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ARTICLE

Cucumber powdery mildew detection using hyperspectral
data1

Claudio I. Fernández, Brigitte Leblon, Jinfei Wang, Ata Haddadi, and Keri Wang

Abstract: This study aimed to understand the spectral changes induced by Podosphaera xanthii, the causal agent of
powdery mildew, in cucumber leaves from the moment of inoculation until visible symptoms are apparent.
A principal component analysis (PCA) was applied to the spectra to assess the spectral separability between
healthy and infected leaves. A spectral ratio between infected and healthy leaf spectra was used to determine
the best wavelengths for detecting the disease. Additionally, the spectra were used to compute two spectral varia-
bles [i.e., the red-well point (RWP) and the red-edge inflexion point (REP)]. A linear support vector machine (SVM)
classifier was applied to certain spectral features to assess how well these features can separate the infected leaves
from the healthy ones. The PCA showed that a good separability could be achieved from 4 days post-inoculation
(DPI). The best model to fit the RWP and REP wavelengths corresponded to a linear model. The linear model had
a higher adjusted R2 for the infected leaves than for the healthy leaves. The SVM trained with five first principal
components scores achieved an overall accuracy of 95% at 4 DPI (i.e., two days before the visible symptoms).
With the RWP and REP parameters, the SVM accuracy increased as a function of the day of inoculation, reaching
89% and 86%, respectively, when symptoms were visible at 6 DPI. Further research must consider a higher number
of samples and more temporal repetitions of the experiment.

Key words: crop disease detection, red-edge point, support vector machines, red-well point, leaf spectroscopy.

Résumé : Les auteurs voulaient savoir comment Podosphaera xanthii, agent responsable du blanc, modifie le spectre
dans les feuilles de concombre entre l’inoculation et l’apparition des symptômes de la maladie. Ils ont donc
appliqué une analyse en composantes principales (ACP) au spectre pour voir s’il était possible de différencier les
feuilles saines des feuilles malades d’après leurs caractéristiques spectrales. Les longueurs d’onde permettant de
déceler le mieux la maladie ont été établies en fonction du rapport spectral entre les feuilles infectées et les
feuilles bien portantes. Le spectre a aussi permis de calculer deux variables : le point de vitalité dans le rouge
(PVR) et le point d’inflexion en bordure du rouge (PIR). Une machine à vecteurs de support (MVS) servant à la
classification linéaire a été appliquée à certaines propriétés spectrales pour déterminer si ces dernières permettent
de séparer les feuilles malades des feuilles saines. L’ACP indique qu’on obtiendrait une bonne séparation à partir
de la quatrième journée suivant l’inoculation. Le modèle linéaire est celui qui s’ajuste le mieux à la longueur
d’onde du PVR et du PIR. Après ajustement, le facteur R2 du modèle linéaire est plus élevé pour les feuilles
infectées que pour les feuilles saines. Une fois formée avec la valeur des cinq composantes principales, la MVS par-
vient à un degré d’exactitude général de 95 %, quatre jours après l’inoculation, soit deux jours avant l’apparition
des symptômes. Avec les paramètres PVR et PIR, l’exactitude de la MVS s’accroît en fonction de la journée d’inocu-
lation pour atteindre respectivement 89 % et 86 % à l’apparition des symptômes, six jours après l’infection. Les
recherches ultérieures devront recourir à un plus grand nombre d’échantillons et à de plus nombreuses
répétitions de l’expérience dans le temps. [Traduit par la Rédaction]

Mots-clés : dépistage des maladies des plantes, point d’inflexion en bordure du rouge, machine à vecteurs de
support, point de vitalité dans le rouge, spectroscopie des feuilles.
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Introduction
The Canadian greenhouse crops are the most signifi-

cant and fastest-growing segment of Canadian horticul-
ture. The surface has increased 21% over the last five
years and 48% over the last decade [Agriculture and
Agri-Food Canada (AAFC) 2020]. The province of Ontario
has the highest greenhouse crop production, with 69%
of the total production in Canada (AAFC 2020). Such as
with other crops, fungal diseases can affect greenhouse
crops and be a significant limiting production factor
(Khater et al. 2017). Powdery mildew due to Podosphaera
xanthii is a fungal disease affecting greenhouse cucum-
ber (Cucumis sativus L.) production. The pathogen most
likely survives from season to season in the asexual state
on living cucurbits, spreading by wind-blown spores.
Conidia may also survive in the greenhouse for short
periods, infecting new cucumber crops, particularly
when the new crop overlaps or follows too soon after
removing the old crop (Pérez-García et al. 2009). The
pathogen could produce between 30% and 50% yield losses
in cucumber greenhouse production (Hafez et al. 2020). P.
xanthii grows haustorium to interact with the cell walls of
the leaves, petioles, and stems, establishing a close con-
nection beneath the host cells (Nishizawa et al. 2016;
Eskandari and Sharifnabi 2019). The biotrophic pathogen
does not kill the host cells to obtain nutrients (Spanu and
Panstruga 2017); however, it induces leaf chlorophyll deg-
radation and internal structural damage of colonized cells.
Chlorophyll variations can be detected in the visible spec-
tral domain (400–700 nm) (Mutanga and Skidmore 2007),
while the internal leaf structure changes can be detected
in the near-infrared spectral domain (700–1300 nm)
(Knipling 1970; Delalieux et al. 2007).

Another interesting spectral domain is the red-edge
region, a transition zone located between 660 and
780 nm (Horler et al. 1983). The transition zone is
between the maximal chlorophyll absorbance in the
red wavelength and the strong near-infrared reflectance
due to leaf mesophyll scattering. This region has two
variables, the red-well point (RWP) and the red-edge
inflection point (REP) (Pu et al. 2003). RWP is the wave-
length in the red region, between 660 and 680 nm, corre-
sponding to the minimum reflectance due to maximum
chlorophyll absorption. REP is the wavelength corre-
sponding to the inflexion point of the spectral curve
between the red and near-infrared spectral domains. At
REP, the reflectance slope in the red-edge region is
maximal (Darvishzadeh et al. 2009). Shifts of the REP to
longer or shorter wavelengths have already been related
to chemical and morphological plant status (Peng et al.
2011). Therefore, changes in the reflectance of the
red-edge region and its associated parameters, RWP and
REP, can be related to powdery mildew in cucumber
leaves.

Previous studies on the detection of cucumber
powdery mildew inside greenhouses were based on

RGB images when the symptoms were already visible
(Wspanialy and Moussa 2016; Zhang et al. 2017, Zhang
et al. 2019). Other studies used hyperspectral data; hyper-
spectral imagery combined with chlorophyll fluores-
cence and thermograms was used by Berdugo et al.
(2014) to study cucumber leaves infected with powdery
mildew. Atanassova et al. (2019) examined cucumber
powdery mildew at the leaf level using vegetation
indices computed with data acquired with a spectrom-
eter having a spectral range between 450 and 1100 nm.
Other cucumber diseases were also detected using
remotely sensed data. Cucumber downy mildew
(Pseudoperonospora cubensis) was detected over hyperspec-
tral imagery in the range between 400 and 1100 nm by
Tian and Zhang (2012). Remote sensing was also used to
detect other significant damages in cucumber. For exam-
ple, Cen et al. (2016) applied hyperspectral imagery
acquired between 400 and 675 nm in reflectance mode
and from 675 to 1000 nm in transmittance mode to study
chilling damage in cucumber fruits. Diseases affecting
other cucurbit species were also studied using remote
sensing. Kalischuk et al. (2019) applied unmanned aerial
vehicle (UAV) multispectral imagery for mapping and
scouting gummy stem blight (Stagonosporopsis cucurbitacea-
rum) in watermelon (Citrullus lanatus) fields, and hyperspec-
tral UAV imagery was used by Abdulridha et al. (2020) to
detect powdery mildew in squash (Cucurbita pepo).

This paper is the first part of a research project aiming
to detect powdery mildew on cucumber leaves. This
paper has the specific objective to understand the
changes induced in hyperspectral data by powdery
mildew in cucumber leaves from the moment of inocula-
tion until visible symptoms are apparent. A principal
component analysis (PCA) was applied to the spectra to
assess the spectral separability between healthy and
infected leaves. A spectral ratio between infected and
healthy leaf spectra was used to determine the best
wavelengths for detecting the disease. Additionally, the
spectra were used to compute two spectral variables
(i.e., RWP and REP). A linear support vector machine
(SVM) classifier was applied to the principal component
scores, RWP, or REP, to assess how well these features
can separate the infected leaves from the healthy ones.
The second part of the study (Fernández et al. 2021) will
test the use of simulated multispectral band reflectance
of the Micasense RedEdge camera and associated vegeta-
tion indices to detect powdery mildew on cucumber
leaves because the main objective of the study is to test
the use of a Micasense RedEdge camera for detecting
cucumber powdery mildew.

Materials and Methods
Experiment

The study used data acquired during a controlled
experiment in December 2019 in a walk-in growth cham-
ber located at the Biotron facilities of the University of
Western Ontario (London, Ontario). The chamber had a
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constant relative humidity of 70%, a photoperiod of 12 h,
with an air temperature of 23 °C, followed by a dark
period of 12 h with an air temperature of 20 °C.
Cucumber seeds cultivar Straight Eight (William Dan
Seeds Ltd) were planted individually at 3 mm depth in
0.5 L pots filled with a volume of 0.475 L of the multipur-
pose Pro-Mix LP15 substrate. The plants were regularly
well-watered. A dose of 10 mg per plant of MiracleGro
All Purpose (NPK 24-8-16, with micronutrients) commer-
cial soluble fertilizer was applied at 100% plant emer-
gence and then every seven days after plant emergence
until the end of the experiment. Ten plants were used
and were split into two groups: healthy (n = 5) and
infected (n= 5). The healthy plants were placed in a sepa-
rate chamber to avoid cross-contamination.

Before inoculation, the leaves of each plant were
marked on the petiole base with a small white tape,
which was numbered from the bottom to the top leaf.
Due to the large surface of the cucumber leaves, a region
of interest (ROI) of 12 cm2 was drawn on each leaf. These
ROIs allow collecting spectral data precisely on the same
inoculated area over time. The infected plants were
inoculated as follows. Cucumber leaves infected with
P. xanthii were collected one day before inoculation from
Great Lakes Greenhouses Inc., located in Leamington,
Ontario, Canada. Samples were wrapped in a paper
towel to absorb humidity, bagged into a Ziploc® bag,
and transported to A&L Laboratories Inc., where they
were kept in a cold chamber at 4 °C until the inocula-
tion. They were cut into small pieces, and the infected
sections were used to contact each ROI marked on the
leaves of the plants from the infected group five times.
The ROI of the control group was also physically
contaminated five times using non-infected sections of
cucumber leaves.

Spectral data
Radiances between 325 and 1075 nm at 1.5 nm

sampling intervals were measured at the leaf level four
hours before inoculation (0 DPI), until seven days post-
inoculation (DPI), with an ASD FieldSpec® HandHeld 2
spectroradiometer (ASD Inc., Boulder, Colorado, USA)
having a 25° field of view (FOV) bare fibre optic cable.
No data was collected at one-day post-inoculation (1 DPI)
to properly establish the pathogen and reduce air
dispersion risk of non-germinated spores and contami-
nation of the healthy plants. The spectra were acquired
and calibrated using the RS3 version 6.4 software from
ASD (ASD Inc., Boulder, Colorado, USA). Leaf reflectance
spectra were acquired over a total of 183 healthy and
201 infected ROI, respectively. They were acquired on
the centre of each marked ROI, including the midrib
region when present, with the optic fibre coupled to an
ASD high-intensity probe equipped with a light source.
A leaf clip, having a white Goretex (99% reflectance) and
a black reference, was attached to the probe. The calibra-
tion of the probe was performed every 10 min and set to

obtain one mean reflectance value from 10 ASD spectral
measurements per reading.

Spectral data processing
All the data was processed using MATLAB R2020b

(MathWorks, Inc., Natick, Massachusetts, USA) following
the flowchart of Fig. 1. In the analysis, we did not con-
sider the spectra obtained from the following cases:
(i) ROIs where there were scars due to the friction during
inoculation, and (ii) yellow bottom leaves due to natural
senescence. The resulting data set contained 71 spectra
from healthy leaves and 57 spectra from infected leaves.
All the spectra were then cropped to the 400–900 nm
range and converted to reflectance spectra using the
ViewSpec Pro version 6.2.0 software (ASD Inc., Boulder,
Colorado, USA). These reflectance spectra were then
subjected to a Savitzky–Golay filtering method to reduce
instrumental noise (Savitzky and Golay 1964). It was
followed by a multiplicative scatter correction (MSC) to
remove additive and multiplicative scattering effects
(Isaksson and Næs 1988).

To determine the DPI when a spectral difference
between healthy and infected leaves can be observed,
the mean reflectance spectra were plotted as a function
of the DPI. Such as in Fernández et al. (2020a), they were
then used to compute the following spectral ratio (SR) at
each wavelength between the spectra acquired over
healthy and infected leaves or plants, which was then
plotted as a function of DPI.

SRλ =
Riλ
Rhλ

ð1Þ

where SRλ is the spectral ratio at wavelength n, Riλ is the
mean reflectance at wavelength n for the spectra
acquired from the infected leaves, and Rhλ is the mean
reflectance at wavelength n for the spectra acquired
from the healthy leaves.

The SR plots have peaks corresponding to wave-
lengths with the highest spectral difference between
healthy and infected leaves or plants.

Given that spectral data have high correlation and
multicollinearity, following several studies on crop dis-
ease detection (Wang et al. 2012; Tian and Zhang 2012;
Gulhane and Kolekar 2014), the spectra were subjected
to a PCA. PCA is a multivariate statistical technique for
transforming data based on eigenvalue analysis. A PCA
on hyperspectral data transforms the data to a new set
of uncorrelated variables that are linear combinations
of the original dataset; and reduces the dimensionality
of the data set while preserving the variance (Kumar et al.
2014; Martinez and Cho 2015). We applied PCA over the
truncated reflectance dataset from 400 to 900 nm.
Then, the first 2 PCA were plotted as a function of the
day post-inoculation to observe the separability of the
healthy and infected spectra as an effect of the disease
development (Everis et al. 2001; Sankaran et al. 2010).
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Such as in Fernández et al. (2020b), to compute RWP
and REP, the spectra were subjected to first derivations.
Both the reflectance and the first-order derivative spec-
tra were cropped to the 660–780 nm spectral range. For
each red-edge parameter (RWP and REP wavelengths),
we created a unique vector containing all RWP or REP
during all days of evaluation. The vectors containing
the RWP or REP wavelengths of the healthy (infected)
cases were 497 × 1 (399 × 1). Linear regression models
were fitted to explain the RWP or REP trend as a func-
tion of the DPI using the fitlm function of MATLAB

R2020b over each vector. Such modelling over each
vector allows obtaining the residuals to perform nor-
mality assumption analysis properly. The one-sample
Kolmogorov–Smirnov test was applied over the resid-
uals of each fitted model using the kstest function of
MATLAB R2020b. The normality assumption was
followed by analyzing the variance homogeneity of
residuals using the F-test (vartest2 function of MATLAB
R2020b). Finally, to assess the trend of each red-
edge parameter, we plotted the mean value of health-
y(infected) RWP or REP as a function of the DPI.

Fig. 1. General workflow, from data collection to the computation of each evaluated parameter [adapted from Fernández et al.
(2020a, 2020b)].

Table 1. Typical confusion matrix and related parameters.

Confusion matrix True (infected) False (healthy)

Predicted values Number of true positive (TP) Number of false positive (FP)
Number of false negative (FN) Number of true negative (TN)

Sensitivity
TP

TP + FN
(2)

Precision
TP

FP + TP
(3)

F1 Score 2 ×
�
Sensitivity × Precision
Sensitivity + Precision

�
(4)

Overall accuracy
TP + TN

TP + FN + FP + TN
(5)
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In order to test whether spectral feature allows sort-
ing healthy and infected leaf ROI, we applied an SVM
algorithm embedded in the MATLAB Statistics and
Machine Learning Toolbox™. The SVM was applied to
(i) the first five principal components, (ii) the RWP,
(iii) and REP wavelengths. The SVM algorithm was

calibrated using cross-validation and a 10 K-fold divi-
sion to avoid overfitting. For each spectral feature, the
SVM outputs a confusion matrix as a function of the
DPI that was used to compute the SVM parameters sen-
sitivity, precision, F1 score, and overall accuracy
(Table 1).

Fig. 2. Comparison between mean reflectance (with one standard deviation) acquired from healthy and infected leaves as a
function of the number of days post-inoculation.
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Results
Mean leaf reflectance and PCA

The mean leaf reflectance spectra for the healthy and
infected leaves are presented in Fig. 2. The results
indicate that across the whole spectra, between 400 and
900 nm, spectral changes between healthy and infected
leaves are not observed until 3 DPI (Figs. 2a–2c).
At 4 DPI, the reflectance of the infected leaves is lower
than those of the healthy leaves in the 400–450 nm spec-
tral region. Between 520 and 520 nm, the reflectance of
the infected leaves is higher than those of the healthy
leaves (Fig. 2d). These results are also reflected at 5 DPI
(Fig. 2e). However, during the whole experiment period,
7 d, the magnitude of changes across the whole spectra
(400–900 nm) is not large enough between healthy and
infected leaves, especially in the near infrared (NIR)
region (780–900 nm), where no visible differences are
apparent (Figs. 2a–2g).

The total variance explained by the five first PCs
changes with the DPI because of the powdery mildew
development, but it is always near or above 97% of the
total variance of the leaf reflectance spectra (Table 2).
The first two PCs showed high variances and improved
the visualization to discriminate between healthy and
infected observations. For PC1, the explained variance
dropped from 84.53% at 0 DPI until 83.51% at 3 DPI, then
increased to 86.91% at 4 DPI, then had a slight reduction
to 86.81% at 5 DPI, then increased and reached its maxi-
mum value of the experiment at 6 DPI (88.31%) and then
dropped to 83.38% at 7 DPI (Table 2). For PC2, the
explained variance showed a minor reduction from
6.42% at 0 DPI to 6.24% at 3 DPI (Table 2). Then, the vari-
ance increased to 7.58% at 4 DPI and decreased to 5.71%
at 5 DPI (Table 2). It increased again to reach its maxi-
mum value (10.16%) at 7 DPI (Table 2).

Figure 3 presents the variation of the scores for the
first and second principal components (PC1 and PC2,
respectively) as a function of the DPI. It allows assessing
the separability of the spectra of healthy and infected
leaves. Both spectra are similar, and no separability can
be seen on the day of inoculation (Fig. 3a) and at 2 DPI
(Fig. 3b). From 3 DPI (Fig. 3c), some infected leaves have

spectra that begin to separate from the centre of the
ellipse of their distribution. It is possible to observe that
at 4 DPI (Fig. 3d), when spectra of most healthy leaves are
closely related, the spectra of the infected leaves become
distant from the spectra of healthy leaves. However, it is
the opposite at 5 DPI (Fig. 3e). At 6 and 7 DPI, the spectra
show greater separation (Figs. 3f and 3g). When the total
explained variance of PC2 is over 6.5% at 4 DPI, the distri-
bution of the spectra of the infected leaves is distant
from the ones of the spectra of the healthy leaves.

Spectral ratio

The SR between healthy and infected cases for each
DPI is presented in Fig. 4. The curve peaks of these plots
correspond to the wavelengths where the spectral differ-
ence between healthy and infected leaves is the largest.
As expected, the spectra of the infected leaves are very
similar to the spectra of the healthy leaves on the day
of inoculation, leading to a spectral ratio closed to 1.
The changes in the spectral ratio were observed from 2
DPI (Figs. 4b–4g). The peaks detected by the ratios are
more pronounced for a longer time after inoculation
and are presented mainly between 450 and 700 nm. We
did not consider the spectral region between 400 and
430 nm during this evaluation because of apparent
instrumental noise (Figs. 4a–4g). When symptoms were
visible for the first time, at 6 DPI, peaks can be easily
located at 444, 570, 667, and 703 nm (Fig. 4f and
Table 3). Between 6 and 7 DPI, there was no significant
variation in the peak positions at 445, 570, 665, and
704 nm (Table 3). The NIR region (800–900 nm) presented
almost no variations on the computed spectral ratio.

RWP and REP

A linear regression model obtained the best fit for the
variation of the mean RWP and REP wavelength posi-
tions as a function of the number of days post-inocula-
tion (Fig. 5). In both cases, the adjusted R2 of the linear
model was not significant at P > 0.05 for the healthy
leaves (R2 = 0.49 for RWP and R2 = 0.18 for REP). For the
infected leaves, it was significant at P ≤ 0.01 for RWP
(R2 = 0.88) and at P ≤ 0.001 for REP (R2 = 0.91).

Table 2. Variance explained by first and second principal components
(PC1 and PC2, respectively) as a function of the number of days post-
inoculation at the leaf level.

Number of days
post inoculation PC1 PC2 PC3 PC4 PC5 Total

0 84.53 6.42 4.09 1.48 1.01 97.53
2 83.63 6.44 4.05 1.81 1.07 97.00
3 83.51 6.24 5.06 2.13 0.98 97.92
4 86.91 7.58 1.70 1.42 0.87 98.48
5 86.81 5.71 2.85 1.69 1.17 98.23
6 88.31 6.53 2.02 1.06 0.83 98.75
7 83.38 10.16 2.33 1.78 0.79 98.44
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SVM

We applied a linear SVM classifier to either the first
five PCs that explained more than 97% of the total vari-
ance, RWP, or REP. We obtained an inconsistent trend
for the spectra classification. At 0 DPI, the overall accu-
racy was around 65%, then increased to 86% at 2 DPI to
drop drastically to 77% at 3 DPI (Table 4). A high incre-
ment was observed from 3 to 4 DPI, reaching an overall

accuracy of 95% (Table 4). Then again, the accuracy
dropped by 10% to reach a value of 85% at 5 DPI
(Table 4). When signs of the disease were visible at
6 DPI, the accuracy increased to 97%, with a slight reduc-
tion of 1% at 7 DPI (Table 4).

The best overall classification accuracy was obtained
using RWP across all DPIs (Table 4). RWP constantly
increased with the DPI and showed higher accuracy than

Fig. 3. Variation of the scores for the first and second principal components (PC1 and PC2, respectively) of healthy and infected
leaves as a function of the number of days post-inoculation.
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REP. The corresponding confusion matrix for the RWP
classification is presented in Table 5. At 0 DPI, the overall
classification using RWP was 55% (Table 4). The overall
accuracy increased to 57.81% at 2 DPI, showing a higher
increment to 72% at 3 DPI (Table 4). At 2 DPI, the
corresponding confusion matrix showed that the num-
ber of correctly classified healthy and infected leaves
was 60 (84%) and 14 (24%), respectively (Table 5). At 3
DPI, the number of adequately classified samples
dropped to 59 (83%) in the case of healthy leaves and
increased to 34 (59%) in the case of infected leaves

(Table 5). At 4 DPI and 5 DPI, it increased to near 78%
(Table 4). At 4 DPI, the number of adequately classified
healthy and infected observations was 58 (81%) and 42
(73%), respectively (Table 5). This number showed
slight variations at 5 DPI to 55 (77%) and 45 (78%) for the
healthy and infected leaves, respectively (Table 5). At
6 DPI, when symptoms were visible, the overall accuracy
was 89%. It reaches its maximum value at 7 DPI with 94%
(Table 4). The related confusion matrix at 6 DPI showed
that 90% (64) of the healthy and 88% (50) of the infected
leaves were classified correctly (Table 5). These numbers

Fig. 4. Variation as a function of the number of days post-inoculation of the spectral ratio computed using the mean spectrum,
acquired from healthy and infected leaves, concerning the healthy leaf spectra according to eq. 1.
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increased to 67 (94%) and 54 (95%) for the healthy and
infected leaves at 7 DPI (Table 5).

With REP, the SVM classification presented an overall
classification accuracy of around 55% at 0 DPI and 2 DPI
(Table 4). At 3 DPI, the overall classification accuracy
was 61% (Table 4). From 4 DPI, REP increased continu-
ously from 71% to 86% at 6 DPI (Table 4). At 7 DPI, the
REP’s overall classification accuracy dropped slightly to
83% (Table 4).

Discussion
This study analyzed the changes in reflectance spectra

in the visible-NIR regions induced by P. xanthii on cucum-
ber leaves. In particular, we applied PCA to the spectra
and computed two spectral parameters, RWP and REP.
Only a few studies assessed these features for detecting
biotrophic diseases such as cucumber powdery mildew
with RWP, REP, or PCA score; hence we compared our
results with studies on necrotic diseases, such as late
blight (Phytophthora infestans) on potatoes.

In our experiment, the signs and symptoms of the
disease were visible at 6 DPI, while Berdugo et al. (2014)
observed signs at 4 DPI. Another difference with
Berdugo et al. (2014) is that the evaluations were done
every four days after inoculation. Our study considered
daily evaluations (excepting 1 DPI to allow the pathogen
establishment and reduce cross-contamination risk).

The spectral changes in the 400–900 nm were assessed
using several data analysis methods. A graphical com-
parison of the mean reflectance spectra of the healthy
and infected leaves as a function of the day of inocula-
tion showed that the green reflectance of infected leaves
has higher values than the healthy leaves. Cucumber
leaves infected with P. xanthii showing higher reflectance
values between 550 and 680 nm concerning healthy
leaves were also reported by Berdugo et al. (2014).
Atanassova et al. (2019) reported that the most consider-
able spectral differences between healthy leaves and

those infected with P. xanthii were found between 540
and 680 nm, corresponding to the wavelengths between
the green and red spectral regions. Mahlein et al. (2013)
also reported higher reflectance values in the case of
sugar beet (Beta vulgaris var. saccharifera) leaves infected
with Erysiphe betae (powdery mildew) in the green and
red-edge spectral domains. In the red-edge reflectance,
we observed a slight blue spectral shift. Gitelson et al.
(1996) attributed the blue shift of the red-edge reflec-
tance to the chlorophyll loss and plant stress.

Such as in Fernández et al. (2020a) and Xie et al. (2017),
we applied a PC analysis to reduce the high number of
reflectance data to a new uncorrelated dataset contain-
ing 5 PC explaining near or above 97% of the total
variance of the data set. The total variance explained by
these 5 PCs was similar to the one reported by
Fernández et al. (2020a) (96%), who studied late blight
on potato leaves. The explained variance explained by
the first 5 PCs was also in the same magnitude as the
total variance of 98.88% observed at 5 DPI with the first
3 PC by Xie et al. (2017), who studied grey mould
(Botrytis cinerea) on tomato leaves. We reached an overall
accuracy of 95% at 4 DPI (i.e., two days before visible
symptoms). Our accuracies are higher than those
reported by Abdulridha et al. (2020) (82%), who applied
a radial basis function to hyperspectral imagery to dis-
criminate healthy squash leaves from those infected
with P. xanthii before the symptoms were visible. When
the symptoms were apparent (at 6 DPI), our accuracy
increased to 97%. This accuracy was higher than the one
of Tian and Zhang (2012) (90%). They classified a limited
number of hyperspectral images (ten on healthy leaves
and ten on infected leaves) acquired over healthy leaves
and leaves infected with P. cubensis (cucumber downy
mildew). However, our accuracy was lower than that of
Abdulridha et al. (2020) (99%), who discriminated with a
radial function healthy squash leaves from those
infected with P. xanthii at a late development disease
stage. Our accuracies were also lower than those
reported by Cen et al. (2016) (100%), who applied an SVM
algorithm to discriminate chilling injured and non-
damaged cucumber fruits. We hypothesize that these
changes in the classification accuracy when using PCA
might be related to some noise in the 400–440 nm
region. We can observe that the spectral ratio dropped
drastically from 3 to 4 DPI (Figs. 4c and d) in this region
and then increased at 5 DPI (Fig. 4e). Those changes could
be attributable to instrumental noise. Therefore, the
computation of a PCA over the whole visible spectra
(400–900 nm) might be affected by instrumental noise
in some spectral regions, i.e., below 450 nm in our case.
Another possible explanation could be changing chloro-
phyll-a concentration due to the pathogen infestation,
affecting the chlorophyll a/b ratio (Tanaka and Tanaka
2011). Finally, the low number of observations might
significantly influence the overall accuracies even when
few samples are misclassified.

Table 3. Position of the peak wavelength in
the blue (431–499 nm), green (500–599 nm),
red (600–699 nm), and the Red-Edge
(700–799 nm) spectral regions.

DPI Blue Green Red RedEdge

0 432 565 683 704
2 430 586 681 703
3 430 586 678 702
4 441 579 672 701
5 436 571 678 703
6* 444 570 677 703
7* 445 570 675 704

Note: Data determined from the spectral
ratio computed using the mean spectrum
acquired over healthy and infected leaves
concerning the healthy leaf spectra.

*Visible symptoms.
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In order to determine the best wavelengths to detect
powdery mildew, we computed spectral ratios between
infected and healthy spectra, such as in Fernández et al.
(2020a). When powdery mildew signs and symptoms
were visible for the first time (at 6 DPI), the wavelengths
we defined as being the best to detect the disease were
the blue (444 nm) and green (570 nm) ones. They are
closely located to those reported by Xie et al. (2015) for
late blight disease detection (i.e., visible symptoms) on
tomato leaves (442 and 573 nm, respectively). However,
Xie et al. (2015) also reported 508, 696, and 715 nm as suit-
able wavelengths that are not closely related to our
wavelengths. None of our wavelengths were close to
those used by Xie et al. (2017) to detect Botrytis cinerea
infecting tomato leaves. They were also different from
those reported by Fernández et al. (2020a) (488, 556,
681, and 709 nm) for late blight disease detection in
potato leaves when symptoms were visible for the first
time at 3 DPI. At 5 and 6 DPI, the 703nm wavelength
matches the wavelength reported by Xie and He (2016),
who tested spectral and image textural features to detect

Alternaria solani (early blight) on eggplant (Solanum melon-
gena) leaves. The authors also reported wavelengths
located at 408, 535, and 624 nm. These discrepancies
might be explained by anatomical differences between
plants species (Fernández et al. 2020a). Also, it must be
noted that Fernández et al. (2020a), Xie et al. (2017), Xie
et al. (2015), and Xie and He (2016) studied a necrotic
pathogen, while cucumber P. xanthii is a biotrophic
pathogen.

A linear SVM was applied to the first 5 PC scores, the
RWP or REP wavelengths, to sort the leaf spectra accord-
ing to the leaf status (healthy or infected) as a function of
the DPI. Using five PCs, the lowest overall classification
accuracy for healthy and infected leaves was around
65% at 0 DPI. The highest overall accuracy was around
97% at 6 DPI when the symptoms were visible. Our over-
all classification accuracy was higher than those of
Fernández et al. (2020a). They reported an overall accu-
racy of around 89% at 3 DPI when late blight symptoms
were visible for the first time on potato leaves, using a
partial least square discriminant analysis (PLS-DA)
applied leaf reflectance from 400 to 900 nm. However,
our accuracies were lower than those (100%) reported at
4 DPI when disease signs were observed in Berdugo et al.
(2014), who applied a stepwise discriminant analysis to
discriminate healthy cucumber leaves from those
infected with P. xanthii using the following features:
effective quantum yield, SPAD values, maximum tem-
perature difference (MTD), NDVI and the anthocyanin
reflectance index (ARI).

The leaf spectra we measured were used to compute
two main parameters of the red and red-edge regions,
the RWP and REP wavelengths. For both parameters,
the best fit was achieved using a linear model. For the
REP, our results are not following Fernández et al.
(2020b). They reported an exponential model to fit best
the REP changes in the case of potato late blight, which
is due to a hemibiotrophic pathogen that necrotizes
infected tissue. This study studied variations induced by
powdery mildew due to a biotrophic pathogen that

Fig. 5. Linear regression model fitted with the mean red-well point (RWP) and mean red-edge point (REP) wavelength (in nm) at
the leaf level as a function of the number of days post-inoculation. **Visible symptoms.

Table 4. Comparison between spectral
features* of the linear support vector
machine (SVM) classifier and overall
accuracy as a function of the day post-
inoculation (DPI).

DPI PC RWP REP

0 65.35 55.47 55.47
2 86.61 57.81 54.69
3 77.17 72.66 61.72
4 95.28 78.13 71.88
5 85.04 78.13 69.53
6** 97.64 89.06 86.72
7** 96.85 94.07 83.59

Note: *PC, 5 first principal components;
RWP, red-well point; REP, red-edge point.
**Visible symptoms.
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interacts with the host without producing necrosis. The
slope of the linear model was higher for the REP model
than for the RWP model; hence the REP parameter is
more sensitive to the disease than the RWP. For the
infected leaves, the R2 values were 0.88 with RWP and
0.91 with REP. The one for RWP was higher than the
one reported by Fernández et al. (2020b) (0.83), but the
one for REP was lower than the one reported by
Fernández et al. (2020b) (0.99). When the symptoms were
visible for the first time, our overall classification accura-
cies with the RWP and REP wavelengths position (89%
and 86%, respectively) were higher than those (65% with
RWP and 59% with REP) reported by Fernández et al.
(2020b) who applied a linear SVM classifier to classify
healthy potato leaves and those infected with P. infestans.

Early disease detection is a challenging topic and
might not find a definitive solution yet. One main limita-
tion for early disease detection can be related to the
conditions where the experiment was performed. Such
as the ones of the current study, most of the literature
results on disease detection have been obtained under
controlled conditions with optimal light illumination
and plants having excellent growing conditions. There

is, therefore, the need for further work to up-scale the
laboratory measurements to actual crop conditions.
Gold et al. (2020) already reported that using leaf-level
spectroscopy for disease scouting has been already
reported as unfeasible. Khaled et al. 2018 suggested that
it is necessary to consider the effect of environmental
light for measuring spectral data in the field. Another
limitation when studying plant-pathogen interactions is
the spectral range of the available sensors (Khaled et al.
2018). Usually, the spectral range for image acquisition
is focused in the visible-NIR range (400–1000 nm)
because the majority of the commercial cameras operate
in this range. Indeed, short-wave infrared sensors are up
to five times more expensive than visible and NIR sen-
sors (Mishra et al. 2020). Finally, a universal method will
be difficult to develop as the specific wavelengths
required to detect specific diseases depend on the nature
of the pathogen. Three different types of pathogens can
be found in nature: biotrophic, hemibiotrophic, or
necrotrophic. In the case of biotrophic pathogens such
as P. xanthii (this study) and hemibiotrophic pathogens
such as P. infestans, the useful wavelengths for disease
detection change with the disease progress (Fernández

Table 5. Confusion matrix and related statistics when a linear support vector
machine (SVM) classifier is applied to the red-well point (RWP) wavelength to classify
71 healthy and 57 infected spectral samples as a function of the number of days
post-inoculation (DPI).

DPI
Confusion
matrix Specificity Precision F1 Score

Overall
accuracy (%)

0 — I H Ind 0.00 Ind 55.47
I 0 57
H 0 71

2 — I H 0.56 0.25 0.34 57.81
I 14 43
H 11 60

3 — I H 0.74 0.60 0.66 72.66
I 34 23
H 12 59

4 — I H 0.76 0.74 0.75 78.13
I 42 15
H 13 58

5 — I H 0.74 0.79 0.76 78.13
I 45 12
H 16 55

6 — I H 0.88 0.88 0.88 89.06
I 50 7
H 7 64

7 — I H 0.93 0.95 0.94 94.07
I 54 3
H 4 67

Note: Ind, indeterminate.
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et al. 2020b, Gold et al. 2020). For a necrotrophic patho-
gen such as Alternaria solani on potato leaves, the best
wavelength was determined to be in the short-wave
infrared region (Gold et al. 2020).

Conclusions
In this study, we determined which spectral variables

could be used to detect powdery mildew on cucumber
leaves, as well as the timing of onset following disease
inoculation. Using principal component analysis over
the whole visible spectra range, between 400 and
900 nm, allowed us to reduce the number of variables
from 501 wavelengths to 5 components explaining above
97% of the total variance. However, the classification
based on principal components is affected by instrumen-
tal noise observed in the 400–440 nm region. Regarding
the two red and red-edge parameters (RWP and REP) we
studied, REP was more sensitive to the disease than
RWP. However, when a linear SVM is applied to REP
and RWP to classify healthy and infected leaves, higher
overall classification accuracy was achieved earlier with
RWP than with REP.

Our results were obtained on Straight Eight cultivar
cucumber plants. Further work is needed to test the
method on other cucumber cultivars. While the results
of this study are quite promising, they were acquired
on a limited number of plants; therefore, there is a need
to test the method over a large number of plants. Our
results were obtained in a walk-in chamber with a con-
trolled environment using point measurements. Future
studies should address testing the method in actual
greenhouse conditions, and on hyperspectral imagery
acquired over those greenhouse conditions.
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