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ABSTRACT

Context. Soil enzyme activities are key regulators of carbon and nutrient cycling in grazed pastures.
Aims. We investigated the effect of biochar addition on the activity of seven enzymes involved in the
carbon, nitrogen and phosphorus cycles in a Sil-andic Andosol and a Dystric Cambisol under
permanent pastures. Methods. The study consisted of a one-year field-based mesocosm
experiment involving four pastures under different nutrient and livestock practices: with and
without effluent under dairy cow grazing on the Andosol, and with either nil or high phosphorus
fertiliser input under sheep grazing on the Cambisol. Soil treatments were: (1) willow biochar added
at 1% w/w; (2) lime added at the liming equivalence of biochar (positive control); (3) no amendments
(negative control). Key results. Compared with the Cambisol, the Andosol had higher
dehydrogenase, urease, alkaline and acid phosphatase and, especially, nitrate-reductase activities,
aligning with its higher pH and fertility. In both soils, biochar addition increased the activity of all
enzymes, except for acid phosphatase and peroxidase; lime addition increased peroxidase and
nitrate-reductase activity. Conclusions. The increased enzyme activity was strongly positively
correlated with soil biological activity following biochar addition. Biochar caused a 40–45%
increase in cellulase activity, attributed to increased root biomass following biochar addition.
The response in acid and alkaline phosphatase activity can be attributed to the impact of biochar
and lime addition on soil pH. Implications. The results provide more insights in realising the
potential benefits of biochar to the provision of ecosystem services for grazed pastures.

Keywords: Andosol, biochar, biological activity, Cambisol, fertility, nutrient cycling, pasture, soil
enzymes.

Introduction

A good understanding of how to best manage soils is important in order to maintain or 
increase the soil capability to meet human needs (Dominati et al. 2010). Soil organic 
matter (SOM) content and soil fertility play a key role in the ability of soils to be 
suitable for food production and provision of other ecosystem services (Adhikari and 
Hartemink 2016). Soil enzymes are an important part of soil processes, providing a link 
between soil biotic and abiotic components that are integral in nutrient and energy 
exchange within the soil (Yang and Wang 2002; Sinsabaugh et al. 2008). A measure of 
soil enzyme presence and activity allows for the indirect quantification of soil processes 
(flows) that contribute to carbon (C) and nutrient cycling, which in turn contribute to 
plant growth (Shi 2011; Jog et al. 2012), and soil detoxification and remediation (Rao 
et al. 2010). Soil enzymes are involved in multiple processes (Table 1), including the C, 
nitrogen (N), and phosphorus (P) cycles (Sardans et al. 2008; Das and Varma 2011). As 
a product of biological activity, enzymes are closely linked to abundance, community 
structure and activity of soil microorganisms, and soil micro- and meso-fauna (Caldwell 
2005). Large soil animals, such as earthworms and some arthropods, influence the 
concentration and activity of soil enzymes in three ways: by releasing their own gut 
enzymes; by changing the microbial community inside their intestine and in their 
excreta; and by changing physico-chemical properties of the soil through their 
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Table 1. Sources and functions of selected soil enzymes.

Enzyme Source Soil
function

Process Factors influencing enzyme activity

Cellulase Fungi, bacteria, protozoans C-cycle Decomposition of cellulose Temperature, pH, water, quality, and location of soil
organic matter (OM) (1)

Peroxidase Fungi, bacteria, plants,
invertebrates

C-cycle Decomposition of lignin Temperature, pH, soil aeration, soil OM content,
management practices (2, 3)

Dehydrogenase Bacteria and fungi C-cycle Oxidation of organic compounds Soil water content and aeration, temperature,
management practices (4)

Nitrate reductase Bacteria, fungi, plant roots N-cycle Nitrate reduction to nitrite Soil temperature, water content, pH (5, 6)

Urease Bacteria, fungi, plants,
some invertebrates

N-cycle Hydrolysis of urea Temperature, pH, soil OM content, management
practices (3, 7)

Acid/alkaline
phosphatase

Plants, fungi, bacteria P-cycle Hydrolysis of esters and anhydrides
of phosphoric acid

Soil OM content, pH, management practices (8, 9)

Literature: (1) Deng and Tabatabai (1994a); (2) Sinsabaugh (2010); (3) Das and Varma (2011); (4) Wolińska and Stepniewska (2012); (5) Firestone (1982); (6)
Abdelmagid and Tabatabai (1987); (7) Lloyd and Sheaffe (1973); (8) Eivazi and Tabatabai (1977); (9) Nannipieri et al. (2011).

burrowing and mixing activities (Moldenke et al. 2000; 
Kizilkaya et al. 2011). The dynamics of soil nutrient and 
biological properties and enzymatic activity help to identify 
the main drivers of the C, N and P biogeochemical cycles 
(Harrison 2016; Macdonald et al. 2018). Enzymes, 
therefore, can be seen as indicators that can be used to 
assess the influence of soil and plant management practices 
and land use on key soil ecosystem functions (Chang et al. 
2007; Garbuz et al. 2016; Holík et al. 2019). The addition 
of organic amendments influences the physical and chemical 
environment of the soil, and affects the functional and 
structural diversity of soil microorganisms, which is the main 
factor for regulating and maintaining soil enzyme activity 
(Pérez-Piqueres et al. 2006; Cleveland et al. 2007). A promis-
ing organic amendment is biochar, a charcoal produced 
from biomass pyrolysis (Lorenz and Lal 2014; Lehmann 
et al. 2021). Biochar affects soil microbial communities 
through changes in soil bulk density, water retention, soil 
pH, and soil nutrient content and availability, as well as the 
provision of some labile C, especially when produced at 
low temperature of pyrolysis (Masto et al. 2013; De Tender 
et al. 2016). Generally, biochar application increases the 
abundance of soil microorganisms (Lehmann et al. 2011; 
Paz-Ferreiro et al. 2015; Palansooriya et al. 2019), whereas 
the influence of biochar on soil enzyme activity has been 
reported to be more variable, being highly dependent on 
the properties of the biochar and soil characteristics 
(Ouyang et al. 2014; Paz-Ferreiro et al. 2014; Khadem and 
Raiesi 2017; Garbuz et al. 2021). 

Previous studies from our group (Garbuz et al. 2020, 2021) 
have shown that willow biochar addition (1% w/w ratio), 
when added to a Sil-andic Andosol and a Dystric Cambisol 
under grazed pasture, increased the size of both the bacterial 
and fungal communities, and also plant roots biomass within 
12 months of application. In the same study, biochar also 
reduced soil bulk density (BD) and soil acidity, increased 

soil organic C and N stocks, and plant-available P (Olsen P). 
The changes in the stocks and availability of C, N and P 
indicate that biochar is also likely to be impacting on the 
activity of soil enzymes involved in the cycles of these three 
nutrients. However, it is not clear to what degree cellulase, 
peroxidase and dehydrogenase, which are involved in SOM 
decomposition, are affected by biochar. In addition, the 
degree of impact of biochar on nitrate-reductase 
and urease activity, which are involved in N cycling and 
used to quantify N transformation rates in soil, is unknown. 
It is well known that phosphatases, which are involved in 
mineralisation of organic P and, consequently, play a key 
role in plant P nutrition (Table 1), are sensitive to soil pH 
(Juma and Tabatabai 1978) and thus it is likely that their 
activity will be altered following biochar addition. In view 
of the above, we hypothesised that the influence of willow 
biochar produced at low temperature of pyrolysis on 
microbial biomass and plant root growth (1) should be 
mirrored in soil enzyme activity, as a part of underlying 
processes involved in stimulating the biogeochemical cycle 
regulating C, N and P supply, and (2) is beyond that of just 
the liming effect of biochar. 

Materials and methods

Biochar production and characterisation

Biochar used in this experiment was produced from willow 
(Salix matsudana L.) chips. Air-dried feedstock (<12% 
moisture content) was pyrolysed at a maximum heating 
temperature of 350°C and residence time of 4 h. The 
characteristics of the biochar were: pH 7.8, organic C (Corg) 
703 g kg−1, the ratio of dichromate-oxidisable C out of Corg 

(Cox/Corg) 51.4%, atomic H/Corg 0.63, liming equivalence 
7.3% CaCO3-eq (Garbuz et al. 2021). The biochar used in 
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our study was classified as having a C storage class of 2, a 
liming class of 1, and a fertiliser class of zero (no nutrient 
value) (Camps-Arbestain et al. 2015). The choice of willow 
was based on the fact that it is readily available as it is used 
extensively in New Zealand in soil conservation and stream 
bank protection. Willow grows readily from a cutting and 
has an extensive rooting system. 

Study sites

Two soils common under pastures in lower North Island 
of New Zealand were used in this study: (1) a Dystric 
Cambisol (IUSS Working Group WRB 2015), Brown soil in the 
New Zealand soil classification system (Hewitt 2010), from 
the experimental site of AgResearch Ballantrae Hill Country 
Research Station, Manawatu (40°18 035″S, 175°49 041″E); 
(2) a Sil-andic Andosol (IUSS Working Group WRB 2015), 
Allophanic soil (Hewitt 2010), from Hawera, Taranaki 
(39°36 028″S, 174°16 030″E). The Andosol used in this study 
is derived from volcanic ash. Rich in short-range order 
constituents, it offers high SOM protection, has a high anion 
retention, good physical properties, and resilience to treading 
pressure (Molloy 1998). The Cambisol is predominantly 
derived from loess materials. It has a low anion storage 
capacity and limited physical resilience to treading pressure. 
Two pastures grazed by dairy cows throughout the year on the 
Andosol were selected: one receiving dairy shed effluent 
(And-EF), and one not receiving effluent (And-NE). Both 
pastures receive 160 kg of N as fertiliser N ha−1 year−1, 
300 kg of 20% potash superphosphate ha−1 year−1, and 
1 kg selenium prill ha−1 year−1 (a standard fertiliser regime 
for NZ pastoral soils under dairy farming). The two selected 
pastures on the Cambisol were grazed by sheep throughout 
the year: one (Cam-LF) had received no superphosphate 
since 1980, and the other (Cam-HF) receives 375 kg 
superphosphate ha−1 year−1 since 1980 (Mackay et al. 2021). 

Field-based mesocosm experiment

The field-based mesocosm experiment was conducted using 
large soil cores enclosed into PVC cylinders (150 mm Ø, 
300 mm length). Four holes (5.1 cm Ø) were made in the 
wall of each cylinder to allow the free movement of 
soil organisms (fig. S1 in Garbuz et al. 2021). There were 
three treatments: (1) no amendments (negative control), 
(2) 1% of biochar application by weight (equivalent 
to approximately 10.9 Mg ha−1), and (3) lime (positive 
control) applied at a rate corresponding to the liming 
equivalent of biochar (ca. 0.8 Mg ha−1). Each treatment was 
replicated six times in each of the four pastures. During the 
southern hemisphere spring of 2017, the PVC cylinders 
were hammered into the ground and excavated with soil 
from each of the four pastures. At the laboratory, the turf 
layer (ca. 20 mm) was split off, and the top 150 mm of 
soil below the turf layer was removed from all cores. All 

earthworms from the topsoil were removed, counted, 
labelled with the core code, and cold-stored. For biochar 
and lime treatments, the soil was mixed with either biochar 
or lime, respectively, and put back into cylinders to the 
depth 20–170 mm; in control mesocosms the soil was also 
removed, and mixed without amendments. Earthworms and 
turf layer were placed back, and mesocosms installed in the 
field. Further details on design, preparation, and installa-
tion of mesocosms are provided in Garbuz et al. (2021). 
The experiment started in late October–November 2017, 
during the southern hemisphere spring. The sampling 
(18 cores from each pasture) occurred in November 2018, 
approximately 12 months after the start of the experiment. 
Climatological data for the two locations are provided in 
Supplementary Fig. S1. 

Soil physico-chemical and biological properties

Soil samples for chemical analysis and microbial biomass 
were collected with a corer (30 mm Ø) from five depths: 
0–20 mm (the turf), 20–95 mm, 95–170 mm, 170–200 mm, 
and 200–300 mm, and air-dried. The following variables 
were measured: soil bulk density (BD), pH, total C, total N 
(TN), nitrate-N (NO3 

−–N) and ammonium-N (NH4 
+–N), 

Olsen P. Inorganic C was negligible (<0.05%) in the lime-
treated soil after 12 months of incubation, and thus total 
soil C was all organic (Corg). Mesofauna abundance 
(Collembola, Oribatida and Gamasina) was sampled by 
taking 50 mm × 50 mm × 50 mm cores from the topsoil 
(20–95 mm) in each mesocosm cylinder. Fungal and bacterial 
biomass were measured in mixed topsoil (20–170 mm) using 
the substrate-induced respiration (SIR) method with selective 
inhibition (Nakamoto and Wakahara 2004). Fungal (Cf) and  
bacterial (Cb) biomass C was calculated according to 
Anderson and Domsch (1978). The  sum  of  Cf and Cb was 
considered as the microbial biomass. Earthworms from each 
mesocosm cylinder (full depth) were hand sorted, identified 
to species when possible, and counted. Plant roots from 
each cylinder were collected by hand, washed over a 3-mm 
sieve, oven-dried (40°C) and weighed. Soil properties are 
summarised in Garbuz et al. (2021)  and we relate them to 
enzyme activities in this study. 

Soil enzymes analysis

Soil samples for enzyme analysis were collected with a 
corer (30 mm Ø) from the same five depths as soil 
chemistry and microbial biomass samples. All soils were 
sieved (<2 mm) and air-dried prior to analysis. Alkaline 
and acid phosphatases, nitrate-reductase, urease, cellulase, 
peroxidase and dehydrogenase activity were measured in 
each of the five depths in all three treatments of the two 
contrasting soils. Details on soil enzyme analysis are 
provided in Garbuz et al. (2020) and in the supplementary 
information. 
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Statistical analysis

Statistical analysis was carried out using SAS 9.4. Normality 
of data sets was evaluated by the Shapiro–Wilk test. A 
multicollinearity analysis was done to check simple correla-
tions and variance inflation factors for variables. The data 
were normalised using z-score prior to analysis. Analysis of 
variance (ANOVA) with contrast statements and Tukey HSD 
test were used to investigate the effect of factors: pasture 
(And-NE, And-EF, Cam-LF, Cam-HF), treatment (control, 
biochar, and lime) and pasture × treatment interaction on 
enzyme activities. When the interaction term was not signifi-
cant, main effects were reported; if the interaction effect was 
significant, the four pastures were considered separately. 
Finally, for biochar-treated and control mesocosms we 
constructed a hypothetical model of causal relationships 
underlying the observed patterns in soil enzyme activity, 
biota, and nutrients, and used path analysis (proc CALIS in 
SAS 9.4) to calculate coefficients associated with each path 
in the model. Due to sample size, the hypothetical model 
of causal relationships underlying the observed patterns 
in soil C-enzymes activity was limited to cellulase and 
dehydrogenase. 

Results

Results for the two soils, the Andosol and the Cambisol, are 
reported separately (Tables 2 and 3, respectively) unless 
otherwise indicated, as soil order had a significant effect on 
the activity of almost all enzymes. Phosphatases, urease, 

dehydrogenase and, especially, nitrate-reductase activities 
were higher in the Andosol, whereas cellulase activity was 
higher in the Cambisol (all P < 0.005). There was no differ-
ence in peroxidase activity between the two soil orders. In 
both soils, with few exceptions (e.g. peroxidase), enzyme 
activities declined with depth (all P < 0.005); the treatment 
effects on enzyme activity were observed primarily within 
the 20–95 mm and 95–170 mm soil depths, where treat-
ments were applied, while in the turf and in layers below 
170 mm there was no significant effect of treatments on 
soil enzyme activities (data not shown). 

There were significant effects of pasture management 
practices on enzyme activities. Pastures with effluent addition 
(And-EF) and high P fertiliser input (Cam-HF) had higher 
phosphatases, nitrate-reductase and dehydrogenase activities 
(all P < 0.005) than their lower fertility equivalents (Tables 2 
and 3, respectively). 

Enzymes of the C cycle

Cellulase and dehydrogenase activities were higher in the 
biochar-treated soil than in the control (all P < 0.001), 
while the effect on peroxidase was site-dependent (Tables 2 
and 3). In all pastures treated with lime, the activity of 
peroxidase was increased over that of the control and 
biochar-treated soil (all P < 0.001). Lime had no effect on 
cellulase activity, while its effect on dehydrogenase was 
site-dependent (Tables 2 and 3). 

Path analysis (biochar-treated and negative control 
mesocosms only) identified significant pathways for cellulase 
and dehydrogenase (shown as C-enzymes) that offer a 

Table 2. Activities of soil enzymes in experimental treatments of Andosol.

Depth (mm) And-NE And-EF

Control Biochar Lime Control Biochar Lime

Cellulase (mg glucose g−1 24 h−1) 20–95 3.3b 4.9a 3.1b 3.9b 5.2a 4.1b

95–170 2.1b 3.2a 2.1b 2.6b 3.4a 2.3b

Peroxidase (μmol p-benzoquinone g−1 h−1) 20–95 45.3b 47.3b 66.1a 28.3b 29.5b 45.0a

95–170 38.5b 39.2b 64.1a 32.2c 27.8b 44.5a

Dehydrogenase (μg TPF g−1 24 h−1) 20–95 1.7b 2.1a 2.1a 2.6b 2.9a 1.9c

95–170 1.2b 1.6a 1.2b 1.7b 2.2a 1.3c
−Nitrate reductase (μg NO2 –N g−1 24 h−1) 20–95 28.4c 32.4b 37.0a 82.8c 85.2b 87.9a

95–170 20.0b 21.1b 25.0a 41.8b 45.7b 60.1a
+Urease (mg NH4 –N g−1 4 h−1) 20–95 67.3b 70.2a 70.7a 100.0a 103.6a 101.1a

95–170 54.2b 59.1a 58.7a 67.3a 69.9a 70.4a

Alkaline phosphatase (μg 4-nitrophenol g−1 h−1) 20–95 143.4b 157.2a 150.3b 198.6b 204.0a 209.7a

95–170 90.8b 103.5a 96.4b 231.2c 240.1b 254.8a

Acid phosphatase (μg 4-nitrophenol g−1 h−1) 20–95 374.1a 351.4b 330.6c 460.8a 442.1b 435.4b

95–170 278.3a 256.2b 236.6c 369.4a 335.9b 325.9b

Values represent means. Lowercase letters indicate significant differences (Tukey HSD test, α = 0.05) between the treatments within a specific management.
And-NE, Andosol, no effluent; And-EF, Andosol, effluent input; TPF, triphenylformazan.
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0.59 *** 

Soil OM pool 

(a) (b) 

Total N 
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Microbial C 
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Enzyme turnover 
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0.54 *** 

0.45 *** 

0.54 *** 

0.62 *** 

0.43 ** 

Roots 

0.74 *** 

−0.35 ** 

Total N 
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C-enzymes 
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Cell death 

−0.36 *** 

0.71 *** 

0.47 *** 

0.43 *** 

0.61 *** 

0.43 *** 

Roots 

0.40 *** 

0.84 *** 

0.33 *** 

Stock, effluent StockLeaching Leaching 
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Table 3. Activities of soil enzymes in experimental treatments of pastures on Cambisol.

Depth (mm) Cam-LF Cam-HF

Control Biochar Lime Control Biochar Lime

Cellulase (mg glucose g−1 24 h−1) 20–95 7.3b 10.2a 7.3b 4.1b 6.2a 4.1b

95–170 5.0b 8.7a 4.8b 3.1b 5.0a 3.4b

Peroxidase (μmol p-benzoquinone g−1 h−1) 20–95 17.8b 19.9b 43.4a 69.6c 60.5b 93.7a

95–170 20.0b 21.9b 37.5a 61.5b 60.1b 83.7a

Dehydrogenase (μg TPF g−1 24 h−1) 20–95 1.5b 2.0a 1.6b 1.6c 2.3a 2.0b

95–170 1.0b 1.5a 1.3ab 1.0c 2.0a 1.7b

Nitrate reductase (μg NO2–N g−1 24 h−1) 20–95 1.8c 2.0b 2.8a 3.8b 4.2ab 4.0a

95–170 1.5c 1.8b 2.7a 2.6b 2.9a 2.9a
+Urease (mg NH4 –N g−1 4 h−1) 20–95 32.7b 34.9a 33.2b 27.0b 29.5a 27.5b

95–170 17.1b 20.0a 17.7b 18.2b 20.3a 17.9b

Alkaline phosphatase (μg 4-nitrophenol g−1 h−1) 20–95 94.2b 103.7ab 106.7a 105.2b 121.1a 120.0a

95–170 59.9b 70.0b 73.0a 58.2b 70.1a 67.0a

Acid phosphatase (μg 4-nitrophenol g−1 h−1) 20–95 113.8a 94.6b 92.0b 160.1a 128.1b 119.9b

95–170 79.8a 60.1b 52.6c 107.1a 90.8b 72.9c

Values represent means. Lowercase letters indicate significant differences (Tukey HSD test, α = 0.05) between the treatments within a specific management.
Cam-LF, Cambisol, low fertility; Cam-HF, Cambisol, high fertility; TPF, triphenylformazan.

Fig. 1. Pathways for cellulase and dehydrogenase: (a) cellulase only in the Andosol pastures, (b) cellulase+ dehydrogenase (C-enzymes) in
the Cambisol pastures. Pathways for dehydrogenase in Andosol were not significant. Double-sided (red) arrows are correlations; dashed
(blue) arrows represent pathways which were not quantified in the model. Both models significant, P < 0.001.

plausible representation of causal relationships (Fig. 1). 
In both soil types, the activity of cellulase (and C-enzymes 
for the Cambisol) was closely correlated with microbial 
biomass, with biochar addition acting as a significant driver 
for this variable, through changes in soil pH and the SOM 
pool (Fig. 1). The pathway involving roots in cellulase and 
dehydrogenase activity (C-enzymes) was important only in 
Cambisol pastures. In both soil types, the main source of C 
used by microbes appears to be root-derived, as opposed to 
the source of N, which appears to be derived from the soil 
pool, as described below. Pathways involving earthworms 

and mesofauna were not significant for cellulase and 
dehydrogenase, suggesting that these enzymes’ activity is 
largely microbial-driven. On the other hand, pathways for 
peroxidase indicated the singular importance of pH for 
activity of this enzyme, with other factors not being 
significant (data not shown). 

Enzymes of the N and P cycle

In both Cambisol pastures urease was higher in the biochar-
treated soil than in the control or lime. In the Andosol, the 
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soil receiving effluents (And-EF) had higher urease (all 
P < 0.005) than the same soil without effluent (And-NE), 
but no effect of biochar was detected. The activity of nitrate 
reductase was highest in soil treated with lime in both 
Andosol pastures, but also higher in biochar-treated soil 
than in control (Tables 2 and 3). Higher nitrate-reductase 
activity was correlated with higher earthworm abundances 
in sites with lower fertility (And-NE and Cam-LF) (both 
P < 0.001); data on earthworm abundance is provided in 
Garbuz et al. (2021). Path analysis suggests that the main 
drivers for nitrate-reductase activity in both the Andosol 
and Cambisol pastures were available N (NO3 

−–N) and soil 
pH (Fig. 2). Pathways involving soil fauna (earthworms 
and mesofauna) were not significant for nitrate reductase in 
either soil type. Pathways involving plant roots and microbial 
biomass in nitrate-reductase activity were important only 
in Cambisol pastures. Alkaline phosphatase activity was 
higher (and acid phosphatase lower) in the biochar- and 
lime-treated soils compared to the control (both P < 0.005). 

Discussion

The increase in enzyme activity found in the present study was 
strongly correlated with greater soil biological activity and 
plant root biomass in the soils to which biochar had been 
added. The recurring question for all soil enzyme studies is 
whether enzyme production is constitutive (linked to the 
biomass of microbial cells) or inducible (linked to the 
presence of the substrate for the enzyme) (Moorhead et al. 
2012, 2013). The theory of eco-enzymatic stoichiometry 
suggests that the relationships between microorganisms, 

enzymes and resources are tightly constrained (Sinsabaugh 
and Follstad Shah 2012). Further, a review of patterns 
between microbial biomass and specific enzyme activities 
reveals that the enzyme production is inducible and respon-
sive to differences in substrate characteristics, and that 
patterns in C, N, and P acquisition are similar across soil 
types (Berg 2000; Allison 2005; Moorhead et al. 2013). In 
our study the enzyme production appears to be inducible, 
as increased activity of cellulase, peroxidase, dehydrogenase, 
nitrate reductase, urease, and alkaline phosphatase following 
biochar addition aligns with increased availability in soil C, N 
and P measured in the biochar-amended soil (Garbuz 
et al. 2021). 

A number of studies have reported on various effects of 
biochar on soil biota and soil processes (Jones et al. 2012), 
and how those then influence the dynamics of soil biogeo-
chemical cycles (Sarathchandra et al. 1988; Teutscherova 
et al. 2018; Holík et al. 2019). Further, different types of 
biochar influence bacterial and fungal activities differently, 
including shifts in the microbial community structure, as 
for example, changing fungi:bacteria ratio or changing 
abundance of specific groups of soil bacteria, all of which 
are responsible for increasing the diversity of the enzymatic 
pool in soil (Pandian et al. 2016; Gao et al. 2017; Garbuz 
et al. 2021). Most often, the addition of biochar causes an 
increase in enzyme activities (Vázquez et al. 2000; 
Paz-Ferreiro et al. 2014; Mierzwa-Hersztek et al. 2019). Wang 
et al. (2015a) showed that a small application rate of maize 
biochar produced at 450°C (0.5% w/w) increased the activity 
of enzymes involved in the C cycle, while larger application 
rates (>0.5%) had a negative effect on the activities of 
these enzymes. These authors also showed that enzymes 
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Fig. 2. Pathways for nitrate reductase in the (a) Andosol and (b) Cambisol pastures. Pathways for fauna (earthworms and mesofauna)
were not significant. Double-sided (red) arrows are correlations; dashed (blue) arrows represent pathways which were not quantified in the
model. Both models significant, P < 0.001.
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involved in the N cycle increase with biochar application rate. 
The effect of biochar on selected enzymes appears to depend 
on soil chemical properties, available nutrients and SOM, as 
well as the properties of the biochar (Paz-Ferreiro et al. 
2014; Irfan et al. 2019; Oladele 2019), such as its pH (in 
our biochar 7.8), Cox/Corg (51.4%), and residual nutrient 
content (negligible). 

Enzymes of the C cycle

The positive effect of biochar on dehydrogenase activity 
was attributed to an increase in microbial biomass C in 
biochar-treated soils (data for microbial biomass provided 
by Garbuz et al. 2021). Root C inputs to the rhizosphere, in 
response to higher root biomass, have been shown to stim-
ulate soil enzyme activity and increase microbial biomass 
(Brzostek et al. 2013). Dehydrogenase is an important 
component of microbial metabolic functions (Casida 1977) 
and is often used as an indicator of soil microbial response 
to land use practice changes (Watts et al. 2010; Järvan 
et al. 2014). Biochar application can have a positive effect 
on dehydrogenase activity and increased C mineralisation 
in the soil as it has been observed in the short term 
(positive priming) (Ouyang et al. 2014; Lehmann et al. 
2021) which can be related, to some extent, to the presence 
of labile C supplied in biochar as well as its labile C to 
labile N ratio if residual N is present (Wang et al. 2012). 
The high Cox/Corg ratio and the relatively high atomic H/Corg 

ratio suggests the presence of a considerable fraction of labile 
C in our biochar. This probably favoured microbial growth 
and positive priming of native SOM as inferred from a mass 
balance calculation (Garbuz et al. 2021). However, over 
one year period, biochar-treated soils in our study showed a 
1.2 to 4.0 Mg C ha−1 gain in root C, especially high in 
Cambisol pastures, which may generate a negative priming 
over time (Garbuz et al. 2021). Biochar can promote long-
term C storage through stabilisation of rhizo-deposits and 
organic ligands, in general, on biochar surface, as it can act 
as a new reactive surface (Lehmann et al. 2021). 

The increased cellulase activity in biochar-treated soils was 
correlated with increased root biomass, suggesting that the 
increased supply of root necromass provided additional 
substrate for cellulase activity (Sajjad et al. 2002; Sinsabaugh 
2010), yet the path analysis suggests that, in the Andosols, this 
only occurs indirectly through the impact of the enhanced 
root growth on microbial biomass. The amount of cellulose 
in our biochar is negligible given that the biochar was 
produced at 350°C and cellulose is fully carbonised at 
temperatures above 240°C (Demirbaş 2001). The path 
analysis indicated both similarities and differences in the 
drivers of C-enzyme activities in the Andosol and Cambisol 
pastures. The similarities reflect that, as expected, the 
most important driver is soil biological activity, while the 
differences are likely to be a manifestation of different 
types of SOM, soil aggregation and microbial community 

structure between the two soils. For example, the fact that 
in the Cambisol, but not in the Andosol, roots have a direct 
impact on both measured enzymes involved in the C cycle, 
could be related to the existence of a more plant-derived 
OM in the Cambisol, and a more microbial-derived SOM in 
the Andosol (Herath et al. 2015) due to differences in clay 
mineralogy and prevalence of microaggregates in the latter 
(Angst et al. 2021). The increase in root biomass reported 
by Garbuz et al. (2021) would have caused a direct increase 
in microbial-derived SOM in both soil types, but this 
increase would have been diluted in the Andosol where this 
SOM fraction is already more abundant as suggested by 
Wang et al. (2015b). 

Peroxidase activity generally increases with soil pH 
(Sinsabaugh 2010). With an increase in pH, the bonds of 
organic molecules (ligands) with mineral surfaces become 
weaker, and desorbed SOM becomes more easily degraded 
and oxidised by peroxidases (Sinsabaugh 2010; Tian and 
Shi 2014). 

Enzymes of the N cycle

Nitrate reductase activity is affected by factors such as 
nitrate concentration and soil pH, with an optimum at pH 7 
(Abdelmagid and Tabatabai 1987). This is consistent 
with the enzyme activity trends observed in this study: 
(1) nitrate-reductase activity was highest in the Andosol that 
received effluents (And-EF) and in the Cambisol with high 
fertility pasture containing an active legume component 
(Cam-HF); (2) both lime and biochar increased nitrate-
reductase activity, with lime having a more pronounced effect. 
Andosols are abundant in micropores and microaggregates 
which can remain saturated with water for long periods 
under udic moisture conditions (Buurman et al. 2007), as 
experienced during the study, thus creating favourable anaer-
obic conditions for nitrate reduction. This, and high substrate 
availability, could explain the higher nitrate-reductase activity 
in this soil (Abdelmagid and Tabatabai 1987). 

Substrate availability (NO3 
−–N) in biochar-treated topsoil 

in our experiment was higher or the same as in control and 
lime treatments (Garbuz et al. 2021) but, compared to lime, 
biochar mesocosms had a lower nitrate-reductase activity. 
In our study, biochar-treated soil had significantly lower 
bulk density and higher root biomass (Garbuz et al. 2021); 
we speculate that this would be associated with increased 
soil aeration, thereby limiting the activity of nitrate reductase 
(Abdelmagid and Tabatabai 1987; Joseph et al. 2015). 
Moreover, it is well known that biochar has an effect on 
redox-regulated N transformations (Chacón et al. 2017). In 
fact, when produced at low temperature, such as the one 
used in this study, biochar can act as an electron shuttle 
(Chacón et al. 2017; Dai et al. 2021), favouring the full 
reduction of NO3 

− to N2 (Obia et al. 2015). Yet the impact 
of biochar electrochemical properties on N-reductase activity 
is hard to discern with the data available. 
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There is evidence that biochar and lime affect different 
groups of soil bacteria responsible for denitrification (Bai 
et al. 2015; Jha et al. 2016; Harter et al. 2017; Weldon 
et al. 2019). The positive correlation between earthworm 
abundance and the activity of nitrate reductase in two 
of the pastures supports the idea of a link between 
earthworms and denitrifying bacteria, suggested by some 
authors (Burtelow et al. 1998; Depkat-Jakob et al. 2010) 
through increased nitrate input by earthworms. Garbuz 
et al. (2020), working with the same soils under glasshouse 
conditions, also showed synergetic interactions between 
lime, earthworms, and increased nitrate-reductase activity. 

The high urease activity in the Andosol might reflect the 
higher urine input from the lactating dairy cows, up to 55 L 
urine cow−1 day−1 (Betteridge et al. 1986), compared to 3 L 
urine sheep−1 day−1 (Ledgard et al. 2008) from sheep 
grazing in Cambisol. Urease activity has been reported to 
be strongly correlated with soil bacterial biomass (Amini 
Kiasari et al. 2018). In our experiment bacterial biomass 
increased with the addition of biochar (Garbuz et al. 2021), 
and was correlated with urease activity in all pastures 
except And-NE. The latter may be explained by the fact that 
the bacteria–urease correlation relies on a specific group of 
ureolytic bacteria, but not on the whole bacterial community 
(Lloyd and Sheaffe 1973). In other studies, urease activity in 
response to biochar addition has also been unpredictable; for 
example, rice husk biochar had both negative and positive 
effects on urease activity in two different acid soils – Ultisol 
with a pH 5.8, Corg 16 g kg−1 and available N 1.6 g kg−1 

and Alfisol with a pH 4.4, Corg 3.7 g kg−1, and available N 
0.0156 g kg−1 (Huang et al. 2017; Oladele 2019). 

Enzymes of the P cycle

As expected, the addition of alkaline material (lime or 
biochar) drove an increase in the alkaline phosphotase to 
acid phosphotase (AlP/AcP) ratio, reflecting the sensitivity 
of phosphatases to soil pH (Acosta-Martínez and Tabatabai 
2000), with activity of acid phosphatase decreasing and 
alkaline phosphatase increasing. Olsen P values in the soil 
amended with biochar were higher than in the control in 
both Andosols and in the Cambisol with high fertility 
(Garbuz et al. 2021), so the higher alkaline phosphatase 
activity in the biochar-treated soils compared with the 
control reflects increased substrate availability. However, 
this was not the case in the Cambisol with low fertility, 
indicating that despite an increase in the AlP/AcP ratio, 
this does not always translate into an increase in plant-
available P. In addition to causing an increase in available 
P through desorption due to increased pH, biochar 
amendment may also influence P availability because of the 
increase in SOM. An enrichment in organic ligands would 
result in chelation of Al3+ and Fe3+ that would otherwise 
precipitate P (Gao and DeLuca 2016; Gao et al. 2019). 

The higher phosphatase activity in the Andosol 
than Cambisol soil can be explained by the fact that the 
short-range order inorganic constituents (e.g. allophane) 
abundant in Andosols have the capacity to immobilise 
phosphatase (Chatterjee et al. 2014; Jordanova 2017) and 
protect this enzyme from adverse conditions (Shindo et al. 
2002). Phosphatase activities are positively correlated 
to SOM, which enhances the stability of these enzymes 
(Bonmati et al. 1991). As root biomass was enhanced in the 
biochar treatment (Garbuz et al. 2021), we can hypothesise 
that root-derived SOM increased alkaline phosphatase 
activity. 

Conclusions

Studying the effect that biochar addition has on enzyme 
activity, a key regulator of C and nutrient cycling of grazed 
pastures, is important to fully understand the potential benefits 
of biochar application to the provision of soil ecosystem 
services. Willow biochar pyrolysed at low temperature and 
applied at a rate of 10.9 Mg ha−1 had a significant influence 
on the activities of many of the enzymes involved in C, N 
and P cycling through a diversity of mechanisms. In our 
study, the enzyme production appears to be inducible, as 
increased activity of cellulase, peroxidase, dehydrogenase, 
nitrate reductase, urease and alkaline phosphatase following 
biochar addition aligns with increased availability in soil C, 
N and P measured in the biochar-amended soil. The effects 
of biochar range from (1) stimulating plant roots and/or the 
soil microbial community, which resulted in a parallel 
increase in cellulase and dehydrogenase activity, through to 
(2) increasing soil alkalinity and/or nutrient stocks, that 
favours, except for acid phosphatase, the activity of all 
enzymes. Interestingly, the increase in urease activity may 
point to the influence of biochar on specific functional 
groups within the wider soil biological community. Future 
research is required to better understand the influence 
biochar addition has on each of the functional groups that 
make up the soil biological community, and the flow-on 
effect that has on the enzymes involved in the C, N and P cycles. 

Supplementary material

Supplementary material is available online. 
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