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Abstract
The black sea bass Centropristis striata is a commercially important perciform fish with a general distribution

along the U.S. Atlantic coast from Cape Cod, Massachusetts, to Cape Canaveral, Florida, and in the Gulf of Mexico
from Mobile Bay, Alabama, to Tampa Bay, Florida. Currently, black sea bass are managed as three separate stocks:
one in the Gulf of Mexico and two along the U.S. Atlantic coast. Fish from the Gulf of Mexico represent a separate sub-
species, C. striata melana. The Atlantic subspecies, C. striata striata, is divided into two management units (separated
at Cape Hatteras, North Carolina) based on the hypothesis that this subspecies comprises two distinct populations
exhibiting life history and morphometric differences. To further investigate this differentiation, we employed mito-
chondrial sequence data to test whether genetic differences are observed among the three managements units. The
DNA sequence analysis revealed a significant amount of genetic variability partitioned among samples from the three
management areas. Similar results were observed when the analyses were confined to the two Atlantic coast manage-
ment units. These results support the designation of two distinct management units for black sea bass along the U.S.
Atlantic coast.
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The black sea bass Centropristis striata is a commercially and
recreationally important perciform fish that is distributed along
the U.S. Atlantic coast and Gulf of Mexico coast (Miller 1959;
Wenner et al. 1986; Vaughan et al. 1995). The largest concen-
trations of black sea bass are found from New Jersey to North
Carolina, making this species a particularly important fishery
resource in the mid-Atlantic region (Kendall and Mercer 1982).
Black sea bass are demersal fish that prefer warm temperate
waters and typically occupy structured benthic habitats, such as
shellfish beds, rock and artificial reefs, and wrecks (Steimle et al.
1999). Black sea bass are important predators in live-bottom,
shelf edge, and lower-shelf habitats, with prominent prey items
including small fish, squid, and epibenthic invertebrates (e.g.,
crustaceans and mollusks; Steimle et al. 1999). Black sea bass
are protogynous hermaphrodites, changing sex from female to
male as they increase in size and age. As such, black sea bass
stocks may be at particular risk to overfishing due to skews in
sex ratio and fishing pressure size selectivity (Armsworth 2001;
Alonzo and Mangel 2004).

There are three recognized stocks of black sea bass: one in
the Gulf of Mexico and two along the U.S. Atlantic coast. Black
sea bass from the Gulf of Mexico are considered to represent
a separate subspecies, C. striata melana, and are managed
independently from their Atlantic conspecifics, C. striata striata
(Bowen and Avise 1990; Hood et al. 1994). Atlantic manage-
ment units are split between the Middle Atlantic Bight (MAB;
Cape Hatteras, North Carolina, to Cape Cod, Massachusetts)
and the South Atlantic Bight (SAB; Cape Canaveral, Florida,
to Cape Hatteras), with Cape Hatteras serving as the boundary
between Atlantic stocks (Mercer 1978). This designation is
supported by life history and morphometric studies and is based
on differences in seasonal migrations, growth and maturity,
and spawning times (Kendall 1972; Musick and Mercer 1977;
Mercer 1978; Wenner et al. 1986; O’Brien et al. 1993; Collins
et al. 1996; Steimle et al. 1999; McGovern et al. 2002).

Management of the Atlantic stocks is split between the
Mid-Atlantic Fishery Management Council, which oversees the
northern management unit, and the South Atlantic Fishery Man-
agement Council, which governs the southern stock. Separate
fishery management plans have been developed for both stocks,
and both councils conduct independent stock assessments. The
most recent stock assessment for the northern unit suggests that
the stock is not overfished, whereas the assessment for the south-
ern stock indicates that overfishing is occurring (SAFMC 2006;
Shepherd 2009). While genetic studies have been successful in
documenting the differentiation between Gulf of Mexico and
Atlantic coast conspecifics, their ability to support the differ-
ences in black sea bass north and south of Cape Hatteras has
been less convincing (Bowen and Avise 1990; Chapman et al.
1999). Therefore, estimates of connectivity and exchange be-
tween northern and southern stocks are of particular importance
and are critical for effective management.

In light of these data, we used a portion of the mitochon-
drial control region to test whether Cape Hatteras serves as

a geographic barrier to black sea bass along the U.S. Atlantic
coast. Specifically, we examined whether genetic differentiation
in samples collected north and south of Cape Hatteras showed
results that are concordant with life history analyses and that
support the two-stock hypothesis under which Atlantic coast
black sea bass are currently managed. We examined gene flow
and estimated individual exchange rates between northern and
southern Atlantic stocks, and we included data from the Gulf
of Mexico subspecies to examine within-region and between-
region genetic differentiation.

METHODS
Sample acquisition, DNA extraction, polymerase chain re-

action amplification, and sequencing.—All samples were col-
lected during fishing activities occurring within the 200-m iso-
cline of the Atlantic Ocean and Gulf of Mexico along the coast
of the United States. Heart tissue samples were collected dur-
ing 1996 along the Atlantic coast (at ∼27.7◦, 31.6◦, 32.3◦ and
39.5◦N) and from the Gulf of Mexico (at ∼29.5◦N) and were
preserved in sarkosyl–urea (Figure 1). Fin clip samples were col-
lected during 2006 along the Atlantic coast (at ∼27.7◦, 31.6◦,
32.3◦, 33.3◦, 34.3◦, 35.8◦, 36.9◦, and 41.1◦N) and from the Gulf
of Mexico (at ∼29.5◦N) and were preserved in 100% ethanol
(Figure 1). Heart tissue samples preserved in sarkosyl-urea
were extracted using a standard phenol–chloroform–isoamyl
protocol. Fifty microliters of preserved sample were added
to 150 μL of phenol–chloroform–isoamyl solution (Invitrogen
Corp., Carlsbad, California), vortexed for 10 s, and centrifuged
at 15,000 × gravity (g) for 30 s. The aqueous top layer was
transferred to a new microcentrifuge tube, 250 μL of 100% ice-
cold ethanol were added, and samples were incubated at −80◦C
for 15 min. After incubation, the samples were centrifuged at
15,000 × g for 7.5 min and the supernatant was discarded. One
milliliter of 70% ethanol was added in order to wash the pelleted
DNA, and the samples were centrifuged a final time at 15,000
× g for 5 min. The supernatant was discarded, and samples
were dried in a SpeedVac for 15 min. All centrifugation steps
were performed at room temperature. Dried DNA pellets were
reconstituted in 50 μL of tris–EDTA buffer. The DNA from fin
clip samples preserved in 100% ethanol was extracted using
Qiagen DNeasy Tissue Kits (Qiagen, Inc., Valencia, California)
in accordance with the instructions for animal tissue.

A portion of the mitochondrial control region was am-
plified from total DNA extracts using primers specifically
designed for black sea bass (forward primer CstrCR-F2:
5′-GAACCAGATGCCAGGAATA-3′; reverse primer CstrCR-
intR1: 5′-ATATCAGCATACATCTGTGTC-3′). Approximately
100 ng of DNA template were used in a 25-μL reaction consist-
ing of 1 × polymerase chain reaction (PCR) buffer, 2.5-mM
MgCl2, 0.2-mM deoxynucleotide triphosphate, 0.1 mM of each
primer, double-distilled H2O, and 0.25 units of Taq polymerase
(Bio-Rad, Hercules, California). All PCRs were conducted
using an Applied Biosystems 9700 GeneAmp PCR System
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POPULATION STRUCTURE IN BLACK SEA BASS 393

FIGURE 1. Map depicting the approximate sampling locations (“ + ” symbols) and population groupings (ovals) of black sea bass along the U.S. Atlantic coast
and Gulf of Mexico coast relative to the 200-m isocline. Location codes are defined in Table 1. Sample size (in parentheses) is the total number of samples that
were successfully sequenced and analyzed from each location.

(Applied Biosystems, Foster City, California) under the follow-
ing conditions: 94◦C for 5 min; 36 cycles of 94◦C for 30 s, 50◦C
for 30 s, and 72◦C for 1 min; and finishing with 72◦C for 7 min.

The PCR amplification products were purified using the ex-
onuclease I–shrimp alkaline phosphatase (ExoSAP) clean up
protocol. Four microliters of PCR product were digested in 1 μL
of a 3:1 shrimp alkaline phosphatase : exonuclease mix. One mi-
croliter of the PCR–ExoSAP product was used in cycle sequence
reaction per the manufacturer’s instructions for BigDye Termi-
nator version 3.1 Cycle Sequencing (Applied Biosystems) with

modifications. All samples were sequenced in both the forward
and reverse directions in 10-μL reaction volumes using 1.6 pmol
of the same primers for amplification and a 1:4 dilution of the
dye terminators (1 μL). Cycle sequencing profile was as fol-
lows: 96◦C for 30 s; and 25 cycles of 96◦C for 10 s, 50◦C for
5 s, and 60◦C for 4 min. Sequencing reaction products were
purified either by using Centrisept columns (Princeton Sepa-
rations, Freehold, New Jersey) per the manufacturer’s instruc-
tions or by following a standard ethanol–EDTA–sodium acetate
precipitation protocol.
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Sequence and population analyses.—Sequences were ini-
tially edited in Sequencher version 4.7 (Gene Codes Corp., Ann
Arbor, Michigan), and the nucleotide–nucleotide Basic Local
Alignment Search Tool (blastn) was applied to the sequences
to verify the region of DNA. Edited sequences were aligned by
eye and imported into MEGA version 3.1 (Kumar et al. 2000).
Neighbor-joining analyses using p-distances (proportion of nu-
cleotide site differences between sequences) were conducted in
MEGA to examine phylogenetic signal and to identify related
groups of haplotypes. Genetic diversity indices, including hap-
lotype diversity (h) and nucleotide diversity (π ), were calculated
using Arlequin version 3.1 (Excoffier et al. 2005).

Population differentiation was examined through a hierarchal
analysis of molecular variance (AMOVA; Excoffier et al. 1992)
using both conventional F-statistics (Wright 1965) and � statis-
tics (distance based analogs of F-statistics). Prior to population-
level assessment, a subset of sample locations was examined for
temporal variability to ensure that any detectable genetic differ-
ences were due to differences between populations rather than
to temporal variation. These included samples collected along
the Atlantic coast at 27.7◦, 31.6◦, 32.3◦, 39.5◦N and from the
Gulf of Mexico coast at 29.5◦N during 1996 and 2006. To exam-
ine temporal stability, a hierarchal AMOVA was performed in
Arlequin version 3.1, nesting collection years within sample
location. The �sc (sampling location temporal differentiation
within population) and the corresponding significance value
(P-value) were calculated to determine the difference between
collection years within a location. Results were considered sig-
nificant at a P-value of less than 0.05.

After assessing temporal stability, a hierarchal AMOVA was
performed in Arlequin version 3.1 to analyze partitioning of ge-
netic variability using two different analysis regimes. In the first
analysis, samples were divided into region of sampling: MAB,
SAB, or Gulf of Mexico (i.e., both subspecies, C. striata striata
and C. striata melana). The samples were further subdivided
into populations by sampling location to examine within-region
population structuring. In the second analysis, samples collected
in the Gulf of Mexico were removed and only those collected
from the MAB and SAB were examined (i.e., only the Atlantic
subspecies C. striata striata).

Haplotype distribution and gene flow.—Groups of related
haplotypes (see Results) collected along the U.S. Atlantic coast
were examined from each sampling location and plotted against
latitude to determine whether a cline in haplotype groups ex-
isted between the MAB and SAB regions. Mantel and partial
Mantel tests were performed using Isolation by Distance Web
Service version 3.21 with 10,000 permutations to test for sta-
tistical correlations between the genetic differentiation index
FST and geographic distance (km; Smouse et al. 1986). Partial
Mantel tests were conducted because Mantel tests often show a
false correlation due to another variable, such as population iso-
lation (Reynolds and Houle 2002). These correlations included
the addition of an indicator matrix that was reflective of regional
sample origin (coded as 0 = same region or 1 = different region).
This allowed us to examine whether an isolation-by-distance or

regional differentiation model provided the best fit to the data.
The degree of gene flow (M) occurring between the MAB and
SAB regions was estimated using maximum likelihood as im-
plemented in the program MIGRATE within LAMARC version
2.0 (Beerli and Felsenstein 1999, 2001; Kuhner 2006). Default
settings were used in a total of five replicate runs using a migra-
tion model consisting of joint maximum-likelihood estimates of
all n × n parameters.

RESULTS
Amplification with the black sea bass control region primers

yielded a 342-base-pair product from 363 individuals. There
were 88 variable sites and 3 insertion/deletion events that
defined a total of 144 haplotypes (GenBank accession number
JQ249073-JQ249216). Phylogenetic analysis revealed two
groups of haplotypes resolving the split between the two
proposed black sea bass subspecies (not shown). Within the C.
striata striata group (CssCR designation, n = 306 fish), two
haplotypes (CssCR1 and CssCR17) dominated sampling and
accounted for 55% (170 of 306) of the total CssCR haplotypes
tallied (Table 1). Examination of variable sites revealed two
differences (at positions 177 and 203) that separated these two
most common haplotypes (Table 1). All other haplotypes were
observed at a much lower frequency; the majority occurred
only once (singletons) and could be classified as variants
from the two most commonly occurring haplotypes (CssCR1
and CssCR17; the exception was haplotype CssCR18, which
was intermediate to both). Within the C. striata melana
group (CsmCR designation, n = 57 fish), no single haplotype
accounted for greater than 6% of the observed totals and the
majority of haplotypes occurred as singletons. Likewise, h and
π were highest in the Gulf of Mexico (C. striata melana; h =
0.997, π = 0.015; Table 2) and lowest in the MAB (C. striata
striata; h = 0.424, π = 0.002; Table 2).

Population Differentiation
The AMOVA results revealed no significant difference in

temporal samples collected during 1996 and 2006 at five inde-
pendent locations (four along the U.S. Atlantic coast and one
in the Gulf of Mexico; �sc = − 0.19, P = 0.655). Therefore,
within-region samples collected across years were pooled and
analyzed for genetic differences between the three regions (Gulf
of Mexico, SAB, and MAB). Traditional F-statistics revealed a
significant difference between regions, with 20.4% of the vari-
ability attributed to the differences between samples from the
Gulf of Mexico, SAB, and MAB (FST = 0.204, P = 0.002).
Atlantic-only comparisons found that 26.0% of the variability
was explained by the differences between the SAB and MAB
samples (FST = 0.260, P = 0.001). When examining genetic dif-
ferentiation using � statistics, between-region variability (�ct)
increased and explained 64.2% of the variability between the
Gulf of Mexico, SAB, and MAB (�ct = 0.642, P = 0.0000).
When the Gulf of Mexico samples were removed, 40.9% of
the variability was attributable to differences between SAB and
MAB samples (�ct = 0.409, P = 0.006).
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TABLE 2. Black sea bass haplotypic diversity (h) and nucleotide diversity
(π ) and the associated SD (in parentheses) for each location and for all samples
combined within a region. Cape Hatteras (35.1◦N) separates the Middle Atlantic
Bight (MAB) and South Atlantic Bight (SAB) management units. Abbreviations
are defined in Table 1.

Location h π

SAB sites
27.7◦N (FL) 0.861 (0.040) 0.007 (0.005)
31.6◦N (GA) 0.887 (0.043) 0.008 (0.005)
32.3◦N (SC32) 0.815 (0.061) 0.006 (0.004)
33.3◦N (SC33) 0.846 (0.051) 0.005 (0.003)
34.3◦N (NC) 0.870 (0.038) 0.006 (0.004)

MAB sites
35.8◦N (OI) 0.250 (0.180) 0.001 (0.001)
36.9◦N (VA) 0.361 (0.109) 0.002 (0.002)
39.5◦N (NJ) 0.442 (0.116) 0.003 (0.002)
41.1◦N (CT) 0.641 (0.150) 0.002 (0.002)

GoM site
29.5◦N (GoM) 0.999 (0.004) 0.015 (0.008)

Regions
GoM 0.999 (0.004) 0.015 (0.008)
SAB 0.853 (0.021) 0.006 (0.004)
MAB 0.424 (0.071) 0.002 (0.002)

Distribution of Haplotypes and Gene Flow
The proportion of haplotype frequencies varied across the

U.S. Atlantic and Gulf of Mexico coasts. The CssCR1 haplotype
and closely related variants occurred in 89–100% of the fish
sampled from the MAB but only 8–21% of the fish sampled
from the SAB (Figure 2). The reverse was seen for CssCR17
variants, which occurred in 79–93% of the fish sampled from
the SAB but only 0–11% of the fish sampled from the MAB
(Figure 2). The CsmCR haplotypes were only found in the Gulf
of Mexico samples, occurring in 96% of the fish sampled from
this region. Neither the CssCR1 haplotype nor its variants were
observed in the Gulf of Mexico samples, whereas CssCR17
variants (2 observations) accounted for 4% of the fish sampled
in the Gulf of Mexico (see Table 1).

All Mantel tests for Atlantic samples revealed a positive
correlation for comparisons of genetic distance and geographic
distance, whether using collection location (r = 0.57, P = 0.009)
or regional assignment (r = 0.67, P = 0.009). Although these
correlations remained significant for all partial Mantel tests
(P < 0.01), it was observed that regional assignment (r = 0.47
when controlling for geographic distance) was a better fit than
geographic distance (r = 0.17 when controlling for regional
assignment). This relationship was also observed from plotting
the two primary groups of CssCR haplotypes, as an abrupt shift
in proportions was clearly present (Figure 2).

The number of immigrants per generation between the
two regions was calculated by multiplying the estimated θ

FIGURE 2. Proportions of the black sea bass haplotypes CssCR1 and CssCR17 (and their variants; CssCR = Centropristis striata striata control region) plotted
against latitude along the U.S. Atlantic coast.
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TABLE 3. Gene flow (M) and theta (θ ) estimates for black sea bass residing
in the two Atlantic coast regions (SAB = South Atlantic Bight; MAB = Middle
Atlantic Bight). Estimated number of immigrants into each region is also shown.

Analysis or M: SAB M: MAB Immigrants per
region θ to MAB to SAB generation

1
SAB 0.15825 484.3054 76.64
MAB 0.00521 0.0000 0.00
2
SAB 0.23771 502.4583 119.44
MAB 0.00402 218.8317 0.88
3
SAB 0.21910 481.7304 105.55
MAB 0.00307 468.8115 1.44
4
SAB 0.29331 556.3892 163.19
MAB 0.00302 71.3616 0.22
5
SAB 0.13319 478.7537 63.77
MAB 0.00466 236.6724 1.10

(coancestry coefficient) value for one region by its respective
M-value. The average number of immigrants from the MAB
to the SAB was 105.72 (range = 63.77–163.19), whereas the
average number of immigrants from the SAB to the MAB was
0.73 (range = 0.00–1.44; Table 3). All five analyses revealed
the general pattern of larger θ estimates for the SAB versus the
MAB. In addition, calculated M from the MAB to the SAB was
greater than M from the SAB to the MAB.

DISCUSSION
A significant difference was detected among black sea bass

sampled in the Gulf of Mexico, MAB, and SAB, identifying
significant genetic structuring among fish from these regions.
Phylogenetic analyses uncovered two distinct groups of haplo-
types, resolving subspecies and deep phylogeographic differen-
tiation between Gulf of Mexico samples and Atlantic samples.
Focusing on the Atlantic coast samples, our results rejected the
null hypothesis that black sea bass along the U.S. Atlantic coast
comprise a single panmictic population. The difference between
Atlantic coast regions was not only detected in the AMOVA re-
sults but was further supported by the distribution of group
haplotype frequencies. In combination, these results support the
subspecies designation of black sea bass from the Gulf of Mex-
ico and along the U.S. Atlantic coast and indicate that at least two
well-differentiated populations exist along the Atlantic coast,
with Cape Hatteras likely serving as a geographic barrier that
disrupts gene flow between black sea bass from the two regions.

The results presented in this study support the previous find-
ings of Bowen and Avise (1990) in that the largest levels of
sequence divergence are observed between black sea bass col-

lected from the Gulf of Mexico and the Atlantic Ocean. How-
ever, the current study uncovers a much greater level of nu-
cleotide divergence and haplotypic diversity in both regions.
It is likely that differences in molecular techniques (restriction
fragment analysis versus DNA sequencing), increased sampling,
and the highly polymorphic nature of the locus employed in the
present study account for the observed discrepancies. It is inter-
esting to note that while limited in sampling, the study by Bowen
and Avise (1990) did appear to capture, albeit subtly, the hetero-
geneity of samples collected north and south of Cape Hatteras as
reported herein. In their study, of the 19 fish sampled along the
Atlantic coast, the majority (17 fish) had the same haplotype (C).
The two observed variants (haplotypes D and E) were sampled
from fish that were collected south of Cape Hatteras. These data
follow the pattern observed in the present study—that is, de-
creased haplotypic diversity in samples collected north of Cape
Hatteras relative to samples collected south of Cape Hatteras.

The AMOVA results revealed significant genetic differenti-
ation among the three regions examined. This differentiation
was evident not only through traditional F-statistic estimates
but also through estimates of � statistics. When considering all
three regions, the differences among regions explained 64.15%
of the variability using � statistics. However, once the Gulf of
Mexico (presumably C. striata melana) samples were removed,
the estimate was reduced, with between-region differences ex-
plaining 40.9% of the variability. Although the subspecies-level
differentiation explained a large portion of the variability be-
tween regions, the differentiation between the SAB and MAB
samples remained significant (�ct = 0.409, P = 0.006). Fur-
thermore, the results from this analysis are comparable to or
larger than estimates typically observed for marine fishes. For
example, in a study examining a reef species with similar life
history characteristics (i.e., the blue rockfish Sebastes mystinus),
a statistically significant genetic break occurring around Cape
Mendocino in the Pacific Ocean was detected, with a �ct value
of 0.116 (P = 0.035; Cope 2004). To our knowledge, the data
presented here for black sea bass illustrate one of largest levels
of population differentiation observed in a broadly distributed
marine fish species.

Similarly interesting results were found when examining the
distribution of primary haplotypes and their variants along the
U.S. Atlantic coast. There was a distinctive shift in the propor-
tion of the CssCR1 and CssCR17 haplotypes and their variants
in the SAB and MAB regions, with a proposed break occurring
near Cape Hatteras. The CssCR1 haplotype was more com-
mon in samples collected north of Cape Hatteras, occurring
in 75% of the fish sampled from the MAB region. Although
this haplotype also occurred in fish from the SAB, it was ob-
served at a much lower proportion (11.5% of the fish sampled).
Inversely, the CssCR17 haplotype was the most commonly ob-
served haplotype south of Cape Hatteras, occurring in 35.7% of
the fish sampled, whereas only 3.8% of the fish sampled north of
Cape Hatteras were observed to possess this haplotype. Partial
Mantel tests showed that this distribution was best explained
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by regional assignment rather than by an isolation-by-distance
model. As such, this shift in haplotype frequencies suggests that
black sea bass along the U.S. Atlantic coast comprise two sep-
arate management units that are likely separated in the vicinity
of Cape Hatteras; thus, the two-stock designation currently in
place along the Atlantic coast is supported (Moritz 1994).

The role of biogeographic barriers in the establishment of
genetic structuring within the marine realm has been well
documented (Bowen and Avise 1990; Avise 2000; Bernardi
et al. 2003; Cope 2004). Along the southeastern coast of the
United States, there are two notable biogeographic barriers that
are largely affected by the currents of the Gulf Stream: Cape
Canaveral, Florida, and Cape Hatteras. The Gulf Stream, which
transports warm tropical waters into the Atlantic, travels close to
the coastline along southeastern Florida until the point of Cape
Canaveral, where it is deflected further offshore. This allows fish
larvae originating from the Gulf of Mexico to enter the south
Atlantic but prevents their further dispersal within the Atlantic
(Avise 1992). Among the marine species that demonstrate a
genetic break between the Gulf of Mexico and Atlantic Ocean
are the Atlantic horseshoe crab Limulus polyphemus (Saunders
et al. 1986), eastern oyster Crassostrea virginica (Reeb and
Avise 1990), and red drum Sciaenops ocellatus (Seyoum et al.
2000). Black sea bass from the Gulf of Mexico and the At-
lantic are probably under similar behavioral and oceanographic
constraints as their pattern in genetic partitioning is concordant
with those of the aforementioned species. However, for black
sea bass, it appears that their limited southern distribution in the
eastern Gulf of Mexico has lessened the impact of Gulf Stream
transport of larvae around the Florida peninsula, as samples col-
lected south of Cape Canaveral consisted solely of C. striata
striata haplotypes. In fact, the presence of Atlantic haplotypes
in the Gulf of Mexico sample suggests that exchange of indi-
viduals from the Atlantic into the Gulf of Mexico may not be
that uncommon or has occurred in the recent past.

From Cape Canaveral, the Gulf Stream continues northward
along the continental shelf of the southeastern United States.
At Cape Hatteras, the current nears the coastline and is then
deflected toward the northeastern Atlantic. The warm waters
are then replaced by much cooler water from the Labrador
Sea, which is transported southward to Cape Hatteras by the
Labrador Current (Briggs 1974). As a result, sharp tempera-
ture and salinity gradients occur at this confluence, leading to a
major break between coolwater and warmwater faunal assem-
blages (described as the Virginian and Carolinian provinces by
Briggs 1974). While zoogeographic differences north and south
of Cape Hatteras have been well described, the ability to serve
as a barrier to gene flow for species whose ranges extend be-
yond Cape Hatteras has revealed mixed results. For example,
genetic studies on marine species within the Atlantic, such as
weakfish Cynoscion regalis (Graves et al. 1992) and summer
flounder Paralichthys dentatus (Jones and Quattro 1999), have
failed to demonstrate a genetic break across Cape Hatteras. In
contrast, studies investigating population structure in the north-

ern quahog Merceneria merceneria (Baker et al. 2008; �ct =
0.076, P = 0.013), Atlantic croaker Micropogonias undulatus
(Baker et al. 2007; using parasites), and Atlantic spotted dol-
phin Stenella frontalis (Adams and Rosel 2006; �st = 0.198,
P < 0.001) have implicated Cape Hatteras as the cause of genetic
differentiation. It is important to note that of these studies exam-
ining population subdivision, none reported a degree of genetic
differentiation exceeding that observed herein (�ct = 0.409).

The results obtained from gene flow estimates showed a con-
sistent pattern of more immigrants per generation from the MAB
to the SAB. There are two factors that may contribute to this
observed pattern of migration. First, as previously mentioned,
black sea bass in the MAB and SAB differ in their degree of site
fidelity. Adult and juvenile black sea bass in the MAB migrate
offshore and southward during the onset of fall, whereas those
in the SAB undertake very little migration and their movement
is mainly confined to offshore regions. Therefore, it is possible
that during the winter, black sea bass in the MAB could migrate
further south of Cape Hatteras, where there are warmer waters
facilitating southward transport. Conversely, black sea bass in
the SAB are more likely to move offshore and further south to
warmer waters instead of moving northward, where the waters
are much cooler. Thus, given this difference in behavior, adult
migration from the MAB to the SAB has a greater likelihood
than the opposite scenario. The second important factor is the
transport of larvae between the two regions. A study examining
the flux of larvae across the area of convergence at Cape Hatteras
revealed that MAB-spawned larvae could drift into the SAB via
net water flow from the MAB to the SAB along the coastline
(Grothues et al. 2002). However, SAB-spawned larvae could
not move past the area of convergence between the Labrador
Current and Gulf Stream in the manner of MAB-spawned lar-
vae. While it is not uncommon for SAB-spawned fish larvae to
be transported into the MAB, their fate is largely determined
by physiological tolerances and environmental conditions fa-
vorable for across-shelf transport (Hare and Cowen 1991, 1996;
McBride and Able 1998; Hare et al. 2002). Since black sea bass
spawn on the inner continental shelf, the likelihood of larval
entrainment within the Gulf Stream is low, thus reducing the
occurrence of larval transportation into the MAB. Regardless,
the data presented here would suggest that this rate of exchange
must be low relative to effective population sizes as it is cur-
rently insufficient to genetically homogenize the stocks or to
buffer adjacent stocks from overfishing.
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