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ARTICLE

Optimal models in the yield analysis of new flax cultivars
Gaofeng Jia and Helen M. Booker

Abstract: Multi-environment trials are conducted to evaluate the performance of cultivars. In a combined analy-
sis, the mixed model is superior to an analysis of variance for evaluating and comparing cultivars and dealing with
an unbalanced data structure. This study seeks to identify the optimal models using the Saskatchewan Variety
Performance Group post-registration regional trial data for flax. Yield data were collected for 15 entries in post-
registration tests conducted in Saskatchewan from 2007 to 2016 (except 2011) and 16 mixed models with homo-
geneous or heterogeneous residual errors were compared. A compound symmetry model with heterogeneous
residual error (CSR) had the best fit, with a normal distribution of residuals and a mean of zero fitted to the trial
data for each year. The compound symmetry model with homogeneous residual error (CS) and a model extending
the CSR to higher dimensions (DIAGR) were the next best models in most cases. Five hundred random samples
from a two-stage sampling method were produced to determine the optimal models suitable for various environ-
ments. The CSR model was superior to other models for 396 out of 500 samples (79.2%). The top three models, CSR,
CS, and DIAGR, had higher statistical power and could be used to access the yield stability of the new flax cultivars.
Optimal mixed models are recommended for future data analysis of new flax cultivars in regional tests.

Key words: flax (Linum usitatissimum L.), variance-covariance structure, residual error, multi-environment tests,
akaike information criterion.

Résumé : Les essais multi-environnementaux nous renseignent sur la performance des cultivars. Dans les analyses
combinées, le modèle mixte permet de mieux analyser la variance afin d’évaluer et de comparer les cultivars.
Il permet aussi de mieux composer avec des données à la structure mal équilibrée. Les auteurs voulaient établir
les meilleurs modèles en recourant aux données des essais régionaux après homologation sur le lin du
Saskatchewan Variety Performance Group. Ils ont rassemblé les données sur le rendement de 15 cultivars inscrits
aux essais post-homologation réalisés en Saskatchewan de 2007 à 2016 (sauf en 2011) et comparé celles de
16 modèles mixtes présentant une erreur résiduelle homogène ou pas. Le modèle à symétrie composée et erreur
résiduelle hétérogène (CSR) donne le meilleur ajustement, avec une distribution normale des variances
résiduelles et une moyenne de zéro ajustée à la date annuelle des essais. Le modèle à symétrie composée et erreur
résiduelle homogène (CS) et un modèle constituant l’extension du CSR à des dimensions supérieures (DIAGR) sui-
vent, dans la plupart des cas. Les auteurs ont recouru à une méthode d’échantillonnage en deux temps pour obte-
nir cinq cents échantillons de manière aléatoire et déterminer les modèles qui conviennent le mieux à divers
environnements. Le modèle CSR est supérieur aux autres dans 396 cas sur 500 (79,2 %). Les trois meilleurs
modèles (CSR, CS et DIAGR) bénéficient d’une plus grande élasticité statistique et on pourrait s’en servir pour
vérifier la stabilité du rendement des nouveaux cultivars de lin. Les auteurs préconisent l’usage des meilleurs
modèles mixtes pour analyser les données sur les nouvelles variétés testées régionalement, à l’avenir. [Traduit
par la Rédaction]

Mots-clés : lin (Linum usitatissimum L.), structure de la variance-covariance, erreur résiduelle, essais multi-
environnementaux, critère d’information d’Akaike.
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Introduction
Flax (Linum usitatissimum L.) is an important oilseed and

fibre crop. Oilseed flax (also called linseed) is a rich source
of micronutrients, dietary fiber, and omega-3 fatty acids.
Flax breeding objectives are to increase yield (yield stabil-
ity), improve agronomic performance, enhance disease
resistance, and improve quality characteristics (You et al.
2016). The ambition of the Canadian flax industry is to
increase average yields by nearly 10% over the next de-
cade with the help of improved agronomic management
and enhanced genetics (new cultivars). Elite flax breeding
lines supported for registration and new flax cultivars are
evaluated in regional yield trials over a number of loca-
tions and years to determine their performance (yield
and yield stability) in different agro-ecological zones of
the province of Saskatchewan. The statistical methods
employed to design the trials and analyze data from the
regional tests to evaluate yield and yield stability need
to be accurate, efficient, and informative.

New crop genotypes are often evaluated and
expressed as a percentage of a designated check geno-
type value over a number of locations and years. This is
a relatively simplistic statistical method and some limits
with this traditional approach include the selection of an
appropriate check genotype or genotypes. This compari-
son requires that check genotype(s) have consistent per-
formance over a number of locations and years (Friesen
et al. 2016). Genotypes under evaluation and check geno-
types might change from year to year as well as loca-
tion to location. Currently, the statistical analysis for
yield data generated from flax regional performance test
utilizes analysis of variance (ANOVA) (You et al. 2013).
Analysis of variance takes all factors as fixed effects,
assumes homogeneity of variance and the same covari-
ance for all pairs of entries, and does not handle unbal-
anced data, which leads to estimates that are often
inappropriate and unreliable (Hu et al. 2014). In contrast,
the mixed model analysis method considers fixed and
random effects in many commonly used experimental
designs and correctly estimates genotype effect (G) and
genotype × environment (G × E) interaction effects using
an appropriate variance–covariance structure that can
be adapted to a complicated data structure. This model
allows for the presence or absence of heterogeneity or
error variances among environments, heterogeneity of
genotypic variances among environments, and hetero-
geneity of genotypic correlations between pairs of envi-
ronments (Piepho 1997a, 1997b; So and Edwards 2009;
Hu and Spilke 2011).

In cultivar performance tests, a common case is that
some entries are evaluated for a number of sites and
years and then replaced by newer entries or advanced
lines. As well, poor growing environments in certain loca-
tions or years lead to missing observations. Analysis of
variance is often unable to estimate least squares means
and compare cultivar performance for unbalanced data,

whereas a mixed model analysis can provide an appropri-
ate analysis producing correct results.

Homogeneity of variance and covariance are unrealis-
tic in many circumstances. More complex and informa-
tive mixed models can account for variance and
covariance heterogeneity in multi-environment trials
(MET; Kempton 1984; Piepho 1998a, 1998b). The mixed
model has been shown to be more efficient than the
ANOVA model for estimating the accuracy of varietal
differences. In practical applications, the choice of the
optimal model depends on the experimental design,
environments, genetic pattern of species or traits,
required precision, and the type of desired information
(So and Edwards 2009).

The mixed model has been applied to the analysis of
cultivar trial data for many crops such as soybean
(Andrade et al. 2016), corn (So and Edwards 2009; Hu and
Spilke 2011), wheat (Friesen et al. 2016), rape (Hu et al.
2014), and canola (Beeck et al. 2010). Results are not always
consistent due to differences in crop cultivars, trial
environments, adopted variance–covariance structure of
models, and data sufficiency. A great deal of theoretical
research has been conducted with respect to multi-
environment statistical methods (Finlay and Wilkinson
1963; Eberhart and Russell 1966; Shukla 1972; Hildebrand
1984; Piepho 1997b; Smith et al. 2001a, 2001b; Basford
et al. 2004; Smith et al. 2005; Littell et al. 2006; Coe 2007;
Hu and Spilke 2011; Hu et al. 2014). Even though no
one-size-fits-all model can be applied to all situations, the
general suggestion is that more models must be tested
and compared to find the optimal one; indeed, one or a
few models might be preferred to deal with multiple
environments for a certain crop. Simulated datasets used
to compare mixed models might not fit all practical cases
well for MET (Walker et al. 2011; Ferraudo and Perecin
2014). Some models have been employed to study a cer-
tain number of real datasets but, because the number of
datasets was limited, drawing generic conclusions on the
optimal models for some crops was difficult. A selection
approach for models could be established based on test-
ing a variety of models with different variance–covariance
structures and using multi-year–location trial data and
enough samples with real data for a particular crop.

In cultivar trials, the residual error variance com-
monly differs across environments due to changes in
growing environments such as soil, weather, field-scale
experimental conditions, and management across loca-
tions and years. The heterogeneity of residual error var-
iances in analytical models has been considered in a
number of studies (Casanoves et al. 2005; So and
Edwards 2009; Hu and Spilke 2011; Hu 2014; Hu et al.
2014). Despite different options for appropriate models,
heterogeneity of error variances was prevalent and
prominent in MET and affected parameter estimates of
models and the stability of the ranking of genotypes.
Models with heterogeneous residual error variances fit
the trial data better and gave smaller standard errors of
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model parameter estimates than their homogeneous
counterparts. Models with heterogeneous residual error
variances were a good alternative analysis for genotype
stability in MET (So and Edwards 2009; Hu and Spilke
2011; Hu 2014; Hu et al. 2014).

The purpose of this study was to explore the potential
advantages of the mixedmodel method and find optimal
models with preferred variance–covariance structures
based on a sufficient number of practical datasets of
new registered flax cultivars in post-registration
(regional) testing in Saskatchewan. A total of 16 models
with different variance–covariance structures were com-
pared. A two-stage sampling technique was used for
diverse environments with variable years and locations
for nine years and up to 10 locations. A total of 500 sam-
ples were used to test the models and estimate and pre-
dict the main effect of genotype yield and genotype
ranking. The results led to recommendations for optimal
mixed models for the analysis of regional trial data and
assessment of the performance of new flax cultivars.

Materials and Methods
Weather data

Historical agro-climatic maps can be assessed from
Agriculture and Agri-Food Canada (AAFC) at: http://
www.agr.gc.ca/eng/programs-and-services/list-of-programs-
and-services/drought-watch/agroclimate-maps/?id=1463
574557847.

Experimental design
Flax yield data generated from post-registration trials

conducted in Saskatchewan from 2007 to 2016 (except
2011) were used. Fifteen new cultivars were grown in up
to 10 locations in different years. New cultivar evaluation
was conducted in a complete random block design with
three replications at each location.

Each entry was planted in seven-row plots each 2 m
long and 1.5 m wide. CDC Bethune was employed as a
check cultivar for all year–location trials. The center five
rows of each plot were collected for grain yield assess-
ment. Yield was adjusted to grams per square meter. As
is common in crop genotype multi-year–location trials,
the dataset was unbalanced as some entries were evalu-
ated for a number of sites and years and then replaced
by newer entries, or entries were missing due to poor
growing conditions or other reasons. All genotypes were
represented by data from at least two years and two loca-
tions or else excluded from further analysis. As such, at
least two years of data were available for all trial locations.
A total of 1907 data points were included in the analysis.

Mixed models
The statistical models evaluated in this study were

based on a mixed linear model:

yij = μ + αi + βj + ðαβÞij + εij

where yij is the yield of the ith cultivar in the jth environ-
ment, μ is the general mean, αi is the effect of the ith

cultivar, βj is the effect of the jth environment, (αβ)ij is
the interaction effect of the ith cultivar in the jth envi-
ronment, and eij is the residual error. The factor αi is con-
sidered fixed, while βj, (αβ)ij, and εij are treated as
random. In our model, the effect μ contains both fixed
cultivar effects as well as the random effects of the envi-
ronment and the cultivar × environment interaction.

In the ANOVA model, βj and (αβ)ij are assumed to be
independent and normally distributed with variances
σ2β and σ2αβ, respectively, which implies that all culti-
vars have the same variance over environments
[i.e., Covðμij, μi 0 jÞ = σ2β]. Genotypic variance and covari-
ance between pairs of environments are homogeneous.
This corresponds to the compound symmetry (CS)
variance–covariance structure in the mixed model.
To simplify the mathematical expression, a 3 × 3
variance–covariance matrix was taken as the general
form, which was simply extended to higher dimensions:

CS variance–covariance structure∶

Var

0
@

μ1j
μ2j
μ3j

1
A =

0
B@

σ21 ρ ρ

ρ σ21 ρ

ρ ρ σ21

1
CA

Assuming variance heterogeneity among cultivars,
the higher dimension (DIAG) structure was used in
mixed models:

DIAG variance–covariance structure∶

Var

0
@

μ1j
μ2j
μ3j

1
A=

0
B@
σ21 ρ ρ

ρ σ22 ρ

ρ ρ σ23

1
CA

Some pairs of cultivars responded more similarly in
given environments than others. This implies a correla-
tion between cultivar performance and environment. In
this situation, a correlation variance–covariance struc-
ture (COR) was considered in the analysis models:

COR variance − covariance structure∶

Var

0
B@

μ1j
μ2j
μ3j

1
CA =

0
B@

σ21 ρσ1σ2 ρσ1σ3
ρσ1σ2 σ22 ρσ2σ3
ρσ1σ3 ρσ2σ3 σ23

1
CA

Data points close in time are assumed to be more
highly correlated than data points distant in time. An
autocorrelation model (ARMA) was used to fit in trial
data for years:

ARMA variance–covariance structureð1st orderÞ∶

Var

0
B@

μ1j
μ2j
μ3j

1
CA =

0
B@

σ21 ρ1 ρ2

ρ1 σ22 ρ1

ρ2 ρ1 σ23

1
CA
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A factor analytic (FA) variance structure can be used to
implement complicated data analysis and depends
on the decomposition of an unstructured variance–
covariance matrix in the mixed model. The FA structures
are fitted with different numbers of components. Three
components (FA1, FA2, and FA3) were applied in this
study. The simple FA1 model with one component is:

FA1 variance–covariance structure∶

Var

0
B@

μ1j
μ2j
μ3j

1
CA =

0
B@

σ21 + σ2δ ρσ1σ2 ρσ1σ3
ρσ1σ2 σ22 + σ2δ ρσ2σ3
ρσ1σ3 ρσ2σ3 σ23 + σ2δ

1
CA

One of the most general variance–covariance forms is
that no limits are imposed on the variance and covari-
ance structure; variance and covariance are allowed to
vary freely. This is a so-called unstructured model (US),
and seems realistic in most cases. Because many parame-
ters need to be estimated for this structure, it sometimes
does not fit datasets well. The unstructured model has a
matrix form in mixed models as follows:

US variance–covariance structure∶

Var

0
B@

μ1j
μ2j
μ3j

1
CA =

0
B@

σ21 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ23

1
CA

Heterogeneity of residual error variances directly
affects the analysis of trait performance. Models
allowing error variance heterogeneity are often more
practical and have better fitness. In this study, all models
considered two cases: heterogeneous (σ2ε1 ≠ σ2ε2 ≠ σ2ε3) and
homogeneous (σ2ε1 = σ2ε2 = σ2ε3) environments. The names
and notations for all of the mixed linear models with
homogeneous and heterogeneous environments are
listed in Table 1.

Model assessment
The choice of model directly affects the assessment of

cultivar performance. Sixteen models with different
variance–covariance structures were compared using
the Akaike information criterion (AIC) (Oman 1991;
Wolfinger 1993), for which a lower value indicates a bet-
ter model. The CS model was taken as the baseline and
the chi-squared test was used to statistically assess the
fit of the two models, where

χ2 = ð−2 log−Likelihood0Þ− ð−2Log− Likelihood1Þ

and

df = Number of parameters0
− Number of parameters1:

General data analysis was conducted using R packages
and Python, and the models were fitted using ASReml-R
v3.0 and ASRemlPlus v4.0 (Bulter et al. 2007).

Two-stage sampling
Two-stage random sampling was employed; the first

stage samples were randomly produced from those that
had a minimum of five trial years and the second stage
sampled by location where there was at least two loca-
tions for two years. Five hundred samples were finally
produced, with an average sample size ranging from
780 to 1369 (Table 2).

Results
Characteristics of the post-registration flax cultivar
dataset

The yield varied greatly for new flax cultivars in the
post-registration testing across year–location environ-
ments (Fig. 1). The highest average and the greatest range
of yield occurred in 2009, the lowest average yield was in
2012, and the average yield was relatively stable from
2014 to 2016. The pattern of change in yield was similar
for new cultivars but the response to environment
(location and year) was complex. Moreover, there were
interactions between cultivars and environments. Year–
location environments had a substantial impact on yield
performance. The dataset was unbalanced because of
new entries added, older entries removed, or missing
observations across locations and years. This meant that

Table 1. Model description and notation.

Variance–covariance
structure

Notation

Homogeneous
residual error

Heterogeneous
residual error

Compound symmetry CS CSR
Diagonal DIAG DAIGR
Correlation COR CORR
Autoregressive ARMA ARMAR
Factor analysis
(one component)

FA1 FA1R

Factor analysis
(two component)

FA2 FA2R

Factor analysis
(three component)

FA3 FA3R

Unstructured US USR

Table 2. Sample composition of two-stage
random sampling.

No. of
years

No. of
samples

Mean no. of
locations

Sample
mean
size

Range of
sample
size

5 116 25 780 544–1045
6 129 37 977 792–1164
7 128 49 1180 1013–1293
8 127 59 1369 1199–1499
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the number of entries as well as the new crop genotypes
tested each year varied. The yield variance was not
homogeneous in MET and traditional linear models were
unable to deal with the unbalanced and heterogeneous
trial dataset.

Estimation of residual error variance for a single
year–location environment

The residual error variance for each year–location
environment was estimated using mixed model analysis
(Fig. 2). The error variance was estimated to be 5195.39 at
Watrous, SK, in 2013, which was over 880 times larger
than the error variance at Saskatoon, SK, in 2007. The
residual error was not homogeneous and thus models
that correctly estimate error variance need to be consid-
ered. The mixed model allowed for heterogeneous error
variance and could handle the complex data in MET
and correctly estimate residual error variance.

Assessment of mixed models with different
variance–covariance structures

CSR was the best mixed model with the smallest AIC
value (12 068.51) for the post-registration flax cultivars
dataset (Table 3). DIAGR was the next best model with
an AIC of 12 075.44. The CS mixed model had relatively
good performance but the CSR and DIAGR models
fit the data comparatively better (p = 3.03 × 10−5 and
p = 8.05 × 10−5, respectively). CSR performed signifi-
cantly better than DIAGR (p= 0.03706).

CSR model performance diagnosis
Model performance was diagnosed using standard-

ized residuals, Q–Q plots, and predicted value distribu-
tion. Among 1907 data points, 78 cases (4.1%) had
standardized residuals with an absolute value >2.0 for

the CSR model. Q–Q plots highlight deviations from
normality. For datasets with a good normal distribu-
tion, most points are located on the diagonal line. The
CSR model fit the MET dataset with very close to a nor-
mal distribution for all years (Fig. 3). The residual plot
exhibited a random array of dots evenly dispersed
around the zero line for all years (Fig. 4). The CSR model
best represented the complete trial information for all
years and locations and fit the trial data and estimated
the residual errors without bias.

Cultivar ranking with the application of 16 models
The ranking of new flax cultivars in terms of yield and

yield stability across multiple environments is impor-
tant. Figure 5 shows cultivar rank based on the different
models. All models had a similar pattern and the rank-
ings were highly correlated. The CSR and DIAGR models
exhibited the best performance and generated a consis-
tent cultivar order. All models resulted in similar estima-
tion of cultivars with lower rankings. The order of
cultivars with moderate yield levels was uncertain when
models with different variance–covariance structures
were applied. The relative ranking of the check cultivar
CDC Bethune has a large impact on the assessment of
new flax cultivar regional testing; here, its rank varied
from second to fifth depending upon the model applied.
Overall, the mixed model analysis allows for a more
equitable comparison than ANOVA amongst new and
old cultivars across locations and years in the
Saskatchewan Flax Variety Performance Test.

Mixed model performance for multiple samples with vari-
able environments

While one model with the best performance was
considered, the CSR model was the optimal model, with

Fig. 1. Fluctuation in yield for new flax cultivars evaluated in post-registration MET (2007–2016; no trial conducted in 2011).
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396 times among the 500 samples (79.2%) (Table 4). The
CS model occurred 58 times (11.6%) as the best perfor-
mance and the DIAGR model 27 times (5.4%). If the top
three models were considered as potential preferred
models, the CSR, CS, and DIAGR models best fit the data-
set with similar frequency. Given the broad environmen-
tal variance across years and locations for the flax

cultivars tested, the CSR, CS, and DIAGR models can be
considered to apply with the best fit in the analysis of
flax trial data.

Fig. 2. Residual error variance for each year-location.

Table 3. Akaike information criterion (AIC) value for
mixed models with different variance–covariance
structure.

Model

AIC

Homogeneous
error variance

Heterogeneous
error variance

CS(R) 12085.09 12068.51 (p= 3.03 × 10−5)
DIAG(R) 12091.83 12075.44 (p= 8.05 × 10−5)
COR(R) 12707.31 12935.32
FA1(R) 12100.14 12097.40
FA2(R) 12161.89 12100.75
FA3(R) — 12100.14
ARMA(R) 12675.56 12921.20
US(R) 13033.10 12921.20

Fig. 3. Q–Q plot for the estimation of residual error normal
distribution by the CSR model.
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Estimates of the statistical power of different
mixed models

Cultivar was taken as a fixed effect factor and the
Wald test indicated the significance of the statistical test
among the entries (cultivars) in regional performance
testing. For the CSR model, 425 out of 500 samples
(85%) showed high statistical significance among the
entries (cultivars) (Table 5). Only 12 samples were sta-
tistically insignificant with p values >0.05. Thus, the
CSR model had the greatest statistical power to distin-
guish differences between entries (cultivars) in the
regional trials. The DIAGR, CS, and DIAG mixed models
had similar results.

Yield rank of check cultivar CDC Bethune in 500 samples
Results were quite divergent, with different models

used to access the new crop genotypes for the 500 data-
sets. The check cultivar CDC Bethune, which entered in
the trial every year, typically varied from first to fifth in
rank depending upon the model used (Fig. 6). The CSR
and DIAGR models ranked CDC Bethune from third to
fifth but typically in fourth place. The CS, DIAG, FA1,
FA2, and FA3 models produced similar results to the
CSR and DIAGR models. The COR, US, FA1R, and FA2R
models placed CDC Bethune from first to fourth for
most samples. The CORR, FA3R, ARMA, ARMAR, and
USR models did not provide a stable assessment with
respect to the rank of CDC Bethune. The position of the
check cultivar in the order directly affects the cultivar
assessment system.

Figure 7 displays the cultivar ranks estimated using
the CSR model for 500 samples. Some cultivars had a sta-
ble order in all samples, such as AAC Bravo (mostly
ninth), CDC Bethune (around fourth), CDC Glas (first to

third), CDC Neela (first to fourth), CDC Plava (mostly
sixth), CDC Sorrel (first or second), FP2388 (ninth or
tenth), NulinVT50 (eleventh), and WestLin71 (twelfth).
Cultivars CDC Sanctuary and WestLin72 were quite
affected by environment, with the rank being variable
in response to changes in location or year. This result
shows that cultivar order can be used to access cultivar
stability in MET when applying an optimal mixed model
for analysis.

Discussion
Crop genotypes are evaluated in MET to predict and

recommend preferred cultivars or breeding lines to pro-
ducers. Cultivar performance has traditionally been
expressed as a percentage of a designated check geno-
type value for each site–year for new flax genotypes in
regional trials. This is an overly simplistic statistical
method and also unreliable because of the changes in
performance of the check genotype and its stability in
MET. Analysis of variance has been the primary analyti-
cal approach to analyze data from multi-year–location
trials. Because ANOVA takes all factors as fixed effects
and assumes variance homogeneity and the same covari-
ance for all pairs of varieties, it is not practical for assess-
ment of new flax cultivars in regional trials. In addition,
the working datasets are often incomplete and unbal-
anced due to the addition of new entries, removal of
obsolete entries, or unforeseen circumstances causing
missing observations. It is difficult using ANOVA to ana-
lyze such complicated data and make the correct assess-
ment or estimation. Mixed model analysis is superior to
the traditional approach for unbalanced and multi-
year–location data analysis. This study indicates that
the CSR model has the best characteristics for the analy-
sis of post-registration flax cultivar trial data. The DIAG,
CS, and DIAGR models are good alternatives in some
environments. These four models could be used to fit
the data from flax regional trials.

This study demonstrated the large fluctuation in
residual error variance across multi-year–location envi-
ronments. Ignoring error variance heterogeneity in
MET might result in inflation or deflation of statistical
type I error when estimating genotype effects and ineffi-
cient estimates of model parameters for genotype stabil-
ity evaluation. Whether or not the heterogeneity of error
variances is considered in the analysis procedures con-
siderably impacts the statistical test results regarding
genotype main effects, especially in the case of random
environment main effects and genotype × environment
interaction effects. Cultivar assessment and recommen-
dations depend upon the estimation of genotype main
effect. In this study, the CS model with heterogeneous
error variances (CSR model) had the best statistical sig-
nificance for the estimation of cultivar main effect; only
12 out of 500 samples (2.4%) were statistically insignifi-
cant for cultivar main effects. Good statistical power
was also evident for both the CSR and DIAGR models.

Fig. 4. Scatter plot of residual error values for each year
using the CSR model.
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Which models best fit the crop genotypes in MET?
Inconsistencies in many studies are often due to
different crop species, trial years and locations, field
operation and management, and unknown factors.

So and Edwards (2009) found that the best model was
one with some level of heterogeneity in the covariance
structure and the most important level of heterogeneity
was the residual error variance in the maize trials. Only

Fig. 5. Yield rank of cultivars with different mixed models.

Table 4. Sample frequency for models with the best performance.

Rank

Model with best performance Top three models

Model No. of samples Percentage (%) Model No. of samples Percentage (%)

1 CSR 396 79.2 CSR 484 32.5
2 CS 58 11.6 CS 422 28.4
3 DIAGR 27 5.4 DIAGR 413 27.8
4 FA1 7 1.4 DIAG 62 4.2
5 FA3 5 1.0 FA1 44 2.9
6 DIAG 2 0.4 FA2 35 2.4
7 FA2R 2 0.4 FA3 15 1.0
8 FA3R 2 0.4 FA2R 12 0.8

Table 5. Wald tests on data analysis from mixed models.

Model

p value

Homogeneous error variance Heterogeneous error variance

>0.05 (0.01–0.05) (0.001–0.01) ≤0.001 >0.05 (0.01–0.05) (0.001–0.01) ≤0.001

CS(R) 29 16 45 410 12 21 27 425
DIAG(R) 29 18 43 410 16 22 30 421
COR(R) 95 70 113 222 261 133 78 28
FA1(R) 103 69 116 212 259 135 76 30
FA2(R) 30 20 45 404 107 58 79 255
FA3(R) 34 26 45 388 83 37 59 319
ARMA(R) 46 29 49 369 79 27 28 358
UN(R) 127 95 141 138 262 133 78 28
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six out of 65 sets of data had the best performance
according to the AIC when considering homogeneous
error variances among environments in their study.
Thus, heterogeneous error variances should be taken
into consideration in analysis of MET data.

The unstructured model without any parameter limits
is generally taken as the best model, although is not
favored by some researchers (So and Edwards 2009; Hu
and Spilke 2011). Although an unstructured model is cer-
tainly the most realistic in the majority of cases and

Fig. 6. Yield rank of check cultivar CDC Bethune using different mixed models among 500 samples.

Fig. 7. Assessment of cultivar order using the CSR model among 500 samples.
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should have good performance for fitting practical data
against simpler structures, the disadvantage is the large
number of parameters that need to be estimated. Based
on the parsimony principle, it was not a good fit for the
trial data in this study. Other variance–covariance struc-
tures were specific forms of the unstructured model
with restrictions imposed and, in most cases, these are
more suitable for practical crop trial data. Hu et al.
(2014) point out that models with heterogeneous
residual error variances fit the trial data better and gave
(with a 2.1%–8.4% reduction) smaller standard error of
model parameter estimates than their homogeneous
counterparts. Mixed, AMMI, and Eberhart–Russel mod-
els have been used to study genotype × environment
interactions in sugarcane, where the mixed model
exhibited higher sensitivity in 63 simulated cases repre-
senting different conditions (Ferraudo and Perecin
2014). Only a few of the FA models in this study had the
best performance. The CS model with homogeneous
error variance was not the worst model despite the strict
structure and parameter limits. In addition, models with
fewer parameters and a simpler structure were more
suitable to implement on the limited number of datasets
than other unfitted models.

Although, the model statement includes the environ-
ment effect (βj) and the interaction effect of genotypes
and environment (αβ)ij. Environment involves many fac-
tors such as location, field topography, soil, climate (pre-
cipitation, cumulative temperature, and day length), and
site management. In this study, it was not possible to
ascertain the environmental and (or) management fac-
tors that may have been important to the variation in
yield of flax. Zhang et al. (2014) utilizes structural equa-
tion modelling (SEM) to relate multiply phenotypic traits
in flax accessions with seed yield; a similarly aligned
study conducted with this dataset could determine the
main yield drivers in flax by relating historical crop yield
data with weather data (for sites where this data is
available).

Conclusion
The mixed model is suitable for the analysis of compli-

cated data in MET. The choice of optimal model relies on
varying assumptions and variance–covariance struc-
tures. Residual error variances should be included in
the data analysis. The CSR model best fits the flax post-
registration trial dataset studied herein and had the
highest statistical power. Overall, CSR, DIAGR, and CS
are the preferred variance–covariance models and are
recommended for future data analysis of new flax culti-
vars in regional tests.
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