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Abstract
Recent developments in the models used in wildlife and fisheries science have allowed the inclusion of a wider

range of data than previously. However, the diagnostics of such complex models have not kept pace. We describe a new
diagnostic technique based on simulation analysis. Model misspecification was identified through simulation methods
that created a distribution of likely parameter values for a model that was correctly specified. If the actual estimate
of that parameter is outside the bounds of the simulated distribution, then the model is probably misspecified. We
tested the reliability of the new diagnostic by introducing known-model misspecification into complex fisheries stock
assessment models. We then compared the results from this new diagnostic with those of a more tradition fisheries
diagnostic, namely, retrospective analysis. The simulation-based diagnostic was shown to identify misspecification
affecting the estimated dynamics more reliably than retrospective analysis.

In the last few decades, an explosion has occurred in the
development of models used in wildlife and fisheries science.
This has been facilitated by advances in computers and mathe-
matical and statistical algorithms (Maunder et al. 2009). These
models have allowed for a more comprehensive inclusion of
various types of information and a wider range of hypotheses
to be investigated. The inclusion of additional information re-
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sults in models that are parameter rich, nonlinear, and dynamic,
which greatly complicates parameter estimation. New param-
eter estimation algorithms, such as those based on automatic
differentiation (Skaug and Fournier 2006; Fournier et al., in
press) and Markov Chain Monte Carlo (Hastings 1970), make
the parameter estimation possible (Schnute et al. 2007). How-
ever, the well-studied properties of simpler traditional models
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are generally not understood for these relatively more compli-
cated analyses. The diagnostics of complex model performance
(Lynch and Western 2004) has not kept pace with their devel-
opment.

Model misspecification results from incorrect assumptions
about parameters (e.g., fixing them at incorrect values) and gov-
erning processes (e.g., the stock–recruit relationship) or, perhaps
more rarely, the statistical properties (e.g., variance and error
distributions) used to compare model expectations with obser-
vations. There are no universally accepted measures of model
misspecification, standard goodness of fit tests, or even com-
mon interpretation of residuals among data sets. Determination
of model performance is often based on the experiences of the
analyst. Diagnostics that are used are subject to misinterpreta-
tion and difficult to explain to target audiences. It is therefore
important to develop a standard set of diagnostics for these
models that will improve their performance and acceptance.

Analysis of residuals is perhaps the most common method of
evaluating model performance (Cox and Snell 1968). Residuals
are examined to ensure that they comply with the model assump-
tions (e.g., Wang et al. 2009) and are uncorrelated. Violation of
these assumptions indicates that the model is misspecified. Sta-
tistical tests are available to evaluate the residuals, but visual
examination is often used. Complicating the situation, analysis
of residuals can be difficult for some likelihood functions and
can be further complicated if there are also a large number of
residuals across many data sources.

Examining the correlation among parameter estimates is also
used to diagnose problems within the model. Correlation esti-
mates use a multivariate normal assumption; therefore, bivari-
ate profile likelihoods or bivariate plots from Bayesian Markov
chain–Monte Carlo analysis (Hastings 1970; Punt and Hilborn
1997) may provide a more accurate representation of the corre-
lation and uncertainty.

A diagnostic method—posterior predictive checks—is often
recommended (Anderson et al. 2001; Lynch and Western 2004)
for checking the performance of Bayesian models (Rubin 1984;
Gelman et al. 1995). Where a test statistic of the observed data
are compared with a test statistic of predicted data based on
the posterior distribution of the parameters, a bias between the
observed and simulated test statistic can be interpreted as evi-
dence of model misspecification. The Bayesian method allows
for formalizing the description of the probability (P-values) that
the data match the model’s assumptions (Meng 1994; Lynch and
Western 2004).

Retrospective analysis is another common approach widely
used in fisheries modeling to evaluate the reliability of current
estimates of key derived quantities and parameters (Cadigan and
Farrell 2005; Cadrin and Vaughn 1997). Retrospective analysis
involves rerunning the model by consecutively removing succes-
sive years of data. It is assumed that as more data are available,
the estimates from prior years converge towards the true value.
Comparisons of estimates obtained with a reduced number of
years with those based on all years of data are used to indicate
bias in the recent estimates. If retrospective patterns exist it is

diagnostic of model misspecification. Often, the magnitude and
direction of the bias indicated by the retrospective pattern are
used to adjust the estimates in an attempt to better represent
reality (Northeast Fisheries Science Center 2008).

In this paper, we introduce another approach to identify-
ing model misspecification by using simulation methods. The
premise of the diagnostic is that simulation analysis can build
a distribution of likely parameter values for a model that is
correctly specified, but if in the actual application the parameter
estimate is outside the bounds of the simulated distribution, then
the model is probably misspecified. We test the proposed model
diagnostic via simulations based on examples using parameter-
rich, complex, nonlinear stock assessment models and the pa-
rameter natural mortality.

METHODS
Diagnostic method.—The general steps for performing the

simulation-based diagnostic described below are summarized in
Figure 1.

Step 1: Choose a fixed (not estimated) parameter from the
model to be the test parameter ( p). Fit the original model
to the original data set (Do), and use the resulting parameter
estimates as the true values (we use “true” in this paper to
mean representing the actual population dynamics) for the sim-
ulation. Simulate k new data sets (Dk) based on the original
model (all parameters either fixed or estimated the same as
the original model) and parametric sampling of the appropriate
error. Because each Dk is simulated from the model’s expec-
tations and statistical assumptions, this eliminates any model
misspecification.

Step 2: Fit the model to each Dk via the same model param-
eterization as the original model, except that parameter ( p) is
estimated. The resulting estimates of pk are subsequently used
to describe the distribution of p when the data conform to the
model’s assumptions.

Step 3: Fit the model to Do using the same model param-
eterization as the original model, except that p is again freely
estimated ( po).

Step 4: Determine the evidence of model misspecification
using a two-sided test. Reject the null hypothesis of correctly
specified model at significance level α if po < pα/2 or if po >

p1 − α/2, where px is the xth percentile of the ordered values of pk.
Validation of diagnostic via known-model misspecifica-

tion.—To verify that the simulation diagnostic is capable of
detecting model misspecification in complex models, we eval-
uated our method using two real-world applications of fisheries
stock assessment models with controlled model misspecification
and α = 0.1. In the first application, we introduced misspeci-
fication of the steepness (h) parameter of the Beverton–Holt
spawner–recruit function (Mace and Doonan 1988), using as an
example the stock assessment (Hamel 2008) of darkblotched
rockfish Sebastes crameri. In the second application, we eval-
uated the misspecification of fishery selectivity pattern using a
stock assessment (Field 2008) of chilipepper Sebastes goodei.
Both assessments are relatively complex with many data types
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338 PINER ET AL.

FIGURE 1. Flow chart depicting the general steps of the simulation-based diagnostic model. Step 4 comparing po (the estimate of parameter p using original
data set) and the distribution of pk (the estimate of parameter p using simulated data sets) is omitted.

and model processes, and both were completed using the stock
synthesis (SS) population dynamics model (Table 1). In both ex-
amples we chose natural mortality as the test parameter p, which
was a fixed parameter based on life history and maximum age
methods.

TABLE 1. Summary of the data types included (yes, no), parameters esti-
mated (est.) or fixed, and version of the stock synthesis model used in the stock
assessments that formed the basis of the simulations for darkblotched rockfish
and chilipepper.

Variable
Darkblotched

rockfish Chilipepper

Data
Catch Yes Yes
Indices (survey) Yes Yes
Age data No Yes
Length data Yes Yes
Age at length Yes No
Mean length at age No No
Mean body weight No No

Parameterization
Unfished recruitment (R0) Est. Est.
Recruitment variability (σ r) 0.8 1.0
Natural mortality (M/year) 0.07 0.16
Steepness (h) 0.6 0.57
Maximum size (L∞; cm) Est. 47.3
Brody growth coefficient (k) Est. 0.19
Length CV Est. 0.06

Model
SS version v2.00g v2.00c
Number of estimated
parameters

69 78

In the application using the darkblotched rockfish assess-
ment, before applying the simulation steps outlined above we
first simulated three data sets to act as replicate Do from the
original model’s parameter estimates (Figure 2). Each Do was
based on the assumption that h = 0.6, and each data set varied
based on the parametric sampling of the error. However, because
each Do was simulated from the original model’s parameter esti-
mates and assumptions, the created data sets were free of model
misspecification. Elimination of any potential misspecification
allowed us to later introduce a controlled misspecification to test
the diagnostic method. Thus, the original assessment model fit
to each of the three Do acted as our replicate true values for this
validation test.

Subsequently, we refit each replicate Do with a model where
h was specified as 0.3, 0.9 and 0.6 and generated 500 Dk as
in step 1. In addition, to avoid potential process-error bias, we
added random recruitment deviations in the fitting that had the
same variability (σ r) assumed in the original assessment model.
This produced nine sets of 500 Dk (3Do × 3 levels of h). We
then followed step 2 described above by fitting to each Dk,
via a model parameterized with the same alternative h used
to generate that Dk. The estimates of pk based on data set Dk

were used to determine how well the estimator performs if the
true dynamics had alternative assumptions about h. In step 3,
we estimated po via each replicate Do and a model with each
alternative h. Thus, in step 3 the models contained a single
known misspecification of h = 0.3 or h = 0.9, but models with
h = 0.6 were correctly specified and acts as our controls. Prior
to step 4, all model runs with gradients greater than 1 were
assumed to have not converged and were removed from further
analysis. Step 4 was then performed as described above for each
combination of replicate and alternative h.

We applied the same procedure using the chilipepper stock
assessment model that assumed a dome-shaped selectivity
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DETERMINING MODEL MISSPECIFICATIONS 339

FIGURE 2. Flow chart depicting the steps of the validation of the model diagnostic. Parameter p is the test parameter, and q represents the controlled
misspecification in the validation. Step 4 comparing po and the distribution of pk is omitted.

pattern to produce three replicate Do. In step 1 we fit models by
assuming domed and asymptotic fishery selectivity patterns and
generated 500 Dk. This produced six sets of Dk (3Do × 2 se-
lectivity patterns). We then performed the rest of the validation
the same as in the darkblotched rockfish example, where the
asymptotic selectivity pattern representing the misspecification
and the domed pattern as the control.

Comparison to retrospective analysis.—We compared our
detection of model misspecification by using the simulation-
based diagnostic with the commonly used retrospective analysis.
In this case, a 10-year retrospective analysis was conducted on
the same assessment models (three levels of h or two levels of
selectivity pattern) fit to each Do by sequentially eliminating
2 years of data. Misspecification was defined as at least four out
of five retrospective runs estimating consistently higher or lower
terminal year biomass (relative to the original model) with each
successive removal of 2 years of data.

RESULTS

Known-Model Misspecification
Steepness.—Given the model structure and data of the dark-

blotched rockfish assessment, there appeared to be information
on p (natural mortality in our illustration). The distribution of pk

was relatively unbiased (bias of about 5%) when Dk was gener-
ated using the alternative levels of h (Figure 3). The distribution
of pk was slightly wider for h = 0.9 (CV, about 18%; Figure 3C)

FIGURE 3. Distributions of natural mortality ( pk) estimated from three repli-
cate models with spawner–recruit steepness (h) fixed at (A) 0.6, (B) 0.3, and
(C) 0.9. Each replicate distribution is the result of 500 simulated data sets (Dk).
The vertical dotted line is the assumed value of p, which was used to generate
the data files. The circles, squares, and triangles are the estimates of p from the
three original replicate data files ( po).
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FIGURE 4. Average spawning biomass (SSB [metric tons]) and the 10th and 90th percentiles from three replicates of 500 data sets fit with steepness (h) fixed at
(A) 0.3 and (B) 0.9 and (C) and the asymptotic selectivity pattern. The true spawning biomass is denoted by the heavy line.

than h = 0.3 (CV, about 12%; Figure 3B), while h = 0.6 was
intermediate (CV, about 16%; Figure 3A). The estimate of po,
based on a misspecification of h = 0.3, was located in the tails
of the distribution of pk in all three replicates (Figure 3B). The
estimate of po based on a misspecification of h = 0.9 was located
in the tails of the distribution of pk in two of the three replicates
(Figure 3C). Thus, in nearly all cases we would have correctly
diagnosed the model estimating po as misspecified. In the con-
trol without misspecification (h = 0.6) the estimate of po was
near the center of the distribution of pk in all cases (Figure 3A).
Thus, we would have correctly inferred that all three replicates
with h = 0.6 were not misspecified.

Misspecification of h altered our perception of the population
dynamics. Generation of data sets reflecting a less resilient stock
(h = 0.3) had significant impact on the population dynamics,
as measured by the time series of spawning biomass relative
to the true model. The true value of spawning biomass (based
on h = 0.6) often lay outside the 90th percentiles of the simu-
lated distribution and resulted in a large bias between true and
the average simulated estimates (Figure 4A). The generation of
data sets reflecting a more resilient stock (h = 0.9) also had a
significant impact on the dynamics, a large and consistent bias
occurring between the true and the average simulated estimates
of spawning biomass. However, unlike the less resilient sce-

nario, only the most recent estimates of true spawning biomass
were outside the 90th percentiles (Figure 4B).

Selectivity pattern.—Given the model structure and the data
of the chilipepper assessment, there appeared to be strong in-
formation on the magnitude of p. The distribution of pk was
unbiased (bias < 0.1%) when Dk was generated using the
asymptotic fishery selectivity pattern. This result was similar
to that produced with the domed fishery selectivity pattern. The
distribution of pk was very precise (CV of about 5%) when es-
timated from Dk via the asymptotic fishery selectivity pattern,
as well as from the dome-shaped pattern. The estimate of po

appeared in the tails of the distribution of pk in none of the three
replicates, failing to diagnose the model estimating po as mis-
specified (Figure 5B). In one replication however, the estimate
of po was greater than 0.94% of the distribution of pk, and we
might interpret this as borderline evidence of misspecification.
In the control without misspecification the estimate of po was
near the center of the distribution in two of the three replicates
(Figure 5A). Thus, we would generally have correctly inferred
the models were not misspecified. However, in one case we
would have committed a type II error and incorrectly inferred
misspecification.

The misspecification of an asymptotic fishery selectivity
pattern had minimal effects on the population dynamics, as
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FIGURE 5. Distribution of natural mortality ( pk) estimated with three repli-
cates, where the fishery selectivity pattern is assumed to be (A) domed shaped
or (B) asymptotic. Each replicate distribution is the result of 500 simulated data
sets (Dk). The vertical dotted line is the assumed value of p used to generate
the data files. The circles, squares, and triangles are the estimates of p from the
three original replicate data files ( po).

measured by the time series of spawning biomass relative to the
true model. The true value of spawning biomass was contained
within the 90th percentile of the simulated spawning biomass
distribution. The bias between the average of the simulated esti-
mates and true spawning biomass was generally quite small and
not consistent (Figure 4C).

Comparison with Retrospective Analysis
Retrospective analysis was not as good a diagnostic as the

simulation-based method in the darkblotched rockfish exam-
ple. Retrospective analysis correctly showed no misspecification
when h was correctly specified in two of the three replicates;
however, we would have committed a type II error by incor-
rectly inferring model misspecification in one replicate (Figure
6A, replicate 3). Retrospective analysis incorrectly indicated
model misspecification in none of the three replicates when p0

was estimated based on misspecification of h = 0.3 (Figure
6B). Retrospective analysis correctly indicated misspecification
in one of the three replicates when po was estimated based on a
misspecification of h = 0.9 (Figure 6C, replicate 3).

Retrospective analysis also fared poorly in the chilipepper
example. The retrospective analysis correctly indicated no mis-
specification when the selectivity pattern was correctly specified
as domed (Figure 7A). However, retrospective analysis indicated
model misspecification in none of the three replicates when po

FIGURE 6. Plots of the retrospective analysis for the three replicate trials
with spawner–recruit steepness (A) correctly specified as 0.6, (B) incorrectly
specified as 0.3, and (C) incorrectly specified as 0.9.

was estimated based on a misspecification of an asymptotic
selectivity pattern (Figure 7B).

DISCUSSION
This simulation-based diagnostic is similar to posterior pre-

dictive checks (Gelman et al. 1995) in accounting for the para-
metric uncertainty of the model (Lynch and Western 2004). It
differs from posterior predictive checks in that instead of test-
ing the equivalence of observed and implied data we tested
the equivalence of parameters. This simulation-based method
is also applicable to both Bayesian and non-Bayesian models.
The proposed diagnostic also shares similarity to randomization
methods (Solow 1993; Adams and Anthony 1996; Helser 1996),
except that instead of randomizing the observed data we have
parametrically simulated data based on the models structure and
estimated parameters. All three approaches are similar in that
rejection of the null hypothesis is based on how far into the tails
of the distribution the observed statistic lies. The choice of α

level is dependent on the risk of type II error and the sample size
needed to adequately describe the tails (Manly 1991). Although
we have presented the results as an acceptance or rejection of the
null hypothesis of a correctly specified model, the results could
also be interpreted as the strength of evidence (Manly 1991) for
rejecting the null hypothesis.

In addition to identifying misspecification, the simulation
results may also hold clues as to the direction of the misspec-
ification. In the case of misspecifiying h to be more resilient,
it resulted in an estimate of po that was less productive (lower)
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FIGURE 7. Plots of the retrospective analysis for the three replicate trials with the fishery selectivity pattern (A) correctly specified as domed shaped and (B)
incorrectly specified as asymptotic. The plots are from a 10-year retrospective analysis that sequentially excluded the last 2 years of data.

than assumed in the true model and vice versa. It appears that the
model is simply trading off productivity in one process (recruit-
ment) with productivity in another (mortality). We also note that
plotting the distribution of each component’s likelihood from
the simulation and from po estimation model may also give
clues to the location of structural issues by identifying which
components are fitting much better when p is allowed to change
freely.

The greater the effect of the misspecification on model re-
sults, the more reliably the proposed diagnostic detected the mis-
specification. In the case of misspecifying the fishery-selectivity
pattern model, dynamics were not greatly influenced. The sim-
ulations were based on a stock-assessment model that included
multiple fisheries and surveys, and the misspecification of the
chosen selectivity pattern had only minor effects on the dynam-
ics. Resulting estimates of po from the misspecified and correct
models were correspondingly almost identical and, thus, neither
the retrospective nor the simulation-based diagnostic appeared
to be reliable at determining model performance. Misspecifica-
tions that have little effect on model expectations will not be
easily detected with these or any diagnostic methods.

In our examples, natural mortality was an ideal choice for the
test parameter p because it is correlated with nearly all aspects of
the estimated population dynamics. Thus, any misspecification
in the parameterization of the model that affects the estimated
dynamics can be at least partially offset by changes in natural
mortality. In our validation examples, it did not matter how p
was originally specified because we controlled the introduction
of the misspecification. However, parameters are not appropri-
ate choices for p if the parameters are freely estimated or fixed
at values close to the maximum likelihood estimate via an it-
erative process because the process of setting them has already
accounted for the model misspecification. Researchers would
also need to keep in mind that any diagnosed misspecification
could be the result of p itself having been misspecified. If the
model is shown to be misspecified and the estimate of po is
unrealistic based on prior knowledge of a likely range of that

parameter, then it is likely that some other aspect of the model
beyond the assumption of p was misspecified. However even in
these cases, researchers could not conclude that p was not also
misspecified.

The proposed simulation-based diagnostic performed as well
as or better than the retrospective analysis at discovering model
misspecification in these fisheries stock-assessment examples.
We do not propose that this simulation-based approach replace
the more traditional diagnostics (residual analysis, correlation,
etc.) or that in all cases this is a better diagnostic than ret-
rospective analysis. This simply is one more alternative that
may be most useful when dealing with models containing many
likelihood components that make interpretation of residuals
across likelihood components problematic. It should be con-
sidered that this diagnostic method is more computer intensive
than some of the more traditional diagnostic tools. However,
that cost is balanced by its ability to diagnose misspecifica-
tions and the relative simplicity of the characterization of model
performance.
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