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Abstract

In cattle, the in vitro production (IVP) of embryos is becoming more relevant than embryos produced in vivo, i.e. after multiple ovulation and
embryo transfer (MOET). However, the effects of IVP on the developmental programming of specific organs in the postnatal calves are yet
unknown. Previously, we reported an epigenomic and transcriptomic profile of the hypothalamus–pituitary–testicular axis compatible with its
earlier activation in IVP calves compared to MOET animals. Here, we studied the hepatic and muscular epigenome and transcriptome of those
same male dairy calves (n = 4 per group). Tissue samples from liver and semitendinosus muscle were obtained at 3 months of age, and the
extracted gDNA and RNA were sequenced through whole-genome bisulfite sequencing and RNA-sequencing, respectively. Next, bioinformatic
analyses determined differentially methylated cytosines or differentially expressed genes [false discovery rate (FDR) < 0.05] for each Omic
dataset; and nonparametrically combined genes (NPCG) for both integrated omics (P < 0.05). KEGG pathways enrichment analysis showed that
NPCG upregulated in the liver and the muscle of the IVP calves were involved in oxidative phosphorylation and the tricarboxylic acid cycle. In
contrast, ribosome and translation were upregulated in the liver but downregulated in the muscle of the IVP calves compared to the MOET
calves (FDR < 0.05). A model considering the effect of the methylation levels and the group on the expression of all the genes involved in these
pathways confirmed these findings. In conclusion, the multiomics data integration approach indicated an altered hepatic and muscular energy
regulation in phenotypically normal IVP calves compared to MOET calves.

Summary Sentence
Transcriptomic and epigenomic results suggest that aerobic respiration was upregulated in both liver and muscle, while protein synthesis was
increased in the liver but downregulated in the muscle of in vitro produced calves compared to in vivo counterparts.

Graphical Abstract
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Introduction

The application of assisted reproductive technologies (ART)
in cattle has been reported since the 1900s, with the successful
use of artificial insemination (AI) (reviewed in Ref. [1]). How-
ever, ART involving embryo manipulation is relatively more
recent. The transfer of in vivo produced embryos was achieved
in the early 1950s [2], while in vitro fertilization and the birth
of the in vitro produced (IVP) calves were gradually developed
and refined over the 1980s and 1990s [3, 4]. Today, the use
of these technologies, i.e. IVP of bovine embryos and multiple
ovulation and embryo transfer (MOET), are extensively used
worldwide to improve genetic gains in beef and dairy cattle
(reviewed in Refs. [5, 6]). The use of MOET was for many
years more extensively used than IVP. However, this trend has
been reversed during the last few years [7], given the lower
costs and improvements in the techniques employed for IVP.
In this regard, enhancement of the culture media has reduced
the incidence of the most common unwanted phenotype in
IVP calves: large offspring syndrome (LOS) (reviewed in [8])
although this phenomenon is not completely eliminated yet.
LOS is an overgrowth syndrome caused mainly by alterations
in the epigenetic profile in various organs, both in imprinted
and nonimprinted regions, which are associated with changes
in gene expression [9–12]. On the other hand, IVP calves
born normal did not differ in their reproductive functions and
lactation performance from calves generated by AI [13, 14].
However, changes at the molecular level in the organs of the
apparently normal IVP calves are still unexplored.

In a previous article, we demonstrated that healthy dairy
male IVP calves, of 3 months age, presented an epigenomic/-
transcriptomic profile compatible with early activation of
the hypothalamus–pituitary–gonadal (HPG) axis when com-
pared to the MOET calves [15]. There were no differences
regarding body weight at birth and growth rate among these
animals. Our results suggested a premature maturation of the
IVP calves, which could have impacted the age at puberty,
although this is unknown so far. In the present study, we
complete this previous report by analyzing the epigenomic and
transcriptomic data from muscle and liver samples obtained
from the same IVP and MOET calves at 3 months of age. Both
organs play a crucial role in the programming of metabolism
regulation during fetal life (reviewed in Ref. [16]). Thus, we
hypothesize that the molecular profile of these organs is com-
patible with altered metabolism in IVP calves when compared
to the MOET animals, even when they were phenotypically
similar. The objective of this study was to apply integrative
multiomics and bioinformatics approaches to explore the
muscular and hepatic epigenomic and transcriptomic differ-
ences between phenotypically normal IVP and MOET male
calves.

Materials and methods

Animals

The donors, recipients, and calves were all housed in the same
nucleus herd, ensuring minimal differences in the housing
environment. The Danish Animal Experiments Inspectorate
characterized the IVP, superovulation, and embryo transfer
procedures as part of the nucleus herd breeding program
Tirsvad Holstein. Therefore, we did not need a license for
these practices. The euthanasia procedures were approved
by the local ethical and administrative committee at the
Department of Veterinary Clinical Sciences at the University

of Copenhagen (license number 2020-006). Table 1 describes
the parental combination used to produce the ovum pick-up
(OPU)-IVP or MOET embryos.

Production of the OPU-IVP embryos

OPU was performed after a mild 2-day stimulation proto-
col using 75 IU of follicle-stimulating hormone (FSH) and
luteinizing hormone (LH), once a day each day (Pluset, Scan-
vet, Denmark) starting 9–11 days after detection of sponta-
neous estrous (mid-luteal phase), 3 days before OPU. Fur-
ther, 24 h after the last FSH/LH injection, and just before
OPU, the donor was given epidural anesthesia (Lidocain). An
ECM scanner (ECM France) with a 5 MHz transducer was
used to visualize the donor’s ovaries. Follicles were aspirated
transvaginally using a 17-gauge needle connected to a Mini-
tube GmbH aspiration pump. The oocytes were collected in
OPU media (IVF-Bioscience, UK) and scored according to
the layers of cumulus cells, color, and homogeneousness of
ooplasma.

Chemically defined media from IVF Bioscience was used
for oocyte search, in vitro maturation, in vitro fertilization,
and in vitro culture. All steps were performed according to the
manufacturer’s guidelines, as previously described [17]. The
embryos were transferred fresh 7–8 days after fertilization.

Production of the multiple ovulation and embryo
transfer embryos

Beginning in the mid-luteal phase, 6–13 days after regis-
tered estrus, the donors were superstimulated with a total of
800 IU FSH and 800 IU LH (16 ml Pluset, Scanvet, Denmark)
over 4 days in a decreasing dose schedule, according to the
manufacturer’s guidelines. Briefly, twice a day (08:00 and
20:00), 3 ml or 150 IU (day 1), 2.5 ml or 125 IU (day
2), 1.5 ml or 75 IU (day 3), and 1.0 ml or 50 IU (day 4)
of FSH and LH were injected intramuscular. On the fourth
day of stimulation, luteolysis was induced with 0.5 mg clo-
prostenol (Estrumate, MSD Animal Health, Denmark). AI
was performed 2 and 3 days after luteolysis was induced.
Embryo flushing was performed 7 and 8 days after insem-
ination, and embryos were transferred fresh. The recipients
were synchronized with 0.5 ml cloprostenol given 24 h before
the donors were given cloprostenol. The recipients received
epidural anesthesia (Lidocain) before the transfer, and a single
embryo was transferred ipsilateral to the corpus luteum.

Calves

The calves were born at Tirsvad Holstein (Denmark) and
housed there until 2.5 months of age. All animals in this study
were born at term from February 2020 to June 2020, and
they were all Holstein males (n = 4 per group). Birth weight
did not differ between IVP and MOET calves (38.25 ± 2.62
kg vs. 36.25 ± 2.75 kg, respectively, P > 0.05). Calves in both
groups were raised in similar conditions until euthanasia,
performed at around 3 months of age (101.75 ± 2.5 vs.
102.67 ± 1.15 days for IVP and MOET calves, respectively),
except for one MOET calf that was 144 days old. Bodyweight
gain per day from birth to euthanasia was similar among
calves in both groups (0.88 ± 0.1 kg vs. 0.83 ± 0.1 kg for IVP
and MOET calves, respectively, P > 0.05). For euthanasia,
the calves were transported to the Large Animal Hospital
of UCPH (Taarstrup, Denmark). They were housed for
14 days in the hospital stables and euthanized with 100 mg/kg
of pentobarbital sodium (Dechra Veterinary Products A/S,
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Table 1. Donors and sires employed to produce the calves for this study. CKR is the unit number for animal registration in the Danish Central Register of
Livestock. MOET: embryos were produced in vivo (ovarian superovulation followed by embryo collection and transfer). IVP: embryos were produced in
vitro (ovarian mild stimulation, OPU, and cultured/fertilized in a serum-free media)

Animal IDs Groups Mother CKR Recipient CKR Father

5833 IVP 24680-05142 24680-05115 My Dream P RC
5841 IVP 24680-05142 24680-05139 My Dream P RC
3208 IVP 24680-05142 40156-02786 Builder P
3209 IVP 24680-05142 42042-03225 Builder P
5932 MOET 24680-04912 24680-05227 Solitær P
3213 MOET 24680-04912 49578-03835 Simon P
3217 MOET 24680-05142 53871-04210 BuilderP
3218 MOET 24680-05142 40156-02795 BuilderP

Denmark). Tissue samples from several organs were obtained
in less than 10 min after euthanasia and immediately snap-
frozen in liquid nitrogen. All samples were biobanked in
liquid nitrogen. For the current study, samples from the
semitendinosus muscle in the left leg, and from the right lobe
of the liver were employed.

gDNA/RNA extraction, library preparation, and
sequencing

Tissue samples were shipped in dry ice to the BGI TECH
SOLUTIONS Company (Hong Kong), which performed the
gDNA and RNA extraction, quality control, library prepara-
tion, and sequencing. All samples met the requirements for
library preparation [guanine and cytosine (G and C) content
between 35% and 65% for extracted gDNA; adequate
concentration and quantity, purity as OD260/280 = ∼1.8 – 2.0
and RIN > 8 for the extracted RNA]. The gDNA samples were
subjected to whole-genome bisulfite sequencing (WGBS),
through bisulfite library preparation and PE100 sequencing
with 45Gb clean data per sample on DNBSEQ. RNA-
sequencing (RNA-seq) was run in the RNA samples through
nonstranded and polyA-selected mRNA library preparation
and PE100 sequencing with 5 Gb clean data per sample
on DNBSEQ. For both techniques, after library preparation
and sequencing, raw data with adapter sequences or low-
quality sequences were filtered to remove contamination and
obtain valid data. This step was completed by the SOAPnuke
software developed by the BGI Company. Clean raw data
were generated in the FASQ format.

Bioinformatic analysis

The bioinformatic pipeline and main outputs of this study
are shown in Figure 1. The WGBS clean reads were aligned
to the bovine reference genome (bosTau 9) using the Bis-
mark Bisulifte Read Marker (v 0.22.3) [18]. All covered
cytosines were used for calculation of global CpG methylation
level in Bismark using the following formula: percent global
methylation = (number of methylated cytosines/total number
of cytosines) × 100. The RNA-seq read pairs were mapped
to the bovine reference genome (bosTau 9) with STAR aligner
(v. 2.7) [19], generating the genome index with the gene Bos
taurus release 102 annotations. Read counts were estimated
at the gene level using HTSeq-count (v. 0.11.1) [20]. Samples’
distribution and clustering, according to the methylated CpG
or gene expression, were assessed through principal compo-
nent analysis (PCA) and hierarchical clustering, respectively,
using internal packages of R.

Data are deposited in The National Center for Biotechnol-
ogy Information’s Gene Expression Omnibus (GEO) and are
accessible through the GEO accession number GSE176219.

Determination of differentially methylated
cytosines and differentially expressed genes

The binary alignment map files generated from the Bismark
software after processing the WGBS files were analyzed using
the Bioconductor package methylKit [21] for the R software.
Read coverages lower than 10 counts or higher than the
99.9th percentile were filtered out to discard low coverage
and clonal reads. The effect of age was controlled by removing
the component associated with this variable. Identification of
differentially methylated cytosines (DMC) between IVP and
MOET groups was performed by logistic regression, where
the “group” variable was used to predict the log-odds ratio of
methylation proportions. The logistic regression model was
fitted per methylated region, testing if the group vector had
any effect on the outcome variable or not. P-values were
adjusted to q-values using the sliding linear model method
[22], and DMC were defined as those with q < 0.05. Annota-
tion of DMC was performed with the Bioconductor/R pack-
age Genomation [23]. Browser extensible data files of CpG
islands and RefSeq database for the bosTau9 assembly were
downloaded from the UCSC table browser (https://genome.u
csc.edu/cgi-bin/hgTables). All DMC were first annotated with
the nearest (no specific cut-off) transcription start site (TSS).
Next, DMC were annotated with gene structures (promoter,
exon, intron, CpG islands, or shores). Promoters and CpG
shores were defined as ±1000 bp and ± 2000 bp of the TSS
and CpG islands, respectively.

The read count files (text files) obtained after processing the
RNA-seq files were employed to determine the differentially
expressed genes (DEG) with the DESeq2 package [24] for the
R software. The effect of age was controlled with the sva pack-
age [25]. Next, the gene expression counts were normalized by
library size with DESeq2 methods. The differential analysis
was performed by fitting a logistic regression model to the
gene counts, modeled by a negative binomial distribution,
and p-values were adjusted with the Benjamini–Hochberg
method. The Wald test statistic was employed to test for model
significance. The DEG between IVP and MOET groups were
defined as those with false discovery rate (FDR) <0.05.

Given that the sample size was low, we performed a power
analysis a posteriori with the ssizeRNA_vary function of
the ssizeRNA package for R [26]. This function calculates
the power for different sample sizes in two-groups RNA-
seq experiments with variable means and dispersions among
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Figure 1. Bioinformatic pipeline and main outputs of the study. The scheme represents the workflow employed in the samples from the liver and muscle
organs obtained from 3 months old IVP or MOET male calves. The methods are detailed in italics (the software used are in parenthesis), while the
outputs are shown in the squares. Shaded squares denote the main results from the study (corresponding tables or figures are indicated in parenthesis).
The dashed arrow means that the information from a given result was used for the other result. MOET: embryos were produced in vivo (ovarian
superovulation followed by embryo collection and transfer). IVP: embryos were produced in vitro (ovarian mild stimulation, OPU and cultured/fertilized in
a serum-free media). DMC: Differentially methylated cytosines. DEG: differentially expressed genes. NPGC: nonparametrically combined genes.

genes. The calculation was performed by specifying an alpha
(FDR) of 0.05, the corresponding proportions of non-DEG,
the mean counts in the MOET group, and the dispersion.

Integration of both omics datasets

Identification of relevant genes when combining both omics
data for each tissue was done through a nonparametric combi-
nation (NPC) methodology [27], applied with the omicsNPC
function [28] of the STATegRA package [29]. Briefly, each
dataset was analyzed separately first, to compute P-values
when contrasting both groups. Next, these P-values were
combined through the Fisher function, using 1000 permuta-
tions. Genes that were significant (P-value <0.05) after the
combination were defined as “nonparametrically combined
genes” (NPCG). In other words, these muscular or hepatic
genes are associated with the embryo origin of the calves
when considering both transcriptomic and epigenomic data.
Identified NPCG were further evaluated according to their

mRNA expression in IVP or MOET samples, through hier-
archical clustering and heat map. The clustering was made
using Spearman Rank Correlation as a similarity metric and
centroid linkage as a clustering method, implemented with
the Cluster 3.0 software [30]. The resulting dendrogram and
the heat map were visualized with Java TreeView [31]. Genes
in the resulting clusters were compared to the DEG, and to
the overlapping DEG and genes associated with the DMC,
through Venn Diagrams, using Venny 2.1 (https://bioinfogp.
cnb.csic.es/tools/venny/).

Functional analysis

The EntrezID corresponding to the annotated TSS related to
DMC in a genic region, to the DEG, or to the NPCG, was inter-
rogated for enriched KEGG pathways using the Database for
Annotation, Visualization and Integrated Discovery (DAVID;
[32]), using the Functional Annotation Clustering tool. Only
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clusters with functional terms enriched at FDR < 0.05 were
retained.

Based on these results, some pathways were analyzed to
determine if the methylation levels and the group (IVP or
MOET) were influencing the expression of the genes involved
in such pathways. For this, the effect of methylation levels,
the group, and the interaction among these variables, on the
read counts for each gene was modeled through a negative
binomial regression using the MASS package for the R soft-
ware [33]. Each term was considered significant at P < 0.05.
If the interaction was not significant, it was dropped from the
model. The complete list of genes’ Entrez IDs belonging to the
selected pathways was downloaded from the KEGG pathway
database (https://www.genome.jp/kegg/pathway.html). Next,
for each pathway and organ, the methylation proportions for
each gene in each sample were obtained across the whole
genome (annotated CpG with nearest TSS). If more than
two regions included the same Entrez ID, the methylation
proportions were averaged. A similar step was performed
for the transcriptome data if more than two Ensembl IDs
were encoding for the same Entrez ID, although the average
counts were rounded. In addition, some of these pathways
were graphed with the Pathview package [34]. Briefly, this
tool set maps the data with the pathway of interest and
renders the pathway graph. Genes in these pathways with
more expression in IVP or MOET groups were colored in red
or green, respectively.

Results

Methylation and expression data mapping

Data generated from the WGBS method had on average, a
67.4% of unique mapping rate to the B. taurus genome, rang-
ing from 65.1% in the liver to 69.8% in muscle. Per group, the
averages were 68.1% and 66.57% for IVP and MOET groups,
respectively. From these mapped reads, 72.1% (67.8–72.1%)
of the cytosines belonged to CpG, and only 1.1% to CHG
or CHH (which were not considered in further analyses).
Transcriptomic data generated from the RNA-seq method
resulted in a high proportion of reads with unique alignment
to the B. taurus genome: 96.3% on average (95.5–96.7%).
Further, 80.9% (76.5–84.6%) of these reads were assigned
to Ensembl IDs (78.9% in liver and 82.9% in muscle), and
around 80.6% in both groups.

Table S1 contains the details about the results from the
mapping and methylation call steps for the epigenomic data
and mapping and read counting steps for the transcriptomic
data. Sample relatedness according to overall CpG methyla-
tion levels or expression levels is shown in Figures S1 and S2,
respectively.

Identification of DMC and DEG in liver and muscle
of IVP versus MOET

The number of DMC and DEG, respectively, were 1599
and 3372 for the liver; and 2459 and 1563 for the muscle
(FDR < 0.05). There were 154 and 108 overlapping genes
between DEG and genes associated with the DMC for liver
and muscle, respectively (Figure 2 and Table S2). For the
DEG, the power for a sample size of n = 4 was around 80%
and 72%, considering that 12.2% and 5.7% of the 27 607
transcripts were DEG for liver and muscle, respectively.

Identification of NPCG between IVP and MOET
calves

Application of the NPCG methodology to the individual P-
values for genes associated with methylated cytosines, and
expressed genes, when IVP calves were compared to the
MOET counterparts, resulted in 3606 and 2733 NPCG for
liver and muscle, respectively, for which the combined P-value
was <0.05 (Table S3). Figure 3 shows the mRNA expression
of these NPCG in the liver or muscle of IVP and MOET calves.
In the liver, there were two main clusters with 1548 and 1584
NPCG upregulated in the MOET and IVP calves, respectively.
In the muscle, the two main clusters contained 1303 NPCG
more expressed in the IVP calves and 1301 NPCG upregulated
in MOET calves. Several NPCG were identified as DEG,
following the same direction for the expression levels in IVP
or MOET samples. For example, in the liver, around half of
the NPCG on each cluster were overlapping with around half
of the up or downregulated DEG. For muscle, around 44% of
the NPCG overlapped with about 73% of the DEG (Figure 4).
Furthermore, 70.1% and 73.1% of the overlapping DEG and
genes associated with DMC, for liver and muscle, respectively,
were also classified as NPCG (Figure S3).

Functional analysis of DEG, of genes associated
with DMC, and of NPCG

Liver: The functional analysis of the upregulated DEG
showed that the top clusters contained strongly enriched
functional terms related mainly to ribosome and translation,
and mitochondria and oxidative phosphorylation. However,
the downregulated DEG enriched focal adhesion and
extracellular matrix interaction, among other functional
terms (Table S4). Genes near hypomethylated cytosines
were associated with lipid metabolism/secondary metabolites
biosynthesis, transport, catabolism, and ATP binding; but
no functional terms were enriched with genes related to
hypermethylated cytosines. However, the cluster of NPCG
more expressed in the IVP calves was enriched for similar
functional terms as the DEG (ribosome, translation, and
mitochondrial respiration). NPCG upregulated in the MOET
calves were enriched in ATP binding, protein kinase,
and cancer-related pathways (Table S5). Matches between
enriched functional terms by DEG or by NPCG occurred
because of the overlapping genes between them, which were
associated with the common functional term (Figure 4A).

The negative binomial model showed that both the
methylation levels and the group affected the expression of
genes involved in the ribosome and oxidative phosphorylation
KEGG pathways. There was a negative correlation between
methylation levels and gene expression, which was predicted
to be higher in samples from the IVP calves at any methylation
level (Figure 5A).

Muscle: Upregulated DEG in the muscle of the IVP calves
strongly enriched functional terms related to aerobic respi-
ration, the tricarboxylic acid (TCA) cycle, angiogenesis, fatty
acid metabolism, skeletal muscle development, and response
to hypoxia. Contrary to the liver, downregulated DEG were
associated with ribosome, translation, and amino acid biosyn-
thesis (Table S6). Genes near the TSS of hypermethylated
cytosines were involved in protein tyrosine phosphatase activ-
ity, whereas those related to hypomethylated cytosines only
enriched glycosylation. NPCG upregulated in IVP calves were
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Figure 2. Differentially methylated cytosines (DMC) and differentially expressed genes (DEG) in the liver (A) or muscle (B) of IVP versus MOET calves.
Volcano plots in the left represent the number of hyper (red dots) or hypo (green dots) DMC; while the ones in the center depict the upregulated (red
dots) or downregulated (green dots) DEG. Venn Diagrams in the right show the overlap between up- and down-regulated DEG and genes associated to
DMC; 154 for liver and 108 for muscle. IVP: embryos were produced in vitro (ovarian mild stimulation, OPU and cultured/fertilized in a serum-free media).
MOET: embryos were produced in vivo (ovarian superovulation followed by embryo collection and transfer).

Figure 3. Hierarchical clustering and heat map for the mRNA expression of the nonparametrically combined genes (NPCG) in liver (A) and muscle (B).
These genes have a P-value < 0.05 after application of the nonparametric combination method, which considers the comparison between IVP and
MOET calves for both epigenomic and transcriptomic datasets. IVP: embryos were produced in vitro (ovarian mild stimulation, OPU, and
cultured/fertilized in a serum-free media). MOET: embryos were produced in vivo (ovarian superovulation followed by embryo collection and transfer).
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Figure 4. Venn diagrams comparing differentially expressed genes (DEG) and clusters of nonparametrically combined genes (NPCG) in liver (A) and
muscle (B). DEG are up- or down-regulated in IVP samples relative to MOET samples. NPCG are those with a P-value of <0.05 after application of the
nonparametric combination method, which considers the comparison between IVP and MOET calves for both epigenomic and transcriptomic datasets.
The clusters were determined as shown in Figure 2. Functional terms displayed in the boxes were enriched by the overlapping genes. IVP: embryos
were produced in vitro (ovarian mild stimulation, OPU, and cultured/fertilized in a serum-free media). MOET: embryos were produced in vivo (ovarian
superovulation followed by embryo collection and transfer).

Figure 5. Prediction of read counts for genes involved in specific pathways from 10% to 90% of methylation proportion (MP). The boxes show the
P-values for the effect of MP or the group (IVP or MOET) in the expression of all genes in each pathway in the liver (A) or (B) muscle of IVP and MOET
calves. Vertical and horizontal lines indicate the predicted gene counts for each group at the average MP. IVP: embryos were produced in vitro (ovarian
mild stimulation, OPU, and cultured/fertilized in a serum-free media). MOET: embryos were produced in vivo (ovarian superovulation followed by embryo
collection and transfer).

enriched by 12 annotation clusters containing similar func-
tional terms as the upregulated DEG. However, NPCG upreg-
ulated in MOET calves were enriched by three main anno-
tation clusters with functional terms related to ribosome
and translation (Table S7). As for the results from the liver,
overlapping DEG and NPCG were enriched by the common
functional terms (Figure 4B).

Methylation proportions and the group affected the expres-
sion of genes involved in the TCA cycle, angiogenesis, mus-
cle development, and ribosome, with a negative correlation
between methylation levels and gene expression. For genes in
all the pathways, except for ribosome, the expressions were
predicted to be higher in the IVP group, whereas the inverse
occurred for genes in the ribosome pathway (Figure 5B).
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Discussion

Results from the present study demonstrate that the embryo
origin influenced the overall hepatic and muscular epigenome
and transcriptome of the 3 month calves (Figures S1 and
S2). Although the sample size was limited, findings were
highly significant and indicated that calves produced through
IVP showed aberrant hepatic and muscular epigenomic and
transcriptomic profiles that, when compared to MOET calves,
were clearly compatible with the following biological imbal-
ances: increased aerobic respiration and thus energy genera-
tion in both organs; and notoriously, increased protein synthe-
sis in the liver but decreased in muscle. Indeed, illustrating the
expression levels for genes in oxidative phosphorylation and
ribosome pathways distinctly highlight the similarities and
divergences, respectively, between liver and muscle from IVP
and MOET calves (Figure S4). Furthermore, a comparison
between up-or downregulated DEG in the liver and muscle
of the IVP calves compared to the MOET calves demon-
strates that common DEG between upregulated DEG in the
liver and downregulated DEG in muscle strongly enriched
the ribosome pathway and the translation process. However,
common upregulated DEG in both organs of the IVP calves
enriched oxidative phosphorylation and fatty acid metabolism
(Figure S5). Alterations of these functional terms occurred
both at the transcriptomic and epigenomic levels. Although
genes near the TSS of DMC did not enrich them, these
pathways were associated with the NPCG, i.e., significant
genes considering both types of data (Tables S5 and S7).
Furthermore, by modeling the influence of the methylation
level for all the genes involved in them (regardless of the
statistical difference) and the group (IVP or MOET) on their
mRNA expression, it became apparent how these terms were
affected on muscle and liver of the IVP calves (Figure 5).

These metabolic differences for both organs in IVP versus
MOET calves could be a potential consequence of the in vitro
process per se. The physicochemical, oxidative, and energetic
conditions of the medium used for the in vitro culture of
the oocytes and/or embryos have strong effects on embryo
developmental programming [35], impacting its epigenome
and, in turn, generating consequences that can be retained into
postnatal life. Epigenetics refers to “heritable changes in gene
expression without altering the DNA sequence” [36], which
can be altered by the environment, inducing modifications
that remains in long term and even cross generations [37].
Although several investigations have improved the media for
the IVP of bovine embryos, it is well accepted that the in
vitro process still represents a stressful environment for the
embryo, affecting it at the molecular level [38–44]. This effect
is comparable to other adverse maternal situations, such as
nutritional insults. For example, in a recent report, Chaput
and Sirard [45] collected embryos from 60 days postpartum
dairy cows presenting high levels of hydroxybutyrate, an
indicator of negative energy balance. The transcriptome and
epigenome of these embryos exposed to the maternal unfa-
vorable conditions were coincident with previous findings for
IVP embryos: the embryos switch to an “economy” mode by
activating the mammalian target of rapamycin (mTOR) path-
way and tumor protein 53 factor, whereas the mitochondrial
function is reduced. Thus, the most affected pathways in these
embryos were related to metabolism, including protein syn-
thesis, and oxidative phosphorylation [45]. Accordingly, the
response of IVP embryos to the stressful in vitro environment

is reflected in mitochondrial dysfunction, not only impacting
the energy regulation but also the production of methyl groups
associated with one-carbon metabolism controlling histone
acetylation and DNA methylation [46], and thus, mediating
epigenetic modifications.

In a recently published study, we characterized the epige-
netic and transcriptomic modifications of the IVP embryos
compared to MOET embryos through the application of a
multiomics data integration approach, to identify genes that
were temporally differentially expressed and differentially
methylated between IVP and MOET embryos from the blasto-
cyst stage to the elongated conceptus [47]. We focused on the
changes that could impact the trophectoderm function, which
is the outermost layer of the conceptus that is in contact with
the endometrium. A meta-analysis of 10 publicly available
transcriptomic and epigenomic datasets revealed a cluster of
genes with a strong deviation in their expression between
IVP and MOET embryos at day 13 when the elongation
process is initiated. Several of these genes were significantly
related to the focal adhesion pathway. Interestingly though,
the oxidation–reduction process and mitochondrial matrix
were also among the affected functional terms by genes in this
cluster (P < 0.05).

Therefore, IVP conceptuses might present alterations in
metabolic regulatory pathways from the blastocyst stage
resulting in impaired trophoblast function, which is respon-
sible for placental development. Indeed, previous reports in
cattle have shown that the IVP process can impact the placenta
by increasing the diameter and decreasing the thickness of the
placentomes [48] and impairing blood vessel development
[12, 49–51]. These aberrations might lead to placental
insufficiency, a well-established cause of developmental
programming, as the fetus might be chronically exposed to
low oxygen levels (reviewed in Ref. [52]). Furthermore, the
fetus can acquire a thrifty metabolic phenotype, which can
even persist after birth [53, 54]. For example, in humans,
12-year-old children born with small size and low birth
weight have similar metabolic rates as average-sized children,
although energy production is mostly obtained from lipid
oxidation rather than glucose oxidation [55]. In sheep,
lambs that suffered intrauterine growth restriction (IUGR),
a common consequence of placental insufficiency [56], not
only are born with lower weight but later in life, they present
lower contents of skeletal muscle protein, greater adiposity,
and altered glucose metabolism and liver function [57–59].
Thus, metabolic adaptations and substrate utilization in fetal
tissues can impact the organs’ functionality permanently.

Of all the organs in the body, the skeletal muscle and the
liver are prone to develop persistent metabolic adaptations.
Although they account for around 15% of the total weight of
the late gestational fetus [60], combined they are responsible
for around 50% of the total fetal oxygen consumption, and so
they are the largest metabolic fetal organs [61, 62]. All calves
in the present study presented comparable body weights at
birth and at 3 months of age, so they were not suffering from
IUGR or any other apparent maternal insult during fetal life.
However, although subtle abnormalities in the fetal–placental
unit can be compensated during gestation, the epigenome and
transcriptome of these animals can be modified and remain
altered during the postnatal life. Evidently, IVP animals pre-
sented abnormalities in metabolic pathways in skeletal muscle
and liver compared with the MOET animals. Aerobic respira-
tion was stimulated in both organs while notoriously, protein
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Figure 6. Expression levels for certain genes in the insulin/IGF-AKT–mTOR pathway. Genes followed opposite expression in the liver (gray background)
and muscle (white background) of IVP calves (red boxplots) compared to MOET calves (blue boxplots). All the genes in the figure were differentially
expressed at false discovery rate < 0.05 (∗). Dashed arrows mean an indirect effect of one gene on the other. IVP: embryos were produced in vitro
(ovarian mild stimulation, OPU, and cultured/fertilized in a serum-free media). MOET: embryos were produced in vivo (ovarian superovulation followed by
embryo collection and transfer).

synthesis strongly diverged: it was increased in the liver while
decreased in the muscle.

The explanation behind these observations might reside in
how these organs react to the main oxidizable substrates used
for energy production and tissue growth in the fetus, such as
glucose, lactate, and amino acids [63]. The main orchestrators
of nutrient partitioning are insulin and the insulin-growth
factors (IGF). Briefly, insulin mediates its response through
the insulin receptor (IR) and the insulin receptor substrate
(IRS) proteins 1 and 2. The downstream signaling includes
activation of the phosphoinositide 3-kinase and protein kinase
B (AKT) pathways, and the classic p44/p42MAPK (ERK1/2)
signaling cascade [64], which in turn, activates mTOR. How-
ever, mTOR regulates energy-sensing pathways, coordinat-
ing mRNA translation and mitochondrial energy production,
to regulate cellular proliferation and growth rates [65, 66].
Indeed, protein synthesis needs to be closely coordinated with
the energy yield, as it is one of the most energy-consuming
processes in the cell [67, 68].

Interestingly, the mRNA expressions for several of the
crucial players in the IGF/insulin-AKT–mTOR pathway were
opposite in the liver and the muscle of the IVP calves, and
significantly different from the expression in MOET calves
(Figure 6 and Table S2). IGF2 is a well-known imprinted
gene synthesized mainly by the fetal pancreas [69] and liver
[70], which plays an important role in organ growth. In the
IVP calves, compared to the MOET animals, IGF2 mRNA
expression was upregulated in the liver and downregulated
in muscle, while IR and IRS1 were downregulated in the liver

and IRS1 upregulated in muscle. Regulation of translation is
achieved through activation of mTOR, which phosphorylates
and activates the eukaryotic initiation factor 4E binding pro-
tein 1 (4EBP1), causing their dissociation from the eukaryotic
translation initiation factor 3 (EIF3) complex [71]. Although
mTOR was downregulated in the liver and upregulated in
muscle, 4EBP1 and all the 12 subunits of EIF3 were upregu-
lated in the liver and inhibited in the muscle of the IVP calves
compared to MOET calves. The difference was significant
(FDR < 0.1) although, for 10 and 3 of the 12 subunits of EIF3
in liver and muscle, respectively (Table S8).

Therefore, a potential explanation for the observed results is
that the “energy” economy mode adopted by the IVP embryos
[72], and the subtle but impaired placental perfusion during
pregnancy, impacted the liver metabolism during fetal life,
increasing glucose production from the liver and leading to
increased peripheral insulin sensitivity in postnatal life, in a
similar fashion as occurring in IUGR fetuses [73]. Although
it was not measured, it is possible that IVP animals presented
peripheral insulin resistance, as suggested by the functional
analysis of the clusters of NPCG with increased expression in
the muscle of IVP calves (Table S7). The metabolic status of
these animals could have been modified to prioritize energy
production by the TCA cycle and lipid oxidation, rather than
protein synthesis, in muscle, whereas both processes were
augmented in the liver, of the IVP calves. Furthermore, these
IVP animals showed an epigenomic and transcriptomic profile
compatible with an earlier activation of the HPG axis [15].
If energy availability is restricted during fetal development,
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glucose is allocated to the brain, to prioritize the functioning
and development of the central nervous system [74]. Thus,
inadequate energy utilization during fetal and postnatal life of
IVP calves could have impacted brain development and thus,
the activation of the HPG axis.

Conclusion

In this study, we applied multiomics data integration
approaches to investigate the muscular and hepatic epige-
nomic and transcriptomic differences between healthy IVP
and MOET male calves. We introduced a novel concept
of NPCG resulting from combining differentially observed
features after the analyses of both omics. Results from
this study show that IVP calves, with similar birth weight
and growth rate as MOET calves, presented alterations
in the hepatic and muscular epigenome and transcriptome
compatible with altered energy regulation, at 3 months of
age. Specifically, cellular aerobic respiration is stimulated in
the liver and muscle of IVP calves, whereas protein synthesis
is increased in the liver but inhibited in the muscle when
compared to the MOET animals. Futures studies can help to
elucidate the main mechanisms behind these observations and
to evaluate the implications of these findings in practical ART
based on IVP of cattle embryos.
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