 
increased shoot fresh weight at P = 0.05 confidence level 
(Fig. 5a). More importantly, the fresh weight of root and 
root length were significantly promoted by the high 

concentration of SBC and TBC, but the high concentration of 
MBC had no such effect (Fig. 5b, d). 

Biochar has potential to improve soil properties and plant 
growth, and can enhance root nutrient obtention directly as 
a nutrient source or indirectly by altering soil nutrient 
concentration. According to the root box experiment, some 
studies have confirmed that plant roots grow preferentially 
in the zone containing biochar because of the nutrition 
(Prendergast-Miller et al. 2014). Similar results have been 
found in field experiments. The growth rate, biomass and 
grain yield of maize in semi-arid farmland have been shown 
to be effectively enhanced by the straw biochar (Xiao et al. 
2016). There are enough studies to prove that application of 
biochar can alleviate heavy metal stress. Plant growth would 
be negatively affected by heavy metals, but the application 
of biochar effectively alleviates stress and promotes plant 
growth (O’Connor et al. 2018). Moreover, the effects of 
biochar treatment might be related to the heavy metal 
adsorption ability of biochar (Table 1, Fig. 4b). In accordance 
with our study, it has been suggested that biochar with a high 
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Fig. 5. Effects of biochar on (a) shoot fresh weight, (b) root fresh weight, (c) shoot length, and (d) root length of pakchoi grown
in soil co-contaminated with Cd and Pb.

adsorption capacity could more effectively reduce the 
bioavailability of heavy metals in soil (Fan et al. 2020). 

Effects of biochar on alleviation of oxidative
stress under heavy metal stress

The oxidation defense system of the plant could be activated 
when the plant grows in a stressed environment, which is a 
crucial strategy to alleviate heavy metal stress (Wu et al. 
2017). Reactive oxygen species (ROS) are being continuously 
produced in specific biochemical reactions, such as respiration 
and photosynthesis (Zhao et al. 2017). ROS are important 
signaling molecules involved in plant growth and defense, 
whereas excessive ROS would be produced and accumulated 
under stress (Zhang et al. 2019). Accumulation of excessive 
ROS is detrimental to plant organelle, proteins and cell 
membranes (Rui et al. 2017). ROS are mainly being scavenged 
in plants by antioxidant enzymes, such as peroxidase (POD), 
superoxide dismutase (SOD), catalase (CAT) and other 
metabolites (Adeel et al. 2020). Superoxide radical (O2˙−) 
could be transformed into molecular oxygen and hydrogen 
peroxide (H2O2) by  SOD, and  H2O2 could be decomposed 
into H2O and  O2 by POD and CAT (Adeel et al. 2018). 
Besides, lipid peroxidation (MDA over-accumulation) will 
occur when the scavenging rate of ROS is less than the 
generation rate (Zhou et al. 2021a, 2021b, 2021c). So as to 

determine the effect of biochar on alleviation of oxidative 
stress under heavy metal stress, malondialdehyde (MDA) and 
the activity of SOD and POD were measured (Fig. 6). 

The MDA content in leaves decreased significantly in all 
biochar treatments, indicating that lipid peroxidation caused 
by heavy metal stress was alleviated by biochar (Fig. 6a). 
Interestingly, in the TBC treatment, the content of MDA in 
leaves decreased with an increase in the application 
concentration of TBC, whereas treatments with SBC and 
MBC showed the opposite effect. SOD activities in leaves 
were significantly down-regulated by approximately 23–63% 
after different biochar exposures (Fig. 6b). Similarly, the 
activity of SOD and POD in leaves decreased with an increase 
in the application concentration of TBC, whereas treatments 
with SBC and MBC showed the opposite effect. The SPAD 
value of pakchoi was determined to investigate the impact of 
biochar on the photosynthetic system under heavy metal 
stress (Fig. 6d). In general, the SPAD value of leaves has 
been significantly promoted by 39–43% with high 
concentration of biochar (1.5%). In contrast, the low- and 
medium-concentration treatments had no significant effect 
on the SPAD value. Similar to our study, the synthesis of 
chlorophyll was negatively affected under heavy metal 
stress, and the negative impact was alleviated by application 
of biochar (Wu et al. 2019). 

152

Downloaded From: https://complete.bioone.org/journals/Crop-and-Pasture-Science on 18 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



www.publish.csiro.au/cp Crop & Pasture Science

Fig. 6. Effects of biochar on (a) MDA content, (b) SOD activity, (c) POD activity and (d) SPAD value of pakchoi grown in soil
co-contaminated with Cd and Pb.

Excessive ROS harmful to the membrane and cell structure 
would be quickly produced under biotic or abiotic stress, 
resulting in an increased MDA concentration, which is a 
significant biomarker of lipid peroxidation (Adeel et al. 
2021). We found relatively high MDA concentrations 
compared with control in pakchoi grown without biochar 
treatments, owing to heavy metal toxicity (Fig. 6a). The 
results showed that the harmful effects of heavy metals on 
the cell membrane were alleviated owing to the biochar 
treatment. Coinciding with our study, the application of 
biochar significantly decreased the MDA concentration in 
plants under salt stress (Farhangi-Abriz and Torabian 2018). 
On one hand, catalytic disproportionation of superoxide 
anion radicals (˙O2 

−) can be accomplished by SOD and 
produce H2O2 and O2. On the other hand, POD can catalyse 
H2O2 to H2O, which plays an essential role in the balance of 
oxidation and antioxidation (Wang et al. 2019). We 
observed that the activity of SOD and POD could be 
effectively decreased by the high-concentration TBC, meaning 
that the oxidative stress under heavy metal exposure could be 
alleviated by biochar (Fig. 5a, b). Our results showed a good 
correlation with pakchoi biomass, indicating that the 
regulation of the antioxidant system is the critical mechanism 
of biochar-induced pakchoi growth. The previous report also 
demonstrated that the application of biochar alleviates 

oxidative stress (Bashir et al. 2018; Irshad et al. 2020). For 
example, Irshad et al. (2020)  found that goethite-modified 
biochar promotes rice growth by alleviating oxidative stress 
in soil co-contaminated by Cd and As. Bashir et al. (2018)  
demonstrated that the application of biochar promoted 
water spinach growth and reduced the activity of SOD and 
POD under Cd stress. 

Effects of biochar on uptake of heavy metals in
pakchoi under heavy metal stress

Cadmium concentration in pakchoi root decreased 
significantly compared with the control (Fig. 7a). Treatment 
wth TBC resulted in a significant reduction in the Cd 
concentration by almost 52–60% at the application level of 
0.1% and 1.5%, whereas 0.5% TBC had no significant effect 
on the Cd concentration. Interestingly, for the treatment of 
SBC, the concentration of Cd in the roots increased with an 
increase in the application dose of biochar, whereas treatment 
with MBC had an opposite effect. Although the concentration 
of Cd in the roots decreased significantly, in the shoot it did not 
change significantly (Fig. 7b). The reason for this may have 
been the positive effect of biochar on plant growth, and the 
translocation factor of Cd being enhanced with plant growth. 
We found that the Pb concentration in root and shoot 
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Fig. 7. Effects of biochar on Cd concentration in (a) root, (b) shoot, and Pb concentration in (c) root and (d) shoot of pakchoi
grown in soil co-contaminated withy Cd and Pb.

significantly increased in the low-concentration TBC treatment 
(0.1%). Part of the reason may be that the pakchoi root was 
stimulated by the low-concentration TBC treatment. At the 
same time, more Pb could be adsorbed by TBC at a high 
concentration (1.5%) to counteract this negative effect (Fig. 
7c, d). In general, the positive effect of biochar increased 
with an increase in the biochar concentration. Our study 
indicated that 1.5% TBC could significantly reduce the 
Cd concentration in pakchoi roots during soil cultivation, 
whereas 0.1% TBC could effectively increase Pb concen-
trations in pakchoi roots and shoots. 

Heavy metal pollution is a serious problem in farmland soil, 
limiting crop production, and is also the main reason for land 
abandonment (Zhou et al. 2021a, 2021b, 2021c). Biochar 
exhibited immense potential in treating heavy metals in soil 
because of its unique chemical and physical properties (such 
as large surface area, alkaline properties and cation 
exchange capacity; Beesley and Marmiroli 2011; Zhang et al. 
2013). Biochar may reduce Cd bioavailability more effectively 
than it does Pb bioavailability. For example, biochar separately 
reduced the available Cd and Pb by 34.8–39.2% and 8.6–11.1% 
in the soil incubation experiments (28 days) (Fan et al. 2020). 
Besides, pakchoi, which belongs to the Brassica, can  
accumulate most of the soil heavy metals in its root (Rizwan 
et al. 2018). Our result clearly showed that Cd concentration 
in root decreased with application of biochar, whereas 

low-concentration TBC promoted accumulation of Pb in 
pakchoi (Fig. 7). The reason may be related to the strong 
adsorption capacity and high pH value of TBC. Moreover, 
the growth dilution is probably also responsible for reduced 
Cd and Pb uptake in pakchoi. Pb accumulation in pakchoi 
was promoted by TBC, which was attributed to competitive 
adsorption of heavy metals and biostimulation of TBC. Similar 
to our study, Houben et al. (2013)  also concluded that low-
concentration biochar promoted heavy metal accumulation 
in Brassica napus L. because of biostimulation. Overall, the 
ability of pakchoi to absorb Pb can be enhanced by TBC, 
indicating that combining phytoremediation with biochar is 
promising. 

Conclusions

In the current study, we compared the physiological impacts 
and remediation capacity of three different types of biochar 
on pakchoi plant growth. The growth of pakchoi seedlings 
was significantly promoted with biochar under heavy metal 
stress, especially the high concentration treatment of TBC. 
TBC (1.5%) promoted plant shoot weight, root weight, shoot 
length and root length by 465%, 143%, 109% and 97% 
respectively. Besides, the application of biochar effectively 

154

Downloaded From: https://complete.bioone.org/journals/Crop-and-Pasture-Science on 18 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



www.publish.csiro.au/cp Crop & Pasture Science

decreased oxidative stress and protected membrane integrity. 
Interestingly, for Cd and Pb content in the root, the 
application of TBC decreased Cd content in the root by 40– 
60%, whereas application of TBC (0.1% and 1.5%) promoted 
the accumulation of Pb by 75–191%. This research demon-
strated that 1.5% TBC can remediate Cd-contaminated soil 
and that combining phytoremediation of Pb-contaminated 
soils with 1.5% TBC is promising. Overall, the chestnut shell 
waste-derived biochar effectively immobilised exogenous 
and mobile Cd and Pb. In addition, biochar showed huge 
potential to improve the productivity of the plant and 
phytoremediation capacity under metal stress. The studies 
on different raw materials of biochar and soil containing 
different pollutants are needed for the future strategy in 
larger prospects. 

Supplementary material

Supplementary material is available online. 
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