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INVITED REVIEW

Genetic mechanisms underlying feed utilization and
implementation of genomic selection for improved feed
efficiency in dairy cattle
Luiz F. Brito, Hinayah R. Oliveira, Kerry Houlahan, Pablo A.S. Fonseca, Stephanie Lam,
Adrien M. Butty, Dave J. Seymour, Giovana Vargas, Tatiane C.S. Chud, Fabyano F. Silva,
Christine F. Baes, Angela Cánovas, Filippo Miglior, and Flavio S. Schenkel

Abstract: The economic importance of genetically improving feed efficiency has been recognized by cattle
producers worldwide. It has the potential to considerably reduce costs, minimize environmental impact, optimize
land and resource use efficiency, and improve the overall cattle industry’s profitability. Feed efficiency is a
genetically complex trait that can be described as units of product output (e.g., milk yield) per unit of feed input.
The main objective of this review paper is to present an overview of the main genetic and physiological
mechanisms underlying feed utilization in ruminants and the process towards implementation of genomic selec-
tion for feed efficiency in dairy cattle. In summary, feed efficiency can be improved via numerous metabolic
pathways and biological mechanisms through genetic selection. Various studies have indicated that feed efficiency
is heritable, and genomic selection can be successfully implemented in dairy cattle with a large enough training
population. In this context, some organizations have worked collaboratively to do research and develop training
populations for successful implementation of joint international genomic evaluations. The integration of “-omics”
technologies, further investments in high-throughput phenotyping, and identification of novel indicator traits
will also be paramount in maximizing the rates of genetic progress for feed efficiency in dairy cattle worldwide.

Key words: environmental footprint, feed efficiency, genomic selection, residual feed intake, rumen microbiome.

Résumé : L’importance économique de l’amélioration génétique de l’indice de consommation a été reconnue par
les producteurs de bétail à travers le monde. Elle a le potentiel de considérablement réduire les coûts, minimiser
l’impact environnemental, optimiser l’efficacité d’utilisation des terres et des ressources, et améliorer la
profitabilité générale de l’industrie du bétail. L’indice de consommation est une caractéristique génétiquement
complexe qui peut être décrite comme les unités de produits produites (p. ex., rendement de lait) par unité
d’aliments consommés. L’objectif principal de cet article de synthèse est de présenter un survol des principaux
mécanismes génétiques et physiologiques sous-jacents à l’utilisation des aliments chez les ruminants ainsi que
le processus vers l’implémentation de la sélection génomique pour l’indice de consommation chez les bovins

Received 10 November 2019. Accepted 3 March 2020.

L.F. Brito and H.R. Oliveira. Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Centre for Genetic
Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.

K. Houlahan, P.A.S. Fonseca, S. Lam, A.M. Butty, G. Vargas, T.C.S. Chud, A. Cánovas,*,† F. Miglior,*,† and F.S. Schenkel.* Centre for
Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.

D.J. Seymour. Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph,
ON N1G 2W1, Canada; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1,
Canada.

F.F. Silva. Department of Animal Sciences, Federal University of Viçosa, Viçosa, Minas Gerais 36570-000, Brazil.

C.F. Baes.*,† Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph,
ON N1G 2W1, Canada; Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern 3001, Switzerland.

Corresponding author: Flavio S. Schenkel (email: schenkel@uoguelph.ca).

*These authors share last co-authorship.
†F. Miglior currently serves as Editor-in-Chief, while C.F. Baes and A. Cánovas currently serve as Associate Editors; peer review and
editorial decisions regarding this manuscript were handled by J.C. Plazier.

Copyright remains with the author(s) or their institution(s). This work is licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author(s) and source are credited.

587

Can. J. Anim. Sci. 100: 587–604 (2020) dx.doi.org/10.1139/cjas-2019-0193 Published at www.nrcresearchpress.com/cjas on 24 April 2020.

Downloaded From: https://complete.bioone.org/journals/Canadian-Journal-of-Animal-Science on 05 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use

mailto:schenkel@uoguelph.ca
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1139/cjas-2019-0193
www.nrcresearchpress.com/cjas


laitiers. En résumé, l’indice de consommation peut être amélioré par de nombreuses voies métaboliques et nom-
breux mécanismes biologiques par sélection génétique. Des études variées ont indiqué que l’indice de consomma-
tion est héritable et la sélection génomique peut être implémentée avec succès chez les bovins laitiers avec une
population assez grande de formation. Dans ce contexte, certaines organisations ont travaillé en collaboration
pour la recherche et le développement des populations de formation pur l’implémentation à succès
d’évaluations génomiques internationales conjointes. L’intégration des technologies « -omiques », les investisse-
ments ultérieurs pour le phénotypage à haut débit, et l’identification de nouveaux traits indicateurs seront pri-
mordiaux pour la maximisation du taux de progrès génétique pour l’indice de consommation chez les bovins
laitiers à travers le monde. [Traduit par la Rédaction]

Mots-clés : empreinte écologique, indice de consommation, sélection génomique, consommation résiduelle,
microbiome du rumen.

Introduction
The global human population is expected to reach

9.8 billion by 2050 (FAOSTAT 2019), and consequently,
there will be a substantial increase in food demand. In
addition, the projected reduction in poverty and expan-
sion of the middle class will reflect in a greater demand
for larger amounts of high-quality meat and dairy
products, produced under exemplary welfare conditions
and leaving a minimal environmental footprint. As there
are limited land and natural resources for production
expansion, there is an urgent need to develop strategies
to optimize the efficiency of food production.

The current worldwide cattle population hasmore than
1.5 billion animals; over 105 million cattle are raised in
Canada and the United States alone (FAOSTAT 2019).
With feed currently being the largest expense in cattle
production (Ho et al. 2013; Connor 2015), a small improve-
ment in nutrient utilization [i.e., better digestibility and
(or) greater nutrient absorption] can have major
economic and environmental impacts. The reduction in
feeding costs will positively impact, not only the cattle
producers’ profitability, but also the final prices of meat
and dairy products available to consumers.

The demand to optimize animal nutrition practices has
led to important investments in research over the past
decades. Consequently, the science of animal nutrition
has evolved rapidly and resulted in major contributions
to a better understanding of the nutritional physiology
of cattle and its nutrient requirements. This had led to
major advancements in diet formulation, supplementa-
tion, and techniques for food processing and storage
(Eastridge 2006; Coffey et al. 2016; de Ondarza and
Tricarico 2017; Tedeschi et al. 2017). Despite the clear
effectiveness of these developments, the need for a more
permanent and cumulative solution has been envisioned
through genetic selection for a long time in various
livestock species, including cattle (e.g., Stone et al. 1960;
Koch et al. 1963; Freeman 1967; Herd et al. 2003).

The economic importance of selecting for improved
feed efficiency has been clearly recognized by cattle pro-
ducers, due to its potential to reduce costs considerably,
minimize environmental impacts (e.g., reduce nutrient
loss in manure and methane intensity), optimize land
and resource use efficiency, and improve the overall

cattle industry profitability (Richardson and Herd
2004; Basarab et al. 2013; Berry and Crowley 2013).
However, the inclusion of feed efficiency in cattle selec-
tion indexes used in commercial breeding programs
has been delayed for various reasons, among them:
(1) the limited amount of phenotypic records for feed
efficiency and related variables in commercial herds;
(2) the differences in feed intake measurement protocols
and data sources (e.g., different breeds, lactation stages,
parities, and diets); (3) unclear definition of the breeding
goal (Berry and Crowley 2013; Pryce et al. 2014; Connor
2015; Hurley et al. 2016); and (4) the lack of research on
novel traits evaluated based on a systems biology level
that could contribute to improve the accuracy of
genomic prediction of breeding values. In the case of
beef cattle, there are even some additional challenges,
including limited vertical integration of production,
large diversity of genetic resources (breeds) within
country and internationally, greater use of crossbreed-
ing systems, and reduced use of artificial insemination
compared with dairy cattle, which leads to weaker
genetic linkage among populations, and consequently,
less accurate genomic breeding values.

With the more recent advancements in genomic
methods and technologies, selection for feed efficiency
has become more feasible, as genomics can be used as a
tool to transfer the knowledge generated on research
farms to genetically connected commercial populations
(Connor 2015). However, selection based on genomic
information still requires genotyping of the selection
candidates, as well as continued collection of phenotypic
and genotype records from genetically representative
individual animals (i.e., a training population). The main
objective of this review is to present an overview of
worldwide research efforts to unravel genetic, molecu-
lar, and physiological mechanisms underlying the
efficiency of feed utilization in ruminants, current
knowledge on host–microbiota interactions, and the
implementation process of genomic selection for
improved feed efficiency in dairy cattle.

Definitions of Feed Efficiency and Indicator Traits
Dairy cattle breeding programs have been very

successful in improving the main traits of interest for
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the industry (e.g., Miglior et al. 2017). The first step in
moving genetic progress in a desired direction for any
breeding program is the clear definition of the breeding
goal. In this context, a feed-efficient animal has been
broadly defined as an animal that eats less without
compromising performance, or an animal that produces
more while consuming the same amount of feed. In
other words, feed efficiency is related to the units of
product output (e.g., milk production) per unit of feed
input. These units are generally mass, energy, protein,
or an economic value (Vandehaar et al. 2016). It is also
of interest to dairy cattle breeders to select animals that
do not compromise other vital functions, such as repro-
duction and health, while breeding to achieve greater
feed efficiency (Connor 2015).

Feed efficiency is a complex trait, as feed intake and
nutrient utilization are associated with many biological
and physical mechanisms. For example, variability in
feed efficiency can be due to variation in feed intake
levels, digestion of feed and the associated energy costs,
absorption of nutrients, metabolism, physiological
stage, health status, rumen microbial metabolism,
activity, and thermoregulation (Herd et al. 2004; Herd
and Arthur 2009; Patience et al. 2015; Li et al. 2016). Due
to the challenging nature of measuring feed efficiency,
many indicator traits have been proposed and
utilized to assess feed efficiency, such as residual feed
intake (RFI), residual solids production (RSP), and the
use of milk mid-infrared spectroscopy (MIR) (Koch et al.
1963; Coleman et al. 2010; Berry and Crowley 2013; Pryce
et al. 2014; Connor 2015; Hurley et al. 2016; de Ondarza
and Tricarico 2017).

Koch et al. (1963) suggested the use of RFI as an indica-
tor of feed efficiency. The RFI variable, estimated
through a regression model, corresponds to the differ-
ence (residual) between the observed and expected feed
intake, where the expected feed intake is based on feed-
ing requirements assessed according to metabolic body
weight and level or quantity of product outcome. Other
physiological activities that are energy demanding, such
as maintenance and reproduction, can also be included
in the calculations (Berry and Crowley 2013; Pryce et al.
2014). Most commonly, RFI has been used in beef cattle
research (Berry and Crowley 2013). More recently, studies
in dairy cattle have also been reported (e.g., Waghorn
et al. 2012; Connor et al. 2019; Flay et al. 2019).

In dairy cattle, RFI is estimated by regressing dry
matter intake (DMI) on a variety of physiological activ-
ities, which commonly include production (milk yield
or energy-corrected milk), metabolic body weight,
changes in body weight or body condition score (BCS),
and stage of lactation (Connor 2015; Byskov et al. 2017;
Seymour et al. 2019). Other residual traits have also been
analyzed in place of RFI to obtain an estimate closer
to the biology behind feed efficiency, such as RSP
(Coleman et al. 2010). Similar to RFI, RSP represents the
difference between observed milk solids production

and that estimated via regression based on various
activities (Coleman et al. 2010).

Another group of feed efficiency indicators are based
on nutrient usage, such as energy and nitrogen
efficiency, which considers nutrient partitioning
between milk production and other physiological func-
tions (de Ondarza and Tricarico 2017). For instance,
energy conversion efficiency is the milk energy output
divided by metabolizable energy intake. It has the
advantage to consider diverse nutrient efficiency;
however, it does not account for mobilization of body
reserves. Therefore, to account for body reserve changes,
residual energy intake (REI) has been proposed
(Mantysaari et al. 2012; Liinamo et al. 2015; Fischer et al.
2018). REI is the actual metabolizable energy intake
minus the predicted energy requirement of the cow
based on production, bodyweight, changes in body-
weight and (or) BCS, as well as gestational energy needs
(Mantysaari et al. 2012; Fischer et al. 2018).

As the costs to measure feed intake on individual ani-
mals are still high, alternative approaches to measure
feed efficiency have been investigated. For instance,
predictor traits that can be measured on a large number
of animals for a relatively low cost through milk sam-
ples, blood, biosensors, and automated recording sys-
tems are of great interest. Some examples of these
include infrared thermography (Montanholi et al. 2010),
plasma concentrations of insulin-like growth factor-1
(Moore et al. 2005), milk MIR spectrometry (O’Donovan
et al. 2014; Wallén et al. 2018), and milk fatty acid compo-
sition (Kelly et al. 2010). The use of MIR spectrometry to
measure energy balance in dairy cattle began in 2011
(McParland et al. 2012). In addition, MIR is widely used
to determine major milk components, such as fat and
protein. Shetty et al. (2017) used a partial least-squares
approach to estimate DMI based on MIR spectral data.
Although further studies are necessary, such models
are a promising way to estimate individual energy
intake (Dórea et al. 2018; Seymour et al. 2019). In
summary, multiple alternatives to quantify individual
variability of feed efficiency in dairy cattle have been pro-
posed. As reviewed by de Ondarza and Tricarico (2017),
each one of them has advantages and disadvantages. To
make a better decision on the indicator trait to be used
in a breeding program, it is of utmost value to understand
the physiological mechanisms of feed utilization and the
genetic architecture of the traits utilized. The next
sections of this review will cover these aspects.

An Overview of the Main Physiological Mechanisms
Underlying Feed Efficiency

The expected physiological changes arising from
genetic selection for improved feed efficiency are depen-
dent on the feed efficiency metric (i.e., indicator trait)
used. For example, gross feed efficiency is typically calcu-
lated as the ratio of milk output to feed intake. As a
result, this trait can be improved by increasing milk
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yield, decreasing feed intake, or a combination of both
strategies. More complex measures of feed efficiency,
such as RFI (Koch et al. 1963), REI (Fischer et al. 2018), or
net energy efficiency (Seymour et al. 2020), share some
commonalities. This includes the concept of categorizing
energy expenditures into maintenance, growth, or pro-
duction activities, and will be the focus of this
section. However, regardless of the measure (i.e., trait)
used, the physiology of feed efficiency can be partitioned
into two main areas: those regulating voluntary feed
intake and those regulating the conversion of nutrients
into milk. On another layer, the major components
affecting feed efficiency can be divided into those that
alter maintenance or the portion of net energy that is
captured in milk or body tissues (instead of being used
for maintenance) and those that alter the conversion of
gross energy to net energy (VandeHaar et al. 2016).

All measures of feed efficiency are dependent on the
amount of feed consumed, and thus, the regulation of
voluntary feed intake is a major determinant of
efficiency. The physiological regulation of DMI is a com-
plex and multi-factorial process, and it was comprehen-
sively described by Allen (2000), Allen et al. (2009), and
Forbes (2000, 2007). The predominant factors known to
affect voluntary feed intake in ruminants are reticuloru-
men distension due to gut fill, hepatic propionate flux,
and the amount of lipid in the diet (Allen 2000). Gut fill
is considered to be the major limiting factor of feed
intake in early lactation when energy demands are
highest, where mechanoreceptors are triggered by retic-
ulorumen wall distension and send negative feedback to
the brain via the vagus nerve to reduce feed intake (Allen
2000; Forbes 2000). The hepatic oxidation theory (Allen
et al. 2009) postulates that the oxidation of fuels in the
liver, such as propionate, acts as a major signal integra-
tor that regulates feed intake in response to whole body
energy status. There is a plethora of other signaling
mechanisms involved in the regulation of feed intake,
and a single stimulus may act through multiple
pathways (polymodality) as well as at different sites
(polytopicity; Forbes 2007).

After consuming feed, the animal's available energy is
divided into various processes, which are normally
categorized into maintenance, growth, reproduction,
and production. In general, animals which partition a
greater proportion of energy towards productive pur-
poses are considered to be more feed efficient. The
biological processes governing anabolic and catabolic
processes are generally considered to be highly regu-
lated and subject to strict thermodynamic constraints
(Baldwin et al. 1980; Seymour et al. 2020), making genetic
selection for improved efficiency of these pathways
somewhat challenging. However, Bottje (2019) has
recently provided support for the theory that defective
proteins in the electron transport chain may lead to
suboptimal mitochondrial function and reduce the
overall energetic efficiency of the animal. If the genes

associated with these protein defects could be
identified, genomic variants [e.g., single-nucleotide
polymorphisms (SNPs)] could be given greater weight in
sophisticated genomic prediction methods that are cur-
rently available. However, this would likely necessitate
increased selection intensity on dam of dam lines, as
mitochondrial DNA is strictly maternal in origin.

An important physiological change associated with
improved feed efficiency (RFI) in dairy cattle is a reduc-
tion in body size appropriate for the specific production
system, as proposed by Dickerson (1978) and Vandehaar
et al. (2016). This would serve to reduce the total energy
partitioned towards maintenance processes, allowing
for a greater proportion of energy to be directed towards
productive purposes. Although this will reduce milk
yield and feed intake, selection for improved lactation
persistency and management for extended lactations
would help maintain total lactation milk yield (Capuco
et al. 2006; Santschi et al. 2011a, 2011b). Additionally, it
is generally accepted that smaller body size is associated
with improved fertility. Thus, animals would remain in
the herd longer, which would result in fewer animals
needed to produce a given volume of milk in a specific
time period. Overall, these outcomes would likely
improve the efficiency of both the individual animal
and the overall herd. The nutritional management
system in each farm also needs to be considered. As
described by Vandehaar et al. (2016), under limited
feeding and management, significant gains in feed
efficiency can be captured by further diluting mainte-
nance (e.g., smaller cows). In this context, similar genetic
improvement is expected if animals are selected to
produce more milk at a specific body weight, or the
same milk yield with smaller body weight (Vandehaar
et al. 2016).

Genetic Architecture of Feed Efficiency
Genetic parameters for feed efficiency traits

Before including a trait in a genetic selection index, it is
important to evaluate its heritability (h2) and genetic
variance in the population of interest, as well as its
genetic correlation with other economically important
traits. These genetic parameters give insights into the rate
of genetic progress that can be achieved per generation
and contribute to better designing the genetic evaluation
systems. Studies have indicated that feed efficiency,
assessed in different ways using indicator traits, is moder-
ately heritable (Table 1). For example, Williams et al. (2011)
reported that genetic variation in RFI exists in dairy
heifers, and this could be an alternative to indirectly
selecting dairy cows for improved feed efficiency, as it is
easier to record feed intake in heifers (similar production
and data collection systems as in beef cattle). Spurlock et
al. (2012) estimated genetic parameters and made recom-
mendations regarding traits related to energy balance,
including DMI, bodyweight, BCS, energy-corrected milk
production, and gross feed efficiency.
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The h2 estimates presented in Table 1 indicate that
feed efficiency can be improved through genetic selec-
tion. The wide range of h2 estimates reported in the
literature is related to the different populations used in
each study, as genetic parameters (such as h2 estimates)
are population specific. Thus, this suggests the impor-
tance of (re-)estimating genetic parameters for each
population. It is worth noting that selection for
improved feed efficiency might also impact other eco-
nomically important traits, due to genetic correlations
between them. Examples of genetic correlations
reported in the literature for different indicator traits
of feed efficiency and some important economic traits
in dairy cattle are summarized in Table 2. A detailed
description of genetic correlations between feed effi-
ciency indicators and other relevant traits can be found
in Berry and Crowley (2013) and Manafiazar et al. (2016).

Functional candidate genes associated with feed efficiency
The development and availability of high-throughput

“-omics” technologies (e.g., genomics, transcriptomics,
proteomics, metabolomics, and metagenomics) have
enabled the identification of numerous candidate
regions associated with economically relevant traits
(Cánovas et al. 2017). In this context, genome-wide
association studies (GWAS) and transcriptomics using
RNA-sequencing (RNA-Seq) technology have contributed
to the identification of functional candidate genes
and genetic variants [e.g., SNPs, copy number of
variations (CNVs), and insertions and deletions; Cánovas
et al. 2010; Wickramasinghe et al. 2014]. In beef cattle,
GWAS and transcriptomics studies using RNA-Seq have

enabled the identification of key regulators of biological
processes and pathways linked to feed efficiency variabil-
ity, including lipid and protein metabolism, ion transport,
protein and amino acid glycosylation, as well as valine,
leucine, and isoleucine degradation (Rolf et al. 2012; Abo-
Ismail et al. 2014; Olivieri et al. 2016; Duarte et al. 2019).

The integration of multiple “-omics” technologies
through a systems biology approach is a powerful
strategy for precisely identifying functional variants
mapped in key regulator genes involved in the metabolic
pathways affecting feed efficiency (Cánovas et al. 2017).
Despite the low number of GWAS and RNA-Seq studies
evaluating feed efficiency in dairy cattle, the combina-
tion of these results can be integrated to better
understand the genetic architecture of feed efficiency
in dairy cattle.

In this section, we summarize the main studies,
published up to date, that have applied GWAS and
RNA-Seq to investigate the genetic mechanisms underly-
ing feed efficiency. Table 3 presents the descriptive
details of GWAS studies for feed efficiency in dairy cattle:
breed(s), sample size, indicator trait, number of genetic
markers, statistical method used, significance threshold,
and number of significantly associated markers.
Similarly, Table 4 presents the descriptive details of
transcriptomics studies using RNA-Seq comparing
divergently selected feed-efficient dairy cattle: breed(s),
sample size, tissue analysed, indicator trait, statistical
analysis, p value threshold, and number of differentially
expressed genes. Seven GWAS for feed efficiency indica-
tor traits (e.g., RFI, DMI, milk energy, and metabolic
body weight) and three RNA-Seq studies comparing

Table 1. Heritability (h2) estimates for different indicator traits of feed efficiency in dairy cattle.

Trait Reference h2 ± SE Breed

Dry matter intake Vallimont et al. 2010 0.18 ± 0.06 Holstein
Williams et al. 2011 0.17 ± 0.10 Holstein Friesian
Liinamo et al. 2015 0.23 ± 0.12 Nordic Red dairy cattle
Tetens et al. 2014 0.37 ± 0.04 Holstein
Shonka et al. 2015 0.52 ± 0.13 Holstein
Bilal et al. 2016 0.12 ± 0.01 Canadian Holstein
Byskov et al. 2017 0.37 ± 0.06 Holstein
Lu et al. 2018 0.23 ± 0.02 NA

Energy intake Köck et al. 2018 0.07 ± 0.03 to 0.13 ± 0.02 Fleckvieh, Brown Swiss, and Holstein
Energy-corrected milk Köck et al. 2018 0.08 ± 0.03 to 0.12 ± 0.02 Fleckvieh, Brown Swiss, and Holstein
Residual feed intake Hurley et al. 2016 0.04 ± 0.08 to 0.11 ± 0.08 Holstein Friesian

Van Arendonk et al. 1991 0.19 ± 0.12 Dutch and Holstein Friesian
Korver et al. 1991 0.22 ± 0.11 Dairy cattle raised in the Netherlands

(breed not specified)
Jensen et al. 1995 0.36 ± 0.17 Red Danish, Danish Friesian, Danish Red and

White, and Jersey
Svendsen et al. 1993 0.02 ± 0.08 Dual-purpose Norwegian cattle
Vallimont et al. 2011 0.01 ± 0.05 Holstein
Williams et al. 2011 0.27 ± 0.12 Holstein Friesian
Byskov et al. 2017 0.23 ± 0.05 Holstein
Lu et al. 2018 0.16 ± 0.02 NA

Note: SE, standard error; NA, data from international dairy consortium, included several breeds (not specified).
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two divergent groups of feed-efficient animals were
found in the literature (Tables 3 and 4). The majority
of these studies focused on the Holstein breed, which
is the most commonly raised breed for milk produc-
tion around the world. However, Salleh et al. (2018)
studied Jersey breed animals, in addition to a subset
of Holstein cows. As there are breed differences for
feed utilization performance (Berry and Crowley
2013), one can assume that there would be differences
at the gene expression level as well. However, the
number of transcriptomics studies available using
RNA-Seq is still too limited to draw such conclusions.

The integration and evaluation of multiple levels
of -omics data can provide a better understanding of

the physiological processes underlying feed efficiency.
In addition to transcriptomics, the combination of pro-
teomic and metabolomic analysis is important to deter-
mine causal effect and provide functional validation.
When considering the application of -omics in livestock
studies, there is a lack of information on feed efficiency
and, more specifically, in dairy cattle. Few studies have
evaluated feed efficiency in dairy cattle using metabolo-
mics and proteomics. Due to the lack of studies integrat-
ing multiple -omics technologies to study feed efficiency
in dairy cattle, it is difficult to assess the consistency
across studies. For instance, proteomics and metabolo-
mics have only recently been performed to study feed
efficiency in dairy cattle (Wang and Kadarmideen 2019;

Table 2. Examples of genetic correlations between different indicator traits of feed efficiency and production,
as well as production-related traits, in dairy cattle.

Feed efficiency trait Trait Reference rg ± SE

Dry matter intake Milk yield Gonzalez-Recio et al. 2014 0.10 ± 0.11
Vallimont et al. 2010 0.51 ± 0.32

Fat- and protein-corrected milk yield Difford et al. 2020 0.83 ± 0.04
Fat yield Gonzalez-Recio et al. 2014 −0.03 ± 0.10

Vallimont et al. 2010 0.53 ± 0.34
Protein yield Gonzalez-Recio et al. 2014 −0.11 ± 0.08

Vallimont et al. 2010 0.55 ± 0.37
Somatic cell score Vallimont et al. 2010 −0.15 ± 0.28
Bodyweight Liinamo et al. 2015 0.54 to 1.00

Vallimont et al. 2010 0.52 ± 0.35
Natural logarithm of methane Difford et al. 2020 0.60 ± 0.13
Natural logarithm of carbon dioxide Difford et al. 2020 0.42 ± 0.13
Productive life Vallimont et al. 2013 0.49 ± 0.18
Meal size Lin et al. 2013 0.18 ± 0.15
Eating rate Lin et al. 2013 0.11 ± 0.14
Feeding duration Lin et al. 2013 0.48 ± 0.12
Number of meals Lin et al. 2013 0.03 ± 0.16
Days open Vallimont et al. 2013 −0.14 ± 0.29
Body condition score Gonzalez-Recio et al. 2014 0.37 ± 0.32

Liinamo et al. 2015 0.11 to 0.45
Vallimont et al. 2010 0.37 ± 0.46

Residual feed intake Milk yield Veerkamp et al. 1994 −0.11 to 0.07
Gonzalez-Recio et al. 2014 0.07 ± 0.08

Fat yield Gonzalez-Recio et al. 2014 0.02 ± 0.07
Protein yield Gonzalez-Recio et al. 2014 0.03 ± 0.07

Veerkamp et al. 1994 −0.11 to −0.02
Lactose Veerkamp et al. 1994 −0.19 to −0.05
Bodyweight Korver et al. 1991 0.03

Van Arendonk et al. 1991 0.01
Natural logarithm of methane Difford et al. 2020 0.42 ± 0.23
Natural logarithm of carbon dioxide Difford et al. 2020 0.48 ± 0.24
Productive life Vallimont et al. 2013 −0.23 ± 0.29
Days open Vallimont et al. 2013 −0.50 ± 0.40
Meal size Lin et al. 2013 −0.06 ± 0.16
Eating rate Lin et al. 2013 0.06 ± 0.16
Feeding duration Lin et al. 2013 0.27 ± 0.15
Number of meals Lin et al. 2013 −0.07 ± 0.17
Body condition score Gonzalez-Recio et al. 2014 0.71 ± 0.32

Veerkamp et al. 1994 0.33 to 0.36

Note: rg, additive genetic correlation; SE, standard error.
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Table 3. Summary of genome-wide association studies (GWAS) performed in dairy cows to identify genomic regions associated with feed efficiency traits.

Breed, country, and
reference N Trait N of SNPs Statistical analysis

Significance
threshold

N of significant
markers

Holstein, USA (B. Li
et al. 2019)

5610 RFI 278 254 (after quality
control)

Single-step GWAS Top-20 SNPs and
5-SNP sliding
windows

20 single-SNPs
20 five-SNPs sliding
windows

Holstein, Scotland, the
Netherlands, Canada,
and USA (Lu et al.
2018)

4916 RFI based on classical model
and MT model (Lu et al.
2015) using DMI, MILKE,
and MBW

57 347 (after quality
control)

Single-SNP marker
association and
windows-based
association (1 Mb
non-overlapping
windows)

Multiples, based on
Bonferroni
adjustment at
genome-wide type I
error rate of 5%

MBW= 4 SNPs, 3
windows

RFI= 2 windows
MT= 2 windows
DMI= 2 windows
MILKE= 1 window
MBW= 3 windows

Holstein, USA (Zhou
et al. 2018)

473 RFI and DMI 454 CNVs Multiple linear
regression

p< 0.05 after FDR
correction

RFI= 10 CNVs
DMI= 1 CNV

Holstein, USA, Canada,
the Netherlands and
United Kingdom
(Hardie et al. 2017)

4916 RFI was calculated as the
residual of the regression
of DMI on MILKE, MBW,
change in body weight, and
systematic effects. For RFI,
DMI, MILKE, and MBW,
bivariate analyses were
performed for each trait as
a separate trait within
parity group

60 671 markers Bayes B and Bayes C Top-10 genomic
windows

RFI= 5.38% (PM) and
4.80% (MP) of total
genetic variance
explained by the top
10 windows

DMI= 9.18% (PM) and
5.54% (MP)

MILKE= 7.12% (PM) and
5.08% (MP)

MBW= 9.31% (PM) and
9.8% (MP)

Holstein, Germany
(Tetens et al. 2014)

681 DMI 11, 30, 80, 130, and 180 40 407 (after pruning
for loci >10% of
missing genotypes,
MAF< 0.05 and
markers without
position)

Linear mixed model
approach
implemented in the
package GEMMA

p< 0.05 after
Bonferroni
correction

DMI11= 4 markers
DMI30= 8 markers
DMI80= 3 markers
DMI130= 5 markers
DMI180= 7 markers

Holstein, USA (Yao et al.
2013)

395 Daily RFI from 50 to 150 d
postpartum

42 275 Random Forest
algorithm

Importance score
(ΔMSE%)

188 markers

Holstein, Australia and
New Zealand (Pryce
et al. 2012)

1782 RFI 624 930 Bayes A and Bayes The 1000 largest SNP
effects ranked on
absolute value were
selected

1000 markers

Note: SNP, single-nucleotide polymorphism; RFI, residual feed intake; MT, multiple trait; DMI, dry matter intake; MILKE, milk energy; MBW, metabolic body weight;
CNV, copy number variant; MAF, minor allele frequency; FDR, false discovery rate; MSE, mean squared error; PM, primiparous cows; MP, multiparous cows.
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Zhang et al. 2019). Metabolic profiling of blood plasma
has been performed in Holstein and Jersey cattle,
revealing multiple fatty acids with significantly different
profiles between divergent feed efficiency groups and
were functionally enriched for biological pathways
associated with energy use and production (Wang and
Kadarmideen 2019). The integration of hepatic metabolo-
mic and proteomic data of Holstein heifers divergent
for feed efficiency has revealed 29 metabolites and
60 proteins that were significantly different between
low and high feed-efficient heifers (Zhang et al. 2019).
These studies provide useful biomarkers as indicators
for feed efficiency in dairy cattle; however, integration
and evaluation of multiple -omics technologies to study
feed efficiency can improve the understanding of the
whole biological system underlying feed efficiency
through functional validation.

Regarding the study of feed efficiency in dairy cattle at
the whole genome level using GWAS, a large number of
regions were identified to be associated with feed
efficiency traits, but the effect of each genomic region
was small, indicating that feed efficiency is a polygenic
trait. For instance, Hardie et al. (2017) reported that the
10 genomic windows explaining the majority of the
genetic variance for RFI, accounted for only 5.38% and
4.80% of the genetic variance for RFI in first-parity and
multiparous cows, respectively.

The transcriptomics analyses performed using
RNA-Seq technology (Table 4) compared gene expression
measured in the whole transcriptome between two
divergently selected groups of animals based on feed

efficiency. It is worth highlighting that Salleh et al.
(2017, 2018) evaluated liver biopsies from the same set
of animals (high RFI= five Holstein and five Jersey cows;
low RFI = four Holstein and five Jersey cows) but used
distinct statistical approaches. In all studies, RNA-Seq
was performed using liver tissue samples due to the key
role of this organ in energy conversion and metabolic
efficiency. In addition, Khansefid et al. (2017) also evalu-
ated gene expression in white blood cells of divergently
selected cattle for RFI. The number of differentially
expressed genes (DEG) varied substantially across
studies. These results reinforce the polygenic nature of
feed efficiency (as described by Salleh et al. 2018;
Seymour et al. 2018). The use of methodologies such as
the weighted gene co-expression network analysis is a
good alternative to identify hidden patterns of inter-
actions between genes and consequently, contribute to
further understanding the biological processes associ-
ated with feed efficiency. This methodology is useful
due to the fact that the individual identification of DEG
can underestimate the complexity of the genetic
architecture of quantitative traits, especially when the
expression of genes acting in the biological processes
tends to be correlated (Langfelder and Horvath 2008).
To date, no studies have exploited the identification of
functional variants associated with feed efficiency traits
using RNA-Seq data.

The level of overlapping and cross-validation among
studies can greatly vary depending on the methodology
used to perform the analyses. One of the main causes
of the non-validation across studies is the lack of

Table 4. Summary of RNA-sequencing studies comparing divergent feed efficient groups [based on residual feed intake (RFI)]
in dairy cattle.

Breed, country Sample size Tissue
Significance
threshold

N of differentially
expressed genes Reference

H and J, Denmark High RFIa= 5 H
and 5 J

Liver p< 0.05 H: 11 modules of
co-expressed genes

Salleh et al. 2018

Low RFIa= 4 H
and 5 J

J: 4 modules of
co-expressed genes

H and J, Denmark High RFIa= 5 H
and 5 J

Liver FDR< 5% 70 (H for model 1) Salleh et al. 2017

Low RFIa= 4 H
and 5 J

19 (J for model 1)
2 (J for model 2)

H, Australia High RFIb= 9 animals Liver and WBC FDR< 5% Liver RFI= 473 Khansefid et al. 2017
Low RFIb= 10 animals Liver GEBV= 526

WBC RFI= 4817
WBC GEBV= 137

Note: H, Holstein; J, Jersey; WBC, white blood cells; GEBV, genomic estimated breeding values.
aRFI groups were defined based on the ranking of random effects solutions [from a fixed linear regression on metabolic

body weight, daily live weight change, daily body condition score change (fitted with a Legendre polynomial), and energy
corrected milk yield] for 200 animals, where the top and bottom animals were selected.

bRFI groups were defined using the top and bottom 10% animals from the RFI distribution in a population composed by 843
animals (average RFI= 0 and standard deviation= 0.19; Williams et al. 2011).
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homogeneity in the population structure, phenotypes,
statistical models, quality control thresholds, among
others. For example, Fonseca et al. (2018) described a
strong stratification for the list of positional and func-
tional candidate genes as a function of the purpose of
the breed (dairy or beef) and the phenotype evaluated
when GWAS for male fertility traits were functionally
integrated. Even though all the studies summarized in
this current review were focused on feed efficiency,
different phenotypes were used to access the feed
efficiency in each study: RFI (using different models),
daily RFI, and DMI. As each one of these phenotypes
might be representing a different portion of the total
feed efficiency of the animals, the candidate regions
and genes can be expected to be different for each trait
phenotype. Additionally, the population structure and
the statistical models applied in each study can substan-
tially impact the detection power. Therefore, a very pre-
cise and careful approach must be performed to discuss
and to point possible similarities and differences across
the studies. This may be achieved by a proper meta-
analysis, as more studies become available.

Despite the reduced number of GWAS and transcrip-
tomics studies using RNA-Seq evaluating feed efficiency
in dairy cattle, the findings currently reported are
similar to those observed in beef cattle (Table 3). The
similarities in results from beef and dairy cattle-based
studies creates an opportunity to perform integrative
analyses (e.g., meta-analyses and functional analyses) to
reduce the number of false-positive associations, and
consequently, fine map those variants with the strongest
effects. Thereafter, the identification of functional candi-
date genes can be performed in a more efficient way.
Once candidate genes are identified, the prospection of
causal variants mapped within these genes can contrib-
ute to increasing the predictive ability of feed efficiency
through the use of specific markers used in sophisti-
cated genomic selection approaches (Hayes et al. 2013;
Goddard et al. 2016; VanRaden et al. 2017a).

The additional value of whole-genome sequence data
The use of genomic information derived from SNP

chip arrays in genetic evaluation schemes is very effi-
cient for multiple purposes (e.g., Georges et al. 2019).
However, the inclusion of information from denser SNP
arrays or whole-genome sequence data (WGS) is yet to
be shown as advantageous. In this context, more
recently, there has been an interest in selecting variants
based on WGS-based GWAS analyses and the incorpora-
tion of structural variants, especially CNVs, in GWAS
and genomic predictions.

The identification of SNPs related to feed efficiency
through WGS-based GWAS followed by functional
analyses will enable the identification of variants with
direct impact on feed efficiency. Therefore, the causal
mutations can be included in the genomic predictions
without the need to rely on linkage disequilibrium

(MacLeod et al. 2014). For instance, VanRaden et al.
(2017a) reported an increase of 2.7% in the accuracy of
genomic estimated breeding values (GEBVs) when per-
forming WGS variant selection based on their estimated
effect on a given trait.

Mielczarek et al. (2018) reported CNV variations within
and between multiple European dairy cattle breeds. This
variability in CNV might enable more accurate selection
of animals with greater genetic merit for feed efficiency.
Although few CNV studies have been performed in dairy
cattle, those conducted reported identified multiple
genomic regions associated with feed efficiency and
other traits of interest. Based on 147 high-density
Holstein genotypes, Hou et al. (2012) identified and parti-
ally validated CNVs that were only observed in high- or
low-feed-efficient animals. The authors also linked those
CNVs with important metabolic pathways involved in
feed utilization. However, the power of the study was
small due to limited sample size. In addition, Zhou
et al. (2018) identified 10 CNVs (based on the UMD3.1
reference assembly; Zimin et al. 2009) in Holstein cattle
associated with RFI. One of these CNVs (BTA4: 108 225
979–108 252 635 bp) was also associated with DMI. In
addition, multiple regions were harboring olfactory
receptor genes (e.g., RXFP4), which are likely indirectly
related to feed efficiency through changes in feeding
behavior (Soria-Gomez et al. 2014). For instance, the
RXFP4 gene is known to be related to appetite regulation
and metabolism, providing a direct link to efficiency
(Ang et al. 2017). Lastly, a region overlapping with a
quantitative trait loci associated with average daily gain
on BTA7 (42 745 346–42 788 788) was also associated with
RFI. The release of a better-quality reference genome
assembly, i.e., ARS-UCD1.2 (Rosen et al. 2018), will
enable the discovery of additional CNVs associated with
feed efficiency. Furthermore, there are limitations on
the number of individuals with phenotypic and WGS
information. As more animals have phenotypes and
WGS data become available on a larger number of
individuals, more accurate results are expected to be
obtained.

In addition to the individual genetic merit of dairy
cattle, there are other factors that contribute to variabil-
ity in feed efficiency. The next section will describe the
role of the rumen microbiome on the efficiency of feed
utilization in dairy cattle as well as its interaction with
the genetic makeup of the individual host.

The Role of Rumen Microbiome on Feed Efficiency
The rumen microbial community is a complex ecosys-

tem composed mainly of bacteria, ciliate protozoa,
fungi, and archaea, which interact with each other to
digest fibrous feed (Williams and Coleman 1997).
Ruminants are dependent on the rumen microbial com-
munity to produce and serve as metabolic energy prod-
ucts to survive, and in return, the microbial community
depends on the ruminant for a habitat to survive,
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resulting in a symbiotic host–microbial relationship. The
function of the rumen to extract nutrients from feed and
deliver metabolites to productive tissues represents its
large role in nutrient economy and whole-body metabo-
lism (Baldwin and Connor 2017). As feed efficiency is
largely dependent on better partitioning of metabolic
energy, the metabolic efficiency of the rumen micro-
biota is known to influence feed utilization, due to its
large role in energy production and delivery to the host
(Myer et al. 2015; Shabat et al. 2016).

The near-total exchange of rumen contents between
two cows has revealed that ruminal pH and volatile fatty
acid concentration rapidly stabilizes within 24 h after
rumen content exchange. This implies that the rumen
microbial community has the ability to adapt rapidly
(Weimer et al. 2010), and the assembly of the microbial
community could be partially determined by the host
(Benson et al. 2010; Sasson et al. 2017; Difford et al.
2018; F. Li et al. 2019; Wallace et al. 2019). This suggests
that ruminants may exhibit individual rumen microbial
profiles, and that there could be a potential for genetic
selection for a desirable rumen microbiome profile in
combination with management of other environmental
factors (e.g., diet). However, the understanding of the
genetic basis underlying the interactions between the
host’s genetics and the rumen microbiome, along with
its overall influence on feed efficiency is limited. This
has led to recent studies using transcriptomics,
meta-transcriptomic, and metagenomics to investigate
the role of the rumen microbiome, which is considered
as “all the microbial genomes within the rumen micro-
bial community”.

Studying the rumen microbiome using “-omics”
technologies

Previous studies have used metagenomic and
meta-transcriptomic approaches to quantify microbial
content/abundance and microbial gene expression,
respectively, and its potential link to feed efficiency in
cattle (Shabat et al. 2016; Li and Guan 2017; Paz et al.
2018). Research investigating the rumen metagenome
and its association with feed efficiency has revealed dif-
ferential bacteria abundances across divergent rumen
metabolic efficiencies by classifying specific bacteria
using operational taxonomic units (OTU; Paz et al.
2018), which measure various microbial species and their
abundance. Specific OTU have been characterized in beef
cattle across divergent feed efficiency groups and
revealed that specific OTU abundance from bacterial
families, including Prevotellaceae and Lachnospiraceae,
were associated with feed efficiency in beef steers
(Paz et al. 2018). Feed efficiency and rumen microbiome
have been previously associated (Hayes et al. 2013;
Sasson et al. 2017; Paz et al. 2018), revealing that models
used to explain feed efficiency traits (e.g., DMI, average
daily gain, and gain to feed ratio) explained up to 20%
of the total variation in feed utilization when including

OTU abundance parameters (Paz et al. 2018). This evi-
dence suggests that microbial OTU abundance may serve
as a predictor of feed efficiency (Paz et al. 2018).

The study of rumen meta-transcriptome has indicated
that less efficient cattle exhibit more diverse microbial
activities (Li and Guan 2017). This supports the findings
by Shabat et al. (2016), in which less feed efficient beef
cattle exhibited higher richness of microbial gene con-
tent compared with more feed efficient beef cattle.
These studies suggest that rumen microbiome content
and function/activity may serve as a microbiome feature
to genetically improve feed efficiency (Shabat et al. 2016;
Li and Guan 2017). To further improve the understanding
of the associations between the rumen microbiome and
host phenotypes, other “-omics” platforms should be
considered, including meta-proteomics and metabolo-
mics (de Almeida et al. 2018; Hart et al. 2018).

Estimates of h2 on rumen microbial features
The nature of the diverse community of the rumen

microbiome has led to variation in characterizing and
defining consistent rumen microbiome traits to
estimate h2 and investigate correlations with production
traits. The h2 of the rumen microbiome has primarily
been estimated using taxonomic profiles, on an OTU
abundance basis (Sasson et al. 2017; Difford et al. 2018;
F. Li et al. 2019; Wallace et al. 2019). Additionally, more
recent traits used to estimate h2 of the rumen micro-
biome include microbial diversity indices and ratios
between microbial groups (F. Li et al. 2019).

Using specific bacteria OTU abundance, a study on 78
Holstein-Friesian dairy cows estimated h2 of that trait at
approximately 0.70 (Sasson et al. 2017). Furthermore,
bacteria and archaea OTU abundance had h2 estimates
ranged between 0.17 and 0.25, when the association
between methane emissions (a trait correlated with effi-
ciency of nutrient utilization) and rumen microbiome
in lactating Holstein cows was analyzed (Difford et al.
2018). In Holstein and Nordic Red lactating dairy cows,
Wallace et al. (2019) identified 39 heritable core (few spe-
cific targeted microorganisms) microbial OTUs, with h2

estimates ranging from 0.20 to 0.60.
Estimates of h2 on rumen microbial traits have

also been studied in beef cattle. For instance, the
h2 of rumen bacterial diversity indices were estimated
in Angus, Charolais, and Crossbreed, revealing h2 esti-
mates of 0.23 (Shannon index) and 0.19 (Simpson index)
(F. Li et al. 2019). In the same study, the h2 of bacterial
or archaeal community component differences ranged
from 0.15 to 0.25. Similarly, moderate h2 estimates
were observed for total bacterial abundance (0.16),
whereas h2 estimates for total archaeal abundance was
lower (0.05). A wide range of h2 estimates have been
reported for various microbial features, mainly due to
differences across breeds, populations, analytical
methods, and diets (Sasson et al. 2017; F. Li et al. 2019;
Wallace et al. 2019).
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Host–microbiome genetic interactions and influence on
production traits in dairy cattle

Advances in transcriptomic, meta-transcriptomic (the
measurement of host and microbial gene expression
using RNA-Seq technology; Li and Guan 2017), and meta-
genomic (amplicon-sequencing to measure microbial
content/abundance; Sasson et al. 2017; Wallace et al.
2019) sequencing approaches have led to opportunities
to better understand rumen microbiome parameters
and their relationship with host phenotypic expression.
F. Li et al. (2019) reported 19 SNPs in the host genome
associated with 14 rumen microbial taxa. Out of those
19 SNPs, five are located in known quantitative trait loci
for cattle feed efficiency. Host–microbiome interactions
have been widely studied in mice, flies, and humans
(Benson et al. 2010; Turpin et al. 2016; Fromont et al.
2019). However, to our best knowledge, F. Li et al. (2019)
is the first report on the characterization of the link
between the cattle genetic makeup and heritable micro-
bial features. This is a research area in great expansion
at the moment, and therefore, major breakthroughs in
this field are expected over the next few years.

Data Collection and Implementation of Genomic
Evaluations
Genomic selection for improved feed efficiency

As previously outlined, the costs and feasibility of
measuring individual feed intake (and related traits,
such as bodyweight) in a large number of animals with
pedigree information has limited the implementation
of genetic selection for feed efficiency. Genomic selec-
tion has become widely available in the dairy cattle
industry and enabled selection of breeding candidates
based on their predicted genetic merit for feed
efficiency. This is because animals from research herds
can be used as a training population to estimate SNP
effects, which are then used to predict GEBVs for
selection candidates based on their own genotype
(Veerkamp et al. 2015). In brief, genomic selection refers
to the use of genome-wide genetic markers to predict
breeding values of selection candidates (Meuwissen
et al. 2001).

The accurate calculation of GEBVs depends on the esti-
mation of SNP effects based on genomic and phenotypic
datasets (i.e., training population). The size of the train-
ing population directly affects the GEBV accuracies
(Hayes and Goddard 2008; Goddard 2009). However, the
size of training population for feed efficiency in dairy
cattle is still limited. Other factors that impact GEBV
accuracy are SNP panel density, trait heritability
(Daetwyler et al. 2008; Goddard 2009), the extent of the
linkage disequilibrium between SNP and quantitative
trait loci (Hayes et al. 2009; VanRaden et al. 2009), and
the relationship between the training and validation
or target populations (Habier et al. 2010; Pszczola
et al. 2012).

As previously discussed, RFI is one of the most
common indicator traits of feed efficiency in research
settings. Genomic selection for RFI has been shown to
be feasible, but the accuracies are still lower compared
with other traits (Table 5; Calus et al. 2013; Gonzalez-
Recio et al. 2014). Some studies have reported that a
training population containing more than 30 000 indi-
viduals would be required to achieve satisfactory reliabil-
ities for traits with h2 estimates of 0.2 such as RFI (Calus
et al. 2013; Gonzalez-Recio et al. 2014; Connor 2015).
Despite the fact that GEBV accuracies for RFI in dairy
cows are usually lower than the accuracies obtained for
production traits, they are expected to increase as the
training populations keep growing. For instance, Pryce
et al. (2012) reported GEBV accuracies for RFI of
0.31–0.37, when using a high-density SNP panel and
independent cross-validation datasets from Australia
and New Zealand, respectively.

Gonzalez-Recio et al. (2014) described the implementa-
tion of heifer feed efficiency in the Australian selection
index, using genomic selection and its impact in the
industry. In 2015, the same research group (Pryce et al.
2015) defined and described the implementation of
genetic evaluation for “feed saved” as a new indicator
of feed efficiency in dairy cows. Feed saved combines
RFI with mature bodyweight estimated using estimated
breeding values for predicting maintenance costs, so
that feed requirements are quantified in a single breed-
ing value. Since April 2015, feed saved has been included
as part of the Australian national selection index.

Negussie et al. (2019) used simulated data to estimate
accuracies of genomic prediction for different DMI
recording scenarios (once weekly, once monthly, every
2, 3 and 4 mo) using different sizes of training popula-
tions in dairy cattle to develop future innovative pheno-
typing strategies of recording DMI. The authors
reported that the accuracy of genomic predictions asso-
ciated with the five recording scenarios indicated that
the use of a large training population and the adoption
of a less-frequent DMI sampling scenario is an advanta-
geous strategy when considering accuracy, logistic, and
cost implications. The GEBV accuracies for DMI and RFI
that have been reported in the literature are summa-
rized in Table 5. These results indicate that there is still
room for improving the prediction of GEBVs.

Some alternatives have been investigated to increase
the training population for feed efficiency, including
the use of data from nutrition studies (Veerkamp et al.
2014; Tempelman et al. 2015) and combining data from
different countries (Banos and Coffey 2012; de Haas
et al. 2012; Pryce et al. 2012; Berry et al. 2014;
Tempelman et al. 2015) or breeds (Khansefid et al.
2014). It is worth noting that in the last few years, a
collaboration group named the global dry matter
initiative (gDMI) has been created to combine feed
intake records, which included 10 research herds from
nine countries (Berry et al. 2014; de Haas et al. 2015).
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Data collection and international collaborations for
data sharing

To genetically select animals for improved feed
efficiency, pedigree information and individual pheno-
typic records associated with feed intake and production
traits are required. The simplest way to record DMI is
based on the amount of feed offered and refused by each
cow per day, with the associated dry matter percentage
(Seymour et al. 2019). Other important variables to be
recorded for assessment of feed efficiency are milk
production and composition, lactation stage, water
intake, diet composition, bodyweight and BCS over the
course of lactation, health/disease events, and reproduc-
tive performance traits. It is important to notice that
even if not all these variables are used in the genetic/
genomic evaluations, they might be useful in the future
for research and also selection purposes. Furthermore,
the costs to record these additional traits are low com-
pared with the cost of individual feed intake recording
(Veerkamp et al. 2015).

There are various automated systems available for
feed intake recording, including Calan Broadbent
(American Calan Inc., Northwood, NH, USA), Gallagher
Animal Management Systems (Hamilton, New Zealand),
GrowSafe® Feed Intake System (GrowSafe Systems, Ltd.,
Airdrie, AB, Canada), and the RIC system (i.e., Insentec;
Hokofarm Group B.V., Marknesse, the Netherlands).
These systems are mostly based on radio-frequency
identification to track and record individual feed intake
as well as feeding behavior (e.g., number of visits per
day, intake duration, and time of intake). As discussed
by Connor (2015), the use of these systems in dairy cattle
has been limited to research herds or growing heifers.
The use of automated feed monitoring systems in larger
groups of lactating cows is hindered by the limited feed-
ing capacity of the automated feed bunks, meaning that
significantly fewer cows can be fed from a single bunk
relative to growing cattle to accommodate substantially
greater intakes of lactating cows (Connor 2015).

It is well established that the success and long-term
sustainability of any livestock breeding program is
largely dependent on the amount and quality of pedi-
gree, phenotypic and genotypic data available for genetic
and genomic evaluations. As feed efficiency is difficult
and expensive to measure, a global effort to enlarge
training population for genomic evaluations is crucial,
and it has the potential to greatly benefit all groups
involved in the project. In addition to gDMI, the efficient
dairy genome project (EDGP, http://genomedairy.
ualberta.ca/) is a large international research project led
by Canadian institutions aiming to develop strategic
research, tools, and the whole infrastructure to imple-
ment genetic and genomic evaluations for improved feed
efficiency and reducedmethane emissions in dairy cattle.
In this regard, the EDGP database was developed in 2017
to allow data sharing among international collaborators
from six countries (Australia, Canada, Denmark,
Switzerland, United Kingdom, and United States) to facili-
tate development of an international genetic evaluation
for feed efficiency. This goal is likely possible due to the
high level of relatedness of the Holstein population,
the most common dairy breed with records for feed
efficiency. Moreover, all collaborators are members of
the International Committee for Animal Recording
(www.icar.org), which provides standardized information
on production records.

Incorporating feed efficiency into breeding programs
National organizations and private companies began

implementing the selection of feed efficiency into their
breeding programs in 2014 (Pryce et al. 2014). Each
organization incorporated indirect measures of feed
efficiency such as production levels, body weight
(or predicted body weight), and conformation traits
into their selection indexes (VanRaden et al. 2007;
Veerkamp et al. 2013; Pryce et al. 2014, 2015). In
Australia, animals that are one standard deviation above
the mean for the feed saved trait consume 65 kg less feed
per year, while maintaining the same levels of produc-
tion (Pryce et al. 2018). The USA developed a composite
index into their national evaluation, which uses milk,
fat, protein, and predicted body weight, to predict feed
efficiency (Holstein Association USA 2017). New Zealand
indirectly selects for feed efficiency by selecting on milk
production, live weight, and BCS simultaneously (Pryce
et al. 2014; DairyNZ 2016). In the Netherlands, GEBVs
for saved feed costs have been available since December
2017 (CRV 2018). This value is expressed in euros per
cow per lactation, where the feed for both production
and maintenance are considered (de Jong et al. 2019).
Furthermore, there are many other countries world-
wide, including Canada, which are working towards
including feed efficiency into their national breeding
programs.

The inclusion of feed efficiency into breeding objec-
tives is not exclusive to national organizations. Private

Table 5. Accuracies of genomic predictions for indicator
traits of feed efficiency.

Trait Reference
Average
accuracy

Dry matter
intake

de Haas et al. 2012 0.35
de Haas et al. 2015 0.37
Mujibi et al. 2011 0.20
Bolormaa et al. 2013 0.32
Negussie et al. 2019 0.42 to 0.57

(simulation based)
Residual

feed intake
Pryce et al. 2012 0.40
Mujibi et al. 2011 0.43
Bolormaa et al. 2013 0.43
VanRaden et al. 2017b 0.44
Negussie et al. 2019 0.22 to 0.50

(simulation based)
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breeding companies (e.g., CRV, Select Sires, GENEX,
STGenetics, and VikingGenetics) are also promoting
GEBVs for more efficient cows through their own selec-
tion strategies. For instance, CRV generates the NVI,
which is the total merit index used in the Netherlands
and Flanders, which includes a saved-feed-cost trait. In
other countries, such as the USA, CRV offers the Better
Life Efficiency program, which identifies bulls that have
a high lifetime production to lifetime feed intake ratio
(CRV 2019). Recently, VikingGenetics also released a
saved feed index. They are working towards implement-
ing an index based on two indicator traits: maintenance
efficiency, which captures the energy requirements
for maintenance; and metabolic efficiency, which
reflects how efficiently the eaten feed is utilized
(VikingGenetics 2019). Bulls with a score of 5% for better
life efficiency have been reported to have daughters that
can produce an additional 680 kg of milk with the same
amount of feed, which would translate into an addi-
tional $295 per cow per lifetime. Select Sires also devel-
oped a selection index, FeedPRO® that focuses on
producing moderately sized cows while maintaining
production levels (Select Sires Inc. 2019). Daughters of
FeedPRO® bulls have been reported to produce on aver-
age 13–18 cents more per day (Select Sires Inc. 2019).
The FeedPRO® index is also correlated at 0.90 to TPI, a
total selection index in the USA. Production efficiency
(PREF$), an index from GENEX, has also been reported
to result in higher yielding cows with lower feed costs.
This subindex makes up 47% of the ICC$™ index, with
emphasis on marginal feed costs, fat, protein, and milk
yield (Genex Cooperative 2018). EcoFeed™, a feed effi-
ciency index developed by STgenetics, is designed to
encompass environmental, metabolic, and genomic fac-
tors affecting dairy cattle profitability from birth to cull-
ing (STgenetics 2018). Daughters of bulls that are five
points above the average are reported to consume
0.45 kg less feed per day, while maintaining similar
production levels (STgenetics 2018). Although many
companies and national breeding organizations are
moving towards the inclusion of feed efficiency into
their breeding programs, there is no consensus on the
optimal way to include these traits. It is worth mention-
ing that the descriptions of the selection indexes
mentioned above were provided by the companies, and
some details might have been omitted by them. Further
research is required to compare different approaches
and define an optimal strategy.

Conclusions
Feed efficiency, assessed based on different indicators,

is a heritable trait and can be improved through genetic
and genomic selection. The breeding goal needs to be
refined and indicator traits that can be easily measured
at low cost should be identified. Feed efficiency is a
polygenic trait influenced by many genetic variants,
regulator genes, and structural variations. With the

important role of the rumen microbiota on feed
efficiency and evidence of host genetic influence on the
rumen microbiome profile, further evaluation of rumen
microbial features may lead to its prospective use as an
indicator trait, or use in future genomic selection mod-
els. The accuracy of genomic predictions for feed effi-
ciency are still low but are expected to increase as
training populations are enlarged, and additional
functional information could be included from tran-
scriptomics and other “-omics” technologies. In this
regard, various groups around the world are collabora-
tively working to refine the methods used in the evalua-
tions as well as enlarging the datasets used for genomic
evaluations.
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