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ABSTRACT
Imperfect detection in field studies on animal abundance, including birds, is common and can be corrected for in var-
ious ways. The binomial N-mixture (hereafter binmix) model developed for this task is widely used in ecological studies 
owing to its simplicity: it requires replicated count results as the input. However, it may overestimate abundance and 
be sensitive to even small violations of its assumptions. We used a 33-year dataset on the Marsh Tit (Poecile palustris), 
a sedentary forest passerine, from Białowieża Forest, Poland, to validate inference from binmix models by comparing 
model-estimated abundances to the true number of breeding pairs within the plots, determined by exhaustive popu-
lation study. The abundance estimates, derived from 6 springtime (April and May) counts of males on each plot in each 
year, were highly reliable: 116 out of 132 year-plot estimates (88%) included the true number of pairs within the 95% 
confidence intervals. Over- and under-estimations were thus rare and similarly frequent (9 and 12 cases, respectively), 
with a tendency to overestimate at low densities and underestimate at high densities. Marsh Tits sing rarely but the fre-
quency of countersinging increases with abundance, leading to nonindependence in detections. When accounted for in 
a submodel for detection, the per-survey number of countersinging events positively affected detection probability but 
only weakly affected abundance estimates. Simulations further demonstrate that this property, overestimation at low 
densities and underestimation at high densities, may be a systematic bias of binmix model even if density-dependent 
detection is absent. While the behavior of binmix models in specific situations requires more study, we conclude that 
these models are a valid tool to estimate abundance reliably when intensive population monitoring is not feasible.

Keywords: abundance, binomial N-mixture model, countersinging, density dependence, detection probability, 
Marsh Tit, Poecile palustris

Los modelos de N mezclas estiman la abundancia de manera confiable: una prueba de campo en Poecile 
palustris usando sustitución de tiempo por espacio

RESUMEN
La detección imperfecta en los estudios de campo de la abundancia de animales, incluidas las aves, es común y puede 
corregirse de varias formas. El modelo binomial de N mezclas (en adelante binmix) desarrollado para esta tarea se usa 
ampliamente en estudios ecológicos debido a su simplicidad: requiere como entrada resultados de conteo replicados. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is 
properly cited.

LAY SUMMARY

 • We performed a field test of binomial N-mixture models using a 33-year dataset of a Marsh Tit (Poecile palustris) counts 
in Białowieża Forest, Poland, by comparing abundance estimates from the model to the true number of breeding pairs.

 • The models produced highly reliable estimates: 88% of 132 comparisons included the true number of pairs within 
confidence intervals but showed a clear tendency to overestimate abundance at low densities and underestimate it at 
high densities.

 • Countersinging increased with abundance and violated independence in detections—one of the model’s 
assumptions. Despite this violation, simulations indicated that even if density dependence was not accounted for in 
the submodel for detection, model estimates showed high agreement with abundances at particular sites, except for 
extreme situations (low detection probability coupled with low or high abundance). 

 • While our study validates the performance of binmix models, future studies are needed to understand why and how 
the possible biases can arise.
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Sin embargo, puede sobrestimar la abundancia y ser sensible incluso a pequeñas violaciones de sus supuestos. Usamos 
un conjunto de datos de 33 años de Poecile palustris, un paseriforme sedentario de bosque, del Bosque de Białowieża, 
Polonia, para validar la inferencia de los modelos binmix comparando las abundancias estimadas por el modelo con el 
número real de parejas reproductoras dentro de las parcelas, determinado por un exhaustivo estudio poblacional. Las 
estimaciones de abundancia, derivadas de 6 conteos de machos en primavera (abril-mayo) en cada parcela en cada año, 
fueron altamente confiables: 116 (88%) de 132 estimaciones en las parcelas a lo largo de los años incluyeron el número 
real de parejas dentro del intervalo de confianza del 95%. Las sobreestimaciones y subestimaciones fueron, por tanto, 
raras e igualmente frecuentes (9 y 12 casos, respectivamente), con una tendencia a sobreestimar en densidades bajas y 
subestimar en densidades altas. Los individuos de P. palustris rara vez cantan, pero la frecuencia de contra-canto aumenta 
con la abundancia, lo que lleva a la falta de independencia en las detecciones. Cuando se tuvo esto en cuenta en un 
sub-modelo de detección, el número de eventos de contra-canto por censo afectó positivamente la probabilidad de 
detección, pero solo afectó débilmente las estimaciones de abundancia. Las simulaciones demuestran además que esta 
propiedad, la sobreestimación a bajas densidades y la subestimación a altas densidades, puede ser un sesgo sistemático 
del modelo binmix incluso aunque no exista una denso-dependencia de la detección. Si bien el comportamiento de los 
modelos binmix en situaciones específicas requiere más estudio, llegamos a la conclusión de que estos modelos son una 
herramienta válida para estimar la abundancia de manera confiable cuando el monitoreo intensivo de la población no 
es factible.

Palabras clave: abundancia, contra-canto, denso-dependencia, modelo binomial de N mezclas, Poecile palustris, 
probabilidad de detección

INTRODUCTION

Field studies of the occurrence and abundance of animals 
commonly suffer from non-detections despite organisms’ 
actual presence, so-called false negatives (MacKenzie et al. 
2006, Nichols et al. 2009, Kéry and Schaub 2012, Kéry and 
Royle 2016). Several methods have been developed to miti-
gate non-detection error, reviewed by Dénes et al. (2015). 
Binomial N-mixture models (hereafter “binmix models”; 
Royle 2004) have become a standard tool in studies of 
abundance when detection probability is imperfect. 
N-mixture models use multiple surveys across multiple 
sites to estimate detection probability and abundance and, 
provided that the assumptions of binmix models are not 
violated, abundance is estimated properly (Kéry 2010, Kéry 
and Royle 2016). The ease of obtaining such data during 
simple counts of unmarked individuals has resulted in the 
increasing popularity of these models. However, the rela-
tively cheap data requirements of the binmix model do not 
come for free. Binmix models have been shown by Link 
et  al. (2018) to be sensitive to violations of assumptions, 
including those individuals that are not double counted 
and that there is no unmodeled heterogeneity in detection 
probability. Being rarely investigated, the latter deserves 
particular attention, because one of the binmix model as-
sumptions is that individuals at a site are detected inde-
pendently—that is, detecting one individual does not affect 
detecting another one. Warren et al. (2013) demonstrated 
that per capita song rates and detectability of Golden-
cheeked Warblers (Setophaga chrysopharia) increased 
with abundance, which violates the assumption of inde-
pendence of detection and can lead to biased abundance 
estimates. However, no other studies have been performed 
to investigate how density-dependent song rates, possibly 
common in passerines, affect abundance estimates.

Furthermore, Barker et  al. (2017) reported that abun-
dance and detection parameters in binmix models may 
not be separately estimable if there is temporal variation 
in detection probability across repeated surveys. Without 
auxiliary data that help to explain variation in detection 
probability, counts of unmarked individuals may not have 
sufficient information to separate abundance from imper-
fect detection (unlike in capture–recapture data). However, 
a large-scale screening test by Kéry (2018) showed that 
model parameters were mostly estimable. Heavy biases in 
abundance estimates are also reported when the closure 
assumption is violated (Kéry and Royle 2016, Fogarty and 
Fleishman 2021). Violations of binmix model assumptions 
can be assessed by simulations, and Kéry and Royle (2016) 
offer an example of such an exercise (pp. 248–250 in Kéry 
and Royle 2016), with a few types of violations studied and 
discussed. Given the reported sensitivity of binmix models 
to violations of assumptions, it is of primary importance to 
understand the sources of variation in the data to obtain 
realistic abundance estimates and to choose the appro-
priate underlying distributions, as stressed by Joseph et al. 
(2009). In a recent study, Bötsch et al. (2019) used territory 
mapping data and nest box-occupancy data to test the per-
formance of binmix and multinomial N-mixture models, 
the latter based on individual detection–non-detection 
histories within territories. Binmix performed well in 
estimating abundance, although the estimates were higher 
than the minimum number of territories assessed from the 
nest-box scheme. In view of doubts regarding the validity 
of abundance estimates from binmix models, further field 
tests of these models are necessary.

Here, we report a field test of binmix models, performed 
on a common forest passerine, the Marsh Tit (Poecile 
palustris). The rare opportunity to test binmix models by 
comparing estimates to the true abundance (hereafter “true 
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state”) comes from our long-term (33 years) data, collected 
annually on permanent study plots in Białowieża Forest 
(eastern Poland). Marsh Tits are sedentary (Wesołowski 
2015) and breed in natural tree holes in the Białowieża 
Forest (no nest boxes are present; Wesołowski 2001, 2007, 
Wesołowski and Martin 2018). We compiled the number 
of singing males from combined spot (territory) mapping 
surveys as the input for binmix models. The number of 
breeding pairs on study plots was obtained from the in-
tensive population study on the same plots added to, and 
independent from, spot mapping surveys. During this 
study, Marsh Tit territories were nearly always identified 
and the majority of occupied nesting holes on our plots 
were found in most years, providing a reliable measure of 
the “true state” in each year. Our study was designed to 
test 2 hypotheses: (1) binmix abundance estimates—re-
ported as too high in some studies—agree with the “true 
state,” known from a population study, and (2) the density-
dependent detection probability expected in Marsh Tits 
biases abundance estimates negatively, if this portion of 
heterogeneity in detection is not modeled.

METHODS

Study Area
The study was conducted in the Białowieża Forest, located 
on the border between Poland and Belarus (Figure 1). 
Białowieża Forest is a mixed, deciduous-coniferous tem-
perate forest and covers ~1,600 km2, of which ~625 km2 
belong to Poland (including a 47 km2 fragment protected 

within the Białowieża National Park [BNP]; approximate 
central point: 52.7431°N, 23.8774°E) and the remaining 
part to Belarus. BNP conserves the last and best-preserved 
lowland primeval forest in Europe. Its high diversity stems 
from the well-preserved, diverse, multilayered structure of 
the primary forest, manifested in the full variability of the 
size and age of trees, a large amount of deadwood, and a 
superabundance of tree holes (e.g., Tomiałojć et al. 1984, 
Tomiałojć and Wesołowski 2004, Wesołowski et al. 2006, 
2018).

Study Plots
The plots used in the study were established in 1975 to 
assess bird densities in the central part of the Białowieża 
Forest, within the BNP reserve (Tomiałojć et  al. 1977, 
1984). The monitoring has continued to the present 
(Wesołowski et al. 2015). The long-term population study 
on Marsh Tits, started in 1987, is conducted in parallel 
on 4 of these plots: 1 riverine (K) and 3 lime-hornbeam 
(C, M,  and W) plots (Figure 1). Plots differ in areas (24 
to 33 ha) and their descriptions can be found elsewhere 
(Tomiałojć and Wesołowski 2004, Wesołowski et al. 2015).

Territory Mapping: Field Methods
Bird monitoring based on spot mapping started in 1975 
(Tomiałojć et al. 1984). Each year in the spring, from early 
April to late June, experienced observers visited 7 plots 
(including 4 used in the current study) 9 times during 
morning hours. Observations followed the recommenda-
tions of a combined territory (spot) mapping method 

FIGURE 1. Map of Europe with the study area marked. Green area is the strict reserve of the Białowieża National Park; polygons la-
beled with letters (K, W, C, and M) are the 4 study plots. 
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(Tomiałojć 1980). During the survey, observers walked 
slowly through the plot to visit the whole area and mapped 
all birds heard or seen, with details on behavior or move-
ments on field maps of 1:1,000 scale, allowing records to be 
mapped with a precision of a few meters. Surveys started 
at sunrise and took 4 to 6 hr. On average, 1.5 to 3 hr of time 
was spent on observations per 10 ha of forest, making the 
field effort quite intensive. Successive surveys were separ-
ated by 8- to 11-day intervals.

Data Preparation from Spot Mapping Surveys
A.W. and G.N. extracted records of Marsh Tit singing males 
from the field maps and counted their number for the ana-
lyses. We considered only records of singing males since fe-
male Marsh Tits sing rarely (Broughton 2008); females are 
detectable either by alarm calls or by visual cues and, thus, 
have a strikingly lower detection probability than males. 
During the surveys, observers noted all the birds detected, 
so the same individual birds might be, and frequently were, 
noted multiple times, which helped in delimiting terri-
tory boundaries later on by the presence of clusters of re-
cords. To reduce the effect of multiple detections of the 
same individuals, we adopted a conservative approach 
when counting the number of singing males from a given 
survey. Countersinging males during a survey made up the 
minimal number. Most commonly 2 neighboring males 
were recorded this way, but several records of 3 or even 4 
singing males heard by the observer at the same time also 
occurred. Since Marsh Tit territories can be large, without 
countersinging, a male recorded singing in close proximity 
to another record of a singing male is likely to be the same 
individual, which has moved within its territory and vocal-
ized again. Therefore, if no countersinging was recorded, 
we treated a male as a different one only when it sang at 
a distance of 300 m or more from the other males. While 
the limit of 300 m is somewhat arbitrary, may seem too 
large, and could underestimate male numbers (by removing 
some singing males recorded closer than a 300 m distance 
from other males), we based it on our experience, given the 
average territory size of the species. We used these criteria 
to determine the number of singing males from each survey 
in each plot in each year. We used data from surveys 1 to 6 
(early April to late May with dates variable and dependent 
on the onset of spring each year; ranges for successive sur-
veys 1 to 6 across years: April 4 to 19, April 7 to 27, April 12 
to May 5, April 19 to May 13, April 28 to May 21, and May 
9 to 30). Later in the season, males cease singing, young 
Marsh Tits leave nesting holes, and family groups disperse 
in the area, with little or no singing.

Marsh Tit Population Study
We determined the actual number of breeding pairs of 
Marsh Tit on a given plot in a given year within a detailed 
population study, starting in 1987 (Wesołowski 1996). 

This study was independent from the spot mapping sur-
veys in the sense that we performed separate visits (15 to 
25 per plot each year, late March to early May) dedicated 
to delimiting Marsh Tit territories and finding nesting tree 
holes (Wesołowski 2001). The Marsh Tit is a sedentary 
species once settled during the first year, and many birds 
reused nesting holes, the majority of which persist from 
previous years (Wesołowski 2006), making it easy to locate 
some of the pairs. Marsh Tits form permanent pairs that 
breed in exclusive territories ~5 ha in size (Amann 1997, 
Broughton et  al. 2006, 2012) and rear 1 brood per year 
(Wesołowski 1998, 2000, 2002). Every year, we attempted 
color marking of all breeding adults with a unique combin-
ation of a metal and 3 color rings when nestlings were 10 to 
15 days old, whenever the nesting hole was accessible. The 
majority of breeding adults were color ringed at the end of 
the season. The presence of individually marked individ-
uals was helpful in delimiting and counting territories the 
next spring (Wesołowski 2006).

Marsh Tit distribution in the Białowieża Forest is more 
or less continuous in suitable habitats, and some territories 
only partly overlap with study plots. However, males (and 
pairs) from these territories were also recorded at study 
plots. Frequently, a nesting hole was found outside the 
plot (for instance, 50 m, 100 m, or even further away from 
the plot boundary), when observers followed birds first 
detected within a plot. Obviously, such males may be re-
corded during surveys. The presence of territories partly 
outside plot boundaries led to the so-called “sunflower 
effect” (Kéry and Royle 2016): the area effectively covered 
by surveys is larger than the plot since it includes some 
(unknown in size) areas adjacent to the plot. At the same 
time, because birds from these “boundary pairs” visited the 
plot (although most probably spent less their time there 
than individuals from within-plot pairs), we included them 
in plot-and-year-specific abundance estimates. Therefore, 
the basic Marsh Tit abundance (i.e. the annual number of 
pairs [territories] per plot, the “true state”) included all the 
pairs with territories wholly within the plot, which was a 
lower value than when boundary pairs were included. To 
delimit the maximum number of males that could occur on 
our plots during surveys, we added “boundary pairs” (cre-
ating a min-max range for the “true state”) to allow direct 
comparison with estimates from binmix models.

Binmix Model
Because we wanted to perform a model test, we estimated 
abundance (i.e. annual numbers of pairs territories–1 per 
plot) with a binmix model using counts of singing males. 
Binmix models assume that the population is closed during 
the course of the study, and this assumption seems to be 
generally met for Marsh Tits: the species is sedentary and 
territorial during breeding and nest failures (resulting in 
earlier cessation in singing or possibly leaving the plot by 
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birds) happened very rarely before hatching (Wesołowski 
2006, 2015). Since our surveys were spread over 2 months, 
however, violations of closure assumption could still 
happen: some individuals might have died, emigrated out-
side the plot following an early brood failure, or an immi-
grant or floater male could have passed through the plot 
and be detected during surveys. In fact, the binmix model 
using our survey data estimates the superpopulation size 
(the total number of males using the plot over the season) 
that can be different from the actual number of breeding 
pairs. Among other assumptions, binmix also requires that 
individuals are not counted multiple times so that false 
positives are absent (which we reduced by the minimal dis-
tance criterion), that all individuals have the same prob-
ability of detection, and that detections are independent 
(i.e. detection of a given individual is independent from de-
tection of another individual; Royle and Nichols 2003, Kéry 
and Royle 2016). The latter assumption is likely to be vio-
lated in Marsh Tits, because males frequently respond to 
singing neighbors, which seems to be particularly evident 
in years with higher numbers. Obviously, this can lead to 
positive density dependence in detection probability (Royle 
and Nichols 2003, Warren et al. 2013). To investigate this 
more, we first verified whether the number of these inter-
actions (where male activity is induced by a neighbor’s 
song, so that both sing at the same time) and the number of 
males involved were related to true abundance (see below). 
Second, we used countersinging cases extracted from the 
same maps for each performed survey and included them 
as a survey-dependent covariate in the submodel for de-
tection to capture the effect of countersinging on detection 
probability directly. We used the time-for-space substitu-
tion (TSS) approach (Kéry and Royle 2016), in which, al-
though the data are collected on the same plots for several 
years in a row, they are treated as independent (as if they 
were collected on different plots). In our case, we had data 
collected on 4 plots for 33 years, but they were treated as 
if there were 132 plots (4 × 33), each surveyed in one year. 
TSS approaches perform well (Yamaura et  al. 2011) and 
have been proven to do so also in dynamic settings (Costa 
et al. 2019, 2021). Nonindependence was likely not prob-
lematic, since first-order autocorrelation was absent or 
weak in the 33-year time series of true abundance for plots 
C, K, and M (correlation coefficients of 0, 0.20, and 0.27 
with P = 0.99, P = 0.28, and P = 0.14, respectively); only on 
plot W was it moderate and significant (r = 0.53, P = 0.01).

We fitted 12 models to the whole dataset. In the submodel 
for detection, we treated detection as dependent on survey 
(to address a decline in singing activity as the season pro-
gresses), dependent on the number of countersinging 
events during a particular survey, and dependent on both 
survey and countersinging. Abundance was modeled as ei-
ther (1) constant (independent of the year and plot); (2) year 
dependent (and the same on all plots); (3) plot dependent 

(and the same for all years); or (4) year and plot dependent, 
producing separate abundance estimates for all plots in all 
years. Differences in plot areas were accounted for by using 
offset of log(area). Therefore, our most complex model had 
the form:

Ni ∼ Poisson(λ) with log(λ)
= β0 + β1 × plot+ β2 × year+ offset (log(area))

Cij|Ni ∼ Binomial(Ni, Pij) with logit(Pij)

= α0 + α1 × surveyj + α2 × countersingingij

where the first line describes abundance, with Ni being 
abundance at the plot i, and the second line describes de-
tection (observation) process, with Cij being the count at 
plot i during survey j and Pij being detection probability 
at plot i during survey j. Models that assumed abun-
dance followed a Poisson distribution were preferred over 
negative-binomial and zero-inflated Poisson options based 
on Akaike Information Criterion (AIC, Supplementary 
Material Table S1). We ran models with several values of 
K, the upper limit of integration, to ensure insensitivity of 
estimates to the K value (eventually, K = 62, 2 × maximal 
count + 50 was sufficient). We fitted the models to the data 
in unmarked package (Fiske and Chandler 2011) in R 3.6.1 
(R Core Team 2019). We obtained plot-and-year-specific, 
mean conditional estimates of abundance—best unbiased 
predictions (hereafter BUPs)—with their 95% confidence 
intervals (CIs), given observed data and model parameters 
(Kéry and Royle 2016) with the function ranef() in un-
marked. We selected the model best suited to the data using 
AIC (Burnham and Anderson 2002). A goodness-of-fit test 
by parametric bootstrapping based on Tukey–Freeman dis-
crepancy indicated underdispersion (i.e. that the data were 
actually less variable than assumed under the Poisson dis-
tribution; χ 2 = 0.55, P = 0.96). While this might also indi-
cate a lack of fit, we took no action, as recommended by 
Burnham and Anderson (2002).

Binmix Estimates of Abundance and the “True State”
We used plot-and-year-specific BUPs to assess the mag-
nitude of a difference between the binmix estimates and 
the “true state,” measured as a ratio of these 2 quantities 
(Warren et al. 2013): mean BUP/“true state.” A value of 1 
indicated no difference between BUP and “true state,” while 
values below or above 1 indicated higher or lower BUPs 
than the “true state,” respectively. We obtained CIs of this 
difference by substituting lower and upper 95% confidence 
limits for a mean BUP, while “true state” was a fixed quan-
tity. The difference can be considered significant, where the 
CIs excluded a value of 1. Furthermore, we tested for a re-
lationship between the magnitude of a difference described 
above and the “true state” using a linear model (LM). The 
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relationship was better described with a squared term of 
“true state” included as a predictor than ordinary LM (AIC: 
LM with squared term: –18.36 vs. ordinary LM: –13.07), 
deviance (32.6% vs. 29.2%), and adjusted R2 (0.32 vs. 0.29). 
BUPs and their precision are given by posterior abundance 
distributions provided by the function ranef(), applied to 
a binmix model object in unmarked. Here, any possible 
abundance at a site (0, 1, 2,... up to K, the upper limit of inte-
gration in binmix models) occurs with a defined probability 
and peaks at the most likely abundance, given the data and 
model estimates. To fully propagate uncertainties associ-
ated with BUPs, instead of using the single, most likely value 
per plot-and-year combination (like the mean or median 
BUP) and ignoring its uncertainty, we drew abundance esti-
mates from posterior abundance distributions with appro-
priate probabilities. We repeated this procedure 500 times, 
each time creating a sample of BUPs for our 132 plot-and-
year combinations and fitting an LM to this sample, which 
allowed us to include the uncertainty of the abundance esti-
mate to be propagated into LM estimates.

Density-dependent Countersinging
To directly verify whether the number of countersinging 
interactions and the number of males involved in these 
interactions were related to true abundance, we used 
Poisson GLMMs in lme4 package (Bates et al. 2015) in R (R 
Core Team 2019). We used the number of countersinging 
cases recorded during a single survey and the total number 
of males involved as the (unbounded) responses (i.e. 2 
countersinging males noted twice during a survey give a 
response value of 4), while the “true state” (the number of 
breeding pairs) and a factor identifying the survey (6 levels) 
represented predictors. We included the latter to address 
seasonal variation since Marsh Tits singing activity de-
clines with date. To control for correlated responses (out-
comes of 6 surveys at a single plot in a single season), we 
included plot-and-year combinations as a random effect 
with 132 levels.

Simulation Study
To further explore accuracy of binmix abundance estimates 
with and without density-dependent detection, we con-
ducted simulations. In simulation 1, we generated 5 hypo-
thetical sets of count data similar to our study system (150 
sites, mean λ = 5, 6 surveys), where detection probability 
was either constant across all surveys and set to 0.2, 0.5, 
and0.8 (3 sets), varied randomly (random heterogeneity in 
detection) within 0.1 to 0.9 range, independently for each 
jth survey (fourth set), or declining across season and set 
to 0.6, 0.5, 0.4, 0.3, 0.2, and 0.2 (fifth set). Each set consisted 
of 500 simulation runs with binmix models assuming con-
stant λ and survey-specific detection P fitted to each run. 
With λ = 5, the range of true (realized) abundance Ni within 

a single simulation run varied between 0 and 18 at indi-
vidual sites. Simulation 2 followed simulation 1 (5 sets, 500 
runs each), but our “basal” detection probability Pb (values 
from simulation 1)  increased as a function of abundance 
at site i multiplied by logit-scale beta, b = 0.5, and had the 
values described by the equation: Pi = plogis(Pb + b × Ni). 
This resulted in an increase of P with N, which had a sig-
moid shape (see Supplementary Material Figure S1). We 
used a simpler form of dependence of detection on abun-
dance than Warren et al. (2013), but the resulting sigmoid 
increase was identical. Binmix models fitted to the entire 
simulation 2 were mis-specified: they did not account for 
the increase in detection with N so that this portion of het-
erogeneity in detection remained unmodeled. We sum-
marized abundance estimates with raw BUPs from each 
simulation run (Supplementary Material Figures S2 and 
S3) and with coverage rates across all runs—the propor-
tion of times CIs of BUPs include true (simulated) abun-
dance for a given site (Supplementary Material Table S2). 
Simulations were conducted in R 3.6.1 (R Core Team 
2019), using unmarked (Fiske and Chandler 2011) function 
pcount() to fit models, and parts of code provided by Kéry 
and Royle (2016).

RESULTS

During the territory mapping surveys, observers recorded 
between 0 and 6 Marsh Tit males per survey, rarely reaching 
the “true state”—the actual number of pairs breeding in the 
plot (Figure 2). Using the maximal count per site and per 
year, the number of males recorded equaled the “true state” 
in just 9 out of 132  year-and-plot combinations (~7%). 
Thus, even if the highest count out of 6 effort-intensive sur-
veys performed per spring is chosen, it is still lower than 
the true population state.

The binmix models including both the seasonal decline 
and the countersinging effects in the submodel for detec-
tion had the most support (Akaike weight [wi] = 1; Table 
1). The top-supported model had constant abundance 
(wi  =  0.80; Tables 1 and 2). BUPs from this model were 
in most cases close to the “true state”: on average, 88% of 
estimates (plot-specific ranges: 85% to 94%, 33 compari-
sons for each plot) contained the “true state” within their 
95% CI (Figure 2). Over- and under-estimates (“true state” 
not included within 95% CI) occurred with similar fre-
quency: binmix underestimated abundance 12 times and 
overestimated 9 times (Figure 3A). Furthermore, when the 
“true state” included boundary pairs (creating a min–max 
range), CIs around BUPs and min–max ranges for the “true 
state” (within plot pairs + boundary pairs) overlapped in 
all except 7 cases, illustrating very high (~95%) agree-
ment between binmix estimates and the true abundance. 
Remarkably, all of these cases were in fact underestimated 
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by binmix relative to actual abundance, contrary to the 
widely reported tendency of this model to overestimate 
numbers.

The magnitude of difference between binmix BUPs and 
the “true state” declined with abundance (Table 3, Figure 
3B). With low abundance (2 pairs on the plot), binmix 
overestimated 1.49 times (95% CI: 1.28–1.73) on average, 
while a tendency to underestimate was clear at high abun-
dances (0.80 times [95% CI: 0.61–0.99] on average with 9 
pairs breeding on the plot).

Detection probability of a singing male Marsh Tit was 
significantly affected by the number of countersinging 
events (Table 2). It was highest early in the spring and de-
clined as the season progressed. With no countersinging, 
detection probability was estimated at 0.45 and 0.52 during 
the first 2 surveys in April and declined to ~0.19 in late 
May. With 2 countersinging events per survey, respective 
values were 0.67, 0.73, and 0.37 (Table 2).

The number of countersinging cases recorded during 
the surveys was strongly, positively related to abundance 
(the “true state”) and declined during successive surveys 
(Table 4, Figure 4, top row). The same was true for the 
number of males involved in countersinging events (Figure 
4, bottom row). Irrespective of seasonal decline, and not 
unexpectedly, this indicates that countersinging happens 
more frequently and involves more males when Marsh Tits 
are more abundant.

Simulations showed that with no density-dependent 
detection, binmix tended to overestimate abundance 
at low densities and underestimate at high densities 
(Supplementary Material Figures S2A–E). The bias was 
stronger at sites with high abundance and low (P  =  0.2) 
detection (Supplementary Material Figure S2A), became 
weaker at higher detection probabilities (Supplementary 
Material Figures S2B–D), and was still present in simu-
lation results closely mimicking our study system, with 

FIGURE 2. Binmix models of the 4 study plots estimate abundance reliably: model-estimated abundances shown by black dots 
(error bars: 95% CI) include true numbers shown by red dots (error bars: min–max range) in ~88% of comparisons. Binmix abun-
dance (number of pairs/territories) estimated from counts of singing males Marsh Tits by the top-supported model, Białowieża 
Forest, 1987–2019. The highest count of singing males each year is shown with small, gray circles and is almost always lower than 
the true numbers.
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detection declining across season and not accounted for in 
the models (Supplementary Material Figure S2E). Despite 
the presence of bias, high (≥95%) coverage rates illustrate 
that under most simulated scenarios, binmix models per-
formed well. Density-dependent detection coupled with 
low (P = 0.2) basal detection and unaccounted for in the 
models led to regular overestimation of abundance at 
sites where there are more pairs/males (Supplementary 
Material Figure 3A). This effect disappeared for higher de-
tection probabilities (basal P = 0.5 and 0.8); abundance es-
timates were then more accurate (Supplementary Material 
Figures S3B–D) but overestimation occurred again when 
a decline in detection across the season was simulated 
(Supplementary Material Figure S3E). For both simula-
tions, coverage rates were the highest (≥95% of sites with 
CIs of abundance including true value) at sites with abun-
dances centered around 5 (the simulated mean λ, roughly 
within the 1 to 10 range) and moderate to high detection 
probabilities. They were below this level when detection 
was low (P = 0.2) and systematically declined with abun-
dance of 10 or more (Supplementary Material Table S2). 
This indicates that if density dependence in detection is 
not accounted for, binmix models still work well if detec-
tion probability is constant across surveys and moderate 
to high, except for sites with high abundance. The models 
tended to under- and over-estimate abundance when 
abundance was low and high, respectively, and detection 
probabilities were low (P  =  0.2). While this might indi-
cate a systematic problem with abundance estimates from 
binmix models, coverage rates, illustrating whether CIs in-
cluded the true values, were ≥95% most of the time, except 
for extreme cases (Supplementary Material Table S2).

DISCUSSION

There are 3 main findings of this study. First, binmix 
models estimated abundance correctly: most estimates 
agreed with true population numbers, which is in line with 
Bötsch et al. (2019) conclusions. The rarity of comparisons 
like the one by Bötsch et al. (2019) or the one reported in 
this paper is most likely because true (or even approxi-
mate) states are rarely known. However, the quantity we 
use here as the “true state” (i.e. number of pairs from de-
tailed population study) might still differ from both the ac-
tual number of pairs breeding on the plots. This is because 
even in territorial and sedentary species as the Marsh Tit, 
an unknown degree of population openness can occur over 
~2 months. Both emigrations (e.g., following nest failures) 
or deaths and immigrations make local populations open, 
so that quantities estimated with binmix from counts re-
peated over such a long time represent the superpopulation 
size—the total number of individuals using the plots over 
the course of the study. Perhaps one can always expect 
some degree of openness of the population even in strictly 
sedentary and territorial species, which can bias abun-
dance estimates severely (Link et  al. 2018, Fogarty and 
Fleischman 2021; see also the latter work for the discus-
sion on definitions of abundance). Possible solutions to this 
issue include shortening the course of the study that should 
help to reduce the degree of openness (there is less chance 
that anything changes over a short time window than over 
a longer window). However, repeated count results seem 
to suffer mainly from missing individuals during field sur-
veys, provided that the population is closed. Only in a mi-
nority of cases did the highest number of males recorded 
during 6 surveys approach the “true state” and never ex-
ceeded it when boundary pairs were considered (Figure 2), 

TABLE 2. Coefficients from the top-supported binmix model 
used to estimate abundance of Marsh Tits, Białowieża Forest, 
Poland, 1987–2019. Coefficients are given on the link function 
scale (log for abundance and logit for detection; ± SE) and on 
real scale (with 95% CIs). Abundance estimate is expressed as 
numbers per area unit (1 ha) due to offset being included in the 
submodel for abundance. For subsequent surveys, detection 
probability coefficients are given as survey-specific estimates 
(means parametrization).

Coefficient Estimate

 Link function scale Normal scale

Abundance
 λ –1.790 ± 0.067 0.167 (0.146–0.190)
Detection probability P
 Survey 1 –0.204 ± 0.144 0.449 (0.381–0.520)
 Survey 2 0.083 ± 0.146 0.521 (0.449–0.591)
 Survey 3 –0.132 ± 0.132 0.467 (0.404–0.532)
 Survey 4 –0.668 ± 0.116 0.339 (0.290–0.392)
 Survey 5 –0.961 ± 0.115 0.277 (0.234–0.324)
 Survey 6 –1.449 ± 0.120 0.190 (0.157–0.229)
 Countersinging 0.465 ± 0.068 –

TABLE 1. Binmix models fitted to count data of singing male 
Marsh Tits from Białowieża Forest, eastern Poland, 1987–2019. 
λ is abundance, and P is detection probability. In the submodel 
for abundance, λ was modeled as: (.) = constant, year = year de-
pendent, plot = plot dependent, and plot + year = plot and year 
dependent. The detection probability P was modeled as survey 
dependent, countersinging dependent, or both. k is the number 
of parameters, ΔAIC is the difference between the top-supported 
model and a given model in AIC units, and wi is the model weight. 
Models ranked according to AIC. The top-supported model is in-
dicated in bold. Symbol (+) in the last column indicates wi < 2e-13.

Model k ΔAIC wi

λ(.) Psurvey + countersinging 8 0.00 0.800
λ 

plot
 P

survey + countersinging
11 2.72 0.200

λ 
year

 P
survey + countersinging

40 54.98 +
λ 

year+plot
 P

survey + countersinging
43 57.68 +

λ 
(.)

 P
survey

7 66.86 +
λ 

plot
 P

survey
10 68.03 +

λ 
year

 P
survey

39 113.80 +
λ 

year+plot
 P

survey
42 114.69 +

λ 
(.)

 P
countersinging

3 178.00 +
λ 

plot
 P

countersinging
6 179.80 +

λ 
year+plot

 P
countersinging

38 223.90 +
λ 

year
 P

countersinging
35 228.12 +
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