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Abstract
Monitoring the changes in soil organic carbon (SOC) pools is critical for sustainable soil and agricultural management.

This case study models total and active organic carbon dynamics (2015/2016 to 2019/2020) using digital soil mapping (DSM)
techniques. Model predictors include topographic variables generated from light detection and ranging data; soil and vegeta-
tion indices derived from Landsat satellite images; and soil and crop inventory information from Agriculture and Agri-Food
Canada to predict total organic carbon (TOC) and permanganate oxidizable carbon (POXc) at the 0–15 cm depth increment for
a 37 km2 study area in Truro, Nova Scotia. Quantile Regression Forest and stochastic Gradient Boosting Model were utilized for
prediction. Although both models performed equally well for predicting TOC and POXc, the accuracy of TOC predictions (e.g.,
concordance correlation coefficient (CCC) = 0.67) was better than POXc predictions (e.g., CCC = 0.53). The Landsat variables
and crop inventory were dominant predictors, while topographic variables across the relatively homogeneous terrain had rel-
atively little influence. During the study period, changes in POXc were predicted across 98% of the study area, with a mean
absolute loss of 5.77 (±11.48) mg/kg/year, and in TOC on 27% of the area, with a mean absolute loss of 0.15 (±0.09) g/kg/year.
While the annual crop fields observed the highest loss of TOC and POXc, the decline in pasture–grassland–forage fields was
relatively low. The study reinforced the effectiveness of DSM for modeling multiple SOC pools at the farm to landscape scales.
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1. Introduction
Soil organic carbon (SOC) is a key soil quality parame-

ter that influences a range of physical, chemical, and bio-
logical properties of soil (Wiesmeier et al. 2019); therefore,
monitoring and maintaining SOC contents are critical for
agricultural productivity. Furthermore, SOC is recognized as
the largest terrestrial carbon pool and plays a vital role in
the global C cycle, providing important benefits for climate
change mitigation and adaptation (Minasny et al. 2017). Yet,
in Atlantic Canada, the intensity of cropping systems is lead-
ing to continued declines in SOC. In a national-scale assess-
ment, Clearwater et al. (2016) estimated that most of At-
lantic Canada experienced a moderate (25–90 kg/ha/year) to
large (>90 kg/ha/year) decrease in SOC from 1981 to 2011.
Hence, developing an effective SOC sequestration strategy
has emerged as a fundamental need for this region; how-
ever, for the successful implementation of such strategies,
spatiotemporal assessments of SOC under different environ-
mental stresses and land-management conditions are criti-
cal. Recently, the direct financial returns of SOC sequestra-
tion, or “carbon credit”, have been in discussion to offset
the associated cost of SOC sequestration in farm lands, but

this also requires accurate and cost-effective quantification
of SOC (Paustian et al. 2019). In this context, the site-specific
mapping of SOC has gained wide attention among producers,
land managers, and policy-makers.

Within the SOC pool, active carbon, which can be mea-
sured as permanganate oxidizable carbon (POXc), is a carbon
fraction that can be easily oxidized and lost due to changes
in agricultural management and land use practices (Culman
et al. 2012). The monitoring of POXc may, therefore, pro-
vide more immediate information on the soil’s response to
shifts in management practices compared to the total organic
carbon (TOC). Assessing the dynamics of TOC and POXc can
provide important cues for effective agricultural soil man-
agement and enhance agroecosystem resilience against cli-
matic perturbations. Furthermore, combining the evaluation
of TOC and POXc is critical in tracking the spatial distribution
and changes in overall soil health (Zebarth et al. 2019; Norris
et al. 2020).

Despite the importance of monitoring SOC dynamics, spa-
tiotemporal modeling of SOC remains a consistent chal-
lenge due to the complex, biogeochemical processes within
the soil ecosystem. The widely adopted approaches for
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investigating SOC dynamics include (i) the statistical compar-
ison of plot-level data from long-term research trials that in-
corporate different management treatments (VandenBygaart
et al. 2010) and (ii) the use of dynamic, process-based mod-
els (e.g., Century, DeNitrification-DeComposition, Rotham-
sted Carbon Model), which can simulate the impacts of agri-
cultural management and land use changes on various SOC
pools over a certain period (Li et al. 2016; Dimassi et al. 2018).
Plot-level measurement may provide accurate assessments of
SOC dynamics; however, long-term research trials may not
always replicate the management conditions of operational
agricultural farms. Furthermore, setting up such trials may
become prohibitively time and cost intensive. Conversely, the
dynamic process-based models usually require an extremely
large set of complex input data for model parameterization to
accurately replicate the soil biogeochemical processes; thus,
the predicted outcomes may include sizeable uncertainties
when there is poor or inadequate information for landscape-
scale analysis (Adhikari et al. 2019; Huang et al. 2019).

Due to the continuous advancements in computation
power, remote sensing technologies, and machine-learning
techniques, the field of digital soil mapping (DSM) has pro-
vided the means for modeling and predicting the spatial
patterns of soil properties at various scales (McBratney et
al. 2003). In DSM, environmental variables, derived from re-
mote sensing and other geospatial data sources, are corre-
lated with soil observations using empirical models (e.g., ma-
chine learning and geostatistical) to predict soil properties.
Here, DSM practitioners utilize the generic SCORPAN frame-
work, proposed by McBratney et al. (2003), to generate spa-
tial predictions of soil properties based on geospatial layers
that represent the intrinsic properties of soils (S), climate (C),
organisms (O), relief (R), parent materials (P), soil age (A), and
spatial location (N). The SCORPAN factors are correlated with
the target soil variables to generate a predictive model, which
may then be used to simulate the impacts related to tem-
poral changes in climate, management, and land use prac-
tices. When simulating the spatiotemporal patterns of soil,
such as the prediction of SOC dynamics, time-series, remote
sensing data may be used for capturing the temporal changes
(Taghizadeh-Mehrjardi et al. 2021; Fathizad et al. 2022). Thus,
this pragmatic modeling technique has widened the scope
for predicting spatiotemporal dynamics of soil and has re-
cently been used in various regional-scale studies. For exam-
ple, Yigini and Panagos (2016) and Paul et al. (2020b) both
evaluated changes in SOC for Europe and the Lower Fraser
Valley of British Columbia, respectively. Similarly, Fathizad et
al. (2020) simulated the changes in soil quality due to land use
and land cover changes for the central desert of Iran, while
Taghizadeh-Mehrjardi et al. (2021) modeled the changes in
heavy metals in soils for the same region. Although DSM
studies, such as Paul et al. (2020b) and Fathizad et al. (2022),
predicted the spatiotemporal patterns of SOC at the land-
scape scale, there has yet to be any research that explic-
itly predicted active C within the DSM literature. Given the
highly volatile nature of the active C fraction of soil, applying
DSM techniques for predicting POXc may provide a fast and
cost-effective assessment of active C dynamics in response to
changes in management practices.

The spatial resolution and types of environmental predic-
tors are key considerations in DSM. Lamichhane et al. (2019)
identified that environmental variables representing agricul-
tural management and land use activities were the most fre-
quently used covariates for SOC mapping, followed by cli-
mate and topographic variables——although climate variables
were usually influential for large, regional-scale studies. For
landscape-scale studies, agricultural management and land
use information were typically derived from satellite im-
ages at various spatial resolutions (Maynard and Levi 2017;
Lamichhane et al. 2019; Fathololoumi et al. 2020), which
may have spatial resolutions as fine as 10 m (e.g., Sentinel-
2 imagery); however, variables obtained from Landsat satel-
lite images (30 m spatial resolution) have been used glob-
ally (Boettinger et al. 2008; Minasny and McBratney 2016).
Landsat data have been readily available since 1972 and
hence, the integration of Landsat-derived variables into pre-
dictive models has the unique ability to track spatiotemporal
changes. Specifically, Landsat imagery can be used to derive
map products, such as crop inventories, which may be an
important determinant for modeling TOC and POXc (Wang
et al. 2019). Within Canada, for example, Agriculture and
Agri-Food Canada (AAFC) has used optical-based (e.g., Land-
sat, AWiFS, and DMC) and radar-based (e.g., Radarsat-2) satel-
lite images to produce the annual crop inventory since 2009,
which consists of 72 classes and is distributed at a 30 m spa-
tial resolution (Fisette et al. 2013, 2014). Despite its compre-
hensive coverage, the use of this product remains relatively
unexplored in the Canadian DSM literature. Another source
of data, which has greatly transformed DSM in recent years,
is the increasing availability of fine-resolution light detec-
tion and ranging (LiDAR) data as it significantly enhances our
ability to capture field-scale topographic variability in DSM.
Blackford et al. (2020) demonstrated a workflow using Li-
DAR for DSM application and successfully predicted multiple
soil attributes, including soil moisture regimes and texture
in Hearst Forest, Ontario. Similarly, Kasraei et al. (2021) pre-
dicted soil pH, soil thickness, and depth to carbonates for the
Kamloops region of British Columbia, and predicted soil pH
and SOC for the Ottawa region of Ontario using LiDAR. There-
fore, the integration of environmental predictors of variable
spatial resolutions derived from satellite images, crop inven-
tory, and LiDAR data can be an effective approach for predict-
ing the dynamics of multiple SOC pools.

For this study, DSM techniques were applied to Truro, Nova
Scotia, for modeling the dynamics of TOC and POXc. Specif-
ically, the objectives were (i) to estimate the changes in TOC
and POXc from 2015/2016 to 2019/2020 across the study area
using DSM and machine learning models; (ii) to evaluate
the performance of various environmental variables derived
from multiple sources for predicting TOC and POXc; and (iii)
to understand the impacts of agricultural management on
the spatiotemporal variation of TOC and POXc.

2. Methods
This study required the acquisition and preprocessing of

environmental variables from multiple sources; the calibra-
tion and validation of the machine learning models; the
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application of variable importance analysis; and the spatial
prediction of TOC and POXc. Figure 1 shows the methodolog-
ical framework of this study. The R statistical software (ver-
sion 3.3.2, R Core Team 2018) was used for all modeling activ-
ities.

2.1. Study area
The study was conducted on a 37 km2 area within the Truro

region of Nova Scotia (45◦22’53.4"N, 63◦16’55.1"W; Fig. 2).
Cropping in the study area comprises predominately pasture,
forage, corn, and soybean production, with some additional
small grain cereals to support the dairy farms and other non-
ruminant livestock. The area is characterized by a cool, hu-
mid, temperate climate with mean annual precipitation rang-
ing from 1058 to 1443 mm, while the mean temperature usu-
ally reaches as high as 19.2 ◦C in July and as low as −7.3 ◦C in
January. The elevation ranges from 10 to 238 m (mean 25 m)
above mean sea level. The surficial materials in the study area
are predominantly moderately coarse-textured to moderately
fine-textured glacial tills, derived from shale and sandstone
(Webb et al. 1991). The soils are mainly Gleyed Podzols and
Orthic Gleysols of the Pupash and Hansford associations, and
Gleyed Gray Luvisols and Luvic Gleysols of the Queens soil as-
sociation (Webb et al. 1991). Additionally, there are small in-
clusions of Regosolic soils (i.e., reclaimed marshland) in the
Acadia soil association.

2.2. Soil sampling and laboratory analysis
In this study, soil samples (Fig. 2) were acquired at the 0–

15 cm depth increment while ensuring that the collected soil
samples represented the different types of agricultural pro-
duction or crop types. Over the course of two separate sam-
pling campaigns, the first set of samples (n = 120) was col-
lected as part of an Atlantic regional soil health survey in
2019, and a second set of samples (n = 150) was collected
in 2020. The samples acquired in 2020 were intended to im-
prove the spatial distribution of the sample locations and
were determined using the conditioned Latin hypercube sam-
pling design (cLHS; Minasny and McBratney 2006). Here, cLHS
is a maximally stratified random sampling technique that
captures the variation in the feature space from a suite of
input environmental covariates. This automated sample lo-
cation selection procedure utilized the topographic indices
as well as soil survey and annual crop inventory variables de-
scribed in Section 2.3.1. A principal component analysis was
also performed to minimize the number of covariates before
using them in the clhs package (Roudier 2014) within the R
software (version 3.3.2, R Core Team 2018).

All samples were analyzed at the Atlantic Soil Health Lab
at Dalhousie University where TOC and POXc were measured.
Samples were air dried, sieved to a <2 mm particle size, and
for TOC, also finely ground using a roller grinder before anal-
ysis. To determine TOC, a combustion elemental analysis with
a Vario Max Elemental Analyzer (Elementar, Langenselbold,
Germany) was performed on the samples. POXc was mea-
sured with a Jenway 6505 UV-Vis spectrophotometer (Jenway,
Staffordshire, UK) using a 0.2 M potassium permanganate
(KMnO4) solution (Culman et al. 2012).

2.3. Environmental variables
A total of 112 environmental variables were acquired from

a combination of Landsat 8 satellite imagery, LiDAR-derived
digital elevation model (DEM), soil survey data, and annual
crop inventory (Table 1).

2.3.1. Landsat variables

A suite of soil and vegetation indices and image textu-
ral variables from Landsat images was captured at multiple
time steps in 2015 and 2019. To represent the entire grow-
ing season, Landsat images were obtained from two pre-
growing periods (i.e., April and May), one peak growing pe-
riod (i.e., July or August), and one postgrowing period (i.e.,
late September). Landsat 8 Level-2 surface reflectance images
(Path 8/Row 28 or Path 7/Row 29) were downloaded from the
United States Geological Survey Earth Explorer satellite im-
age inventory. Although obtaining cloud-free imagery cap-
tured at the desired time frame was a consistent challenge,
it was ensured that images of the same growing season from
2015 to 2019 were captured within a period of 15 days to re-
duce the impacts of seasonal variability. However, the vari-
ability in annual crop types cultivated in 2015 and 2019
might have caused some discrepancies in our image anal-
ysis. The description of the Landsat variables used can be
found in Paul et al. (2020a). The Landsat images were also
resampled from a 30 m spatial resolution to 10 m to match
the spatial resolution of the topographic variables described
below.

2.3.2. Topographic variables

A set of topographic variables from a LiDAR-derived DEM
(10 m spatial resolution) to represent local (e.g., slope and
aspect) and landscape-scale (e.g., multiscale topographic po-
sition index) morphometry, as well as hydrological char-
acteristics (e.g., catchment area, valley depth, and wetness
index) was generated. Table 1 provides a complete list of
the topographic variables produced for this analysis. The
details of these indices may be found in http://www.saga
-gis.org/saga_tool_doc/2.1.3/a2z.html and in Blackford et al.
(2020).

2.3.3. Soil survey data

Information on soil texture (i.e., percent of sand, silt, and
clay) and SOC was extracted from the existing digitized ver-
sion of the Soils of Colchester County, Nova Scotia, soil sur-
vey. The soil survey was originally produced at a 1:50 000
map scale and digitally distributed by the Canadian Soil In-
formation Service. Here, the polygons were assigned the soil
attribute values for the 0–15 cm depth increment of the dom-
inant soil series within each map unit (i.e., the soil series that
occupied >50% of the map unit area). Because the soil at-
tributes were reported on a horizon basis for each soil series,
the horizon information was harmonized to the common 0–
15 cm depth increment using an equal-area quadratic spline
function (Bishop et al. 1999). After assigning soil attribute
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Fig. 1. Schematic diagram showing the general framework of the prediction of total organic carbon (TOC) and permanganate
oxidizable carbon (POXc) in 2015/2016 and 2019/2020.

values to each map unit, the polygons were rasterized to a
10 m spatial resolution.

2.3.4. Annual crop inventory data

The AAFC annual crop inventory (30 m spatial resolution)
was used to produce a crop rotation map for the study area.
There were 72 classes in the AAFC crop inventory, which
included different crop types and other land use categories
(e.g., water, urban, and wetland). For the subsequent analy-
sis, these classes were grouped into four categories: annual
crops, pasture–grassland-–forage, perennial crop (i.e., mainly
berry), and non-agricultural land uses. Forages are typically
annual crop in the study but were grouped with perennial
pasture and grassland because of the spectral similarities of

forage lands, pastures, and grasslands in the Landsat imagery.
A pixel-by-pixel correlation was performed on the annual
crop inventories from 2012 to 2019 to create the crop rotation
layer. For example, if a pixel had pasture–grassland–forage in
2012–2014 and was then converted to other annual crops in
2015, it was marked with a crop rotation class of “pasture–
grassland-–forage to other annual crop” for the SOC predic-
tion in 2015/2016. A similar approach was performed on the
rest of the crop inventory pixels across the study area. For the
2015/2016 predictions, the crop rotation layer was generated
from the inventory maps of 2012–2015, while the 2019/2020
predictions used the 2016–2019 crop inventory maps. The re-
sulting crop rotation layers were examined against the ob-
served crop history data set and pixels were manually cor-
rected where necessary. A majority filter with a 3 × 3 moving
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Fig. 2. Study area in Truro, Nova Scotia, Canada (45◦22’53.4"N, 63◦16’55.1"W) with soil sample locations. The samples were
collected in 2019 and 2020. The sampling scheme did not consider non-agriculture areas. The inset map shows the province
of Nova Scotia.

window was applied to remove noise from both crop rota-
tion layers. Finally, the crop rotation layers were resampled
to 10 m spatial resolution.

2.4. Variance inflation factor analysis
Given that multiple covariates were calculated from the

same input data (e.g., DEM), issues related to multicollinear-
ity were handled using variance inflation factor (VIF) analysis.
When carrying out VIF analysis, each predictor is regressed
against all other predictors using a linear model and fitted
via ordinary least squares regression, where the coefficient
of determination (R2) is calculated and used to calculate VIF
in the following equation:

VIFi = 1/
(
1 − Ri

2)(1)

where Ri
2 is the coefficient of determination from fitting a

linear regression between the ith independent variable and
all other independent variables in the model. A VIF value is
calculated for each predictor; the predictor with the high-
est VIF is removed; VIF is recalculated for all remaining

predictors, and the process is repeated until all predictors
have a VIF that is below a threshold. Here, a VIF = 5 was
used as the stopping criteria for the analysis, and the remain-
ing predictors were retained for modeling processes (O’brien
2007; Saurette 2022). The VIF analysis was performed using
the onsoilsurvey package in R (Saurette 2021).

2.5. Predictions of TOC and POXc
The VIF analysis resulted in the retention of 37 continuous

predictors, which were spatially intersected with the sam-
ple locations. It should be noted that the annual crop in-
ventory data, which was a categorical variable, was not in-
cluded in the VIF analysis as VIF is only suitable for con-
tinuous predictors. This study applied two machine learning
models: Quantile Regression Forest (QRF; Meinshausen and
Ridgeway 2006) and stochastic Gradient Boosting Model
(GBM; Friedman 2002). QRF and GBM are tree-based ensem-
ble models that combine the outcomes from a large num-
ber of trees to improve the prediction performance and
thus, these models can handle a complex mixture of envi-
ronmental variables required to represent the soil-landscape
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Table 1. List of environmental variables used for digital soil
mapping.

Variables Characteristics

Landsat variables

Normalized difference vegetation index Vegetation

Soil adjusted vegetation index Vegetation

Normalized difference moisture index Vegetation

Soil brightness index Soil

Normalized difference tillage index Soil/vegetation

Clay minerals ratio Soil

Bare soil index Soil

Tasseled cap (greenness, brightness, and wetness) Soil/vegetation

Image texture (homogeneity, contrast, and
dissimilarity)

Soil/vegetation

Topographic variables (derived from LiDAR imagery)

Aspect Local relief

Downslope curvature Local relief

General curvature Local relief

Local curvature Local relief

Local downslope curvature Local relief

Local upslope curvature Local relief

Maximum curvature Local relief

Mid-slope position Local relief

Minimum curvature Local relief

Normalized height Local relief

Plan curvature Local relief

Profile curvature Local relief

Real surface area Local relief

Slope Local relief

Standardized height Local relief

Tangential curvature Local relief

Terrain ruggedness index Local relief

Terrain surface concavity Local relief

Terrain surface convexity Local relief

Terrain surface texture Local relief

Topographic negative openness Local relief

Topographic positive openness Local relief

Total curvature Local relief

Upslope curvature Local relief

Upslope height Local relief

Multiresolution index of ridge top flatness Landscape relief

Multiresolution index of valley bottom flatness Landscape relief

Multiscale topographic position index Landscape relief

Valley depth Landscape relief

Catchment area Hydrology

Catchment slope Hydrology

Modified catchment area Hydrology

Topographic wetness index Hydrology

AAFC inventory variables (derived from soil survey and crop
inventory)

Sand Soil

Silt Soil

Clay Soil

Soil organic carbon Soil

Annual crop inventory Crop/management

variability (Wadoux et al. 2020). It should be noted that the
QRF model is an extension of the Random Forest model
(Breiman 2001); however, it can generate estimates of un-
certainty using the marginal distributions from the terminal
nodes of the model ensemble. Hence, the QRF model may be
used to calculate the 90% prediction interval widths by sub-
tracting the 5% lower limit from the 95% upper limit predic-
tions. These models were implemented via the caret package
in R (Kuhn 2009).

2.5.1. Accuracy metrics

The accuracy of the final prediction was tested using multi-
ple metrics, including coefficient of determination (R2), con-
cordance correlation coefficient (CCC), root mean square er-
ror (RMSE), and normalized RMSE (nRMSE). nRMSE is the
RMSE that has been normalized by the range of the observed
data. These accuracy measures were derived using repeated
cross-validation with 20 repeats of 10-fold cross-validation.
The average accuracy metrics and their corresponding stan-
dard deviation were reported.

2.5.2. Recursive feature elimination

To minimize complexity, improve model interpretation,
and remove irrelevant predictors, recursive feature elimina-
tion was carried out using the caret package in R (Kuhn 2009).
Recursive feature elimination operates by fitting an initial
model with all the predictors; calculating variable impor-
tance and accuracy metrics; removing the least important
predictor; and repeating the process until one predictor re-
mains. Here, the model that resulted in the lowest RMSE was
selected as the final model, where the RMSE was calculated
based on 20 repeats of 10-fold cross-validation. To evaluate
the effects of variable reduction via the use of VIF to remove
redundant predictors and the use of recursive feature elimi-
nation to remove irrelevant predictors, the machine learners
were trained and validated using all predictors and the re-
duced predictor set.

2.5.3. Evaluating changes in TOC and POXc

The final models, generated from the 2019/2020 data, were
then used to predict the TOC and POXc for 2015/2016 by
substituting the dynamic variables (e.g., Landsat variables
and the crop rotation layers). It should be noted, however,
that the 2015/2016 predictions could not be validated due
to the unavailability of field data. Next, the predicted out-
comes of both time steps were compared pixel by pixel to ex-
tract the changes in TOC and POXc. The absolute and relative
changes in TOC and POXc were calculated as shown in eqs. 2
and 3.

Absolute change =
⎛
⎝TOC

g
kg

or POXc
mg
kg

of year 2

⎞
⎠

−
(

TOC
g

kg
or POXc

mg
kg

of year 1
)

(2)
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Table 2. Summary statistics of total organic carbon (TOC) and permanganate oxidizable carbon
(POXc) derived from soil sample data collected in 2019/20.

Soil property Minimum Maximum Mean Standard deviation Range

TOC (g/kg) 8.30 80.90 21.92 9.10 72.60

POXc (mg/kg) 190.04 994.17 575.09 166.40 804.13

Relative change =
(

TOC g
kg or POXc mg

kg of year 2
)

−
(

TOC g
kg or POXc mg

kg of year 1
)

(
TOC g

kg or POXc mg
kg of year 1

) × 100(3)

Finally, the TOC and POXc dynamics (2015/2016 to
2019/2020) against the changes in agricultural management
practices were evaluated using a pixel-by-pixel comparison.
For this purpose, the crop rotation layers were employed to
identify the TOC and POXc changes in response to changes in
agricultural management.

3. Results and discussion

3.1. Summary statistics
The TOC and POXc concentrations in the study area var-

ied considerably while the mean POXc was about 3% of the
mean TOC (Table 2). Nevertheless, the within-field variability
for TOC and POXc was low. The variability in TOC and POXc
may be due to the heterogeneous cropping and soil man-
agement practices. The highest values were mainly obtained
from fields consistently managed as pasture, while low values
were distributed across different cropping management. Con-
sistent pasture management was reported to associate with
higher SOC concentration in many previous studies, whereas
soils on annual cropping exhibited lower SOC. For example, a
long-term case study conducted by Martens et al. (2004) found
continuous pasture retained 25% more SOC compared to an-
nually cropped fields.

3.2. Prediction accuracy of QRF and GBM
models

The prediction accuracy varied across the soil properties
and machine learning models (Fig. 3). However, the predic-
tion accuracy was similar between the models with all vari-
ables and with the top variables extracted from recursive
feature elimination. For instance, the R2 and CCC of QRF-
TOC model with all variables were only 2% and 1%, respec-
tively, better than the model with the top variables, while
the nRMSE value was improved by 4% for the latter model.
Similar results were observed for QRF-POXc model, where
R2 increased by 3%, CCC decreased by 1%, and nRMSE in-
creased by 2% using the top variables. The predictions us-
ing GBM also resulted in similar findings for both TOC and
POXc.

QRF and GBM models performed equally well for TOC
and POXc predictions, but QRF model was marginally better
for some accuracy measures. For example, the R2, CCC, and

nRMSE of QRF-TOC prediction (with top variables) were 8%,
7% and 3% better than those of the GBM-TOC prediction. Like-
wise, QRF model achieved better R2 (increase by 16%) and CCC
(increase by 4%) but slightly worse nRMSE (decrease by 2%)
compared to GBM model for predicting POXc (with top vari-
ables). Overall, the TOC prediction was more accurate than
the POXc prediction in terms of all accuracy measures and
using both QRF and GBM models, such as, CCC of 67% for the
best TOC model compared to CCC of 53% for the best POXc
model.

The accuracy of the TOC predictions was similar or better
compared to other DSM analyses conducted in various land-
scapes. The studies conducted by Kempen et al. (2019) and
Song et al. (2020), for example, acquired R2 of 50%–60% for
SOC prediction in landscape-scale assessments in Tanzania
and China, respectively. These accuracies were in agreement
with the results achieved from QRF and GBM models for TOC
prediction. In addition, other previous studies had SOC pre-
dictions that had R2 < 40% (Adhikari et al. 2019; Mulder et al.
2016; Dharumarajan et al. 2021) and were notably less accu-
rate than this study. However, most of these SOC predictions
were performed at national or larger regional scales with
far more spatial complexity in the landscapes. Although our
study landscape was comprised of widely heterogeneous soil
textures, it was uniform in terms of climate, topographic vari-
ability, and agricultural management practices. Moreover,
this study utilized a dense sampling network for model pa-
rameterization (i.e., n = 270 for 37 km2 area) and an exten-
sive suite of environmental variables from various sources.
All these factors may have resulted in the accurate predic-
tion of TOC. In comparison, the POXc predictions, however,
were relatively less accurate compared to TOC. To the best
of our knowledge, previous studies that predicted POXc were
not available in the literature and thus, the results could not
be compared.

Despite the relatively poorer performance of the POXc
models, the prediction accuracies were still in the accepted
range for DSM analysis as reported in the literature for other
related soil properties (Forkuor et al. 2017; Khaledian and
Miller 2020). The highly volatile nature of POXc could be a
reason for the relatively weaker performance of the POXc
model. In addition, our field observation included data from
two different years to provide a large enough data set for
DSM prediction, which might have contributed to some mi-
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Fig. 3. Accuracy of (A) total organic carbon (TOC) prediction and (B) permanganate oxidizable carbon (POXc) prediction in
terms of coefficient of determination (R2), concordance correlation coefficient (CCC), and normalized root mean square error
(nRMSE) using Quantile Regression Forest (QRF, Meinshausen and Ridgeway 2006) and stochastic Gradient Boosting Model
(GBM; Friedman 2002). The error bars in (A) and (B) show the standard deviation derived from 10-fold cross-validation with 20
repeats. (C) Observed values were plotted against predicted values for both soil properties.
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Fig. 4. Recursive feature elimination for predicting total organic carbon using Quantile Regression Forest showing prediction
accuracy plateaued after 21 variables. Prediction accuracy is represented as root mean square error (RMSE) from 20-repeat,
10-fold cross-validation.

nor uncertainties in POXc prediction. Since the samples were
collected within the timeframe of a year and there were no
major changes in management practices, we expected that
the temporal changes in POXc during the 2019/2020 period
were negligible. The integration of more on-farm manage-
ment information, such as tillage, fertilizer, and manure ap-
plications, could potentially improve the prediction accuracy
of POXc.

Lastly, it was observed that both QRF and GBM models per-
formed equally well in our analysis, which was different from
the findings of Wang et al. (2018) and Paul et al. (2020a) who
reported better performance of QRF compared to GBM. Yet,
model accuracy is highly case specific and largely relies on the
variability of feature space, environmental conditions, and
soil property to be modeled (Ließ et al. 2016).

3.3. Variable reduction and importance
The VIF and recursive feature elimination analyses sub-

stantially reduced the number of environmental variables re-
quired for the optimum model performance. The VIF analysis
only retained 37 of the 111 continuous environmental vari-
ables. These 37 variables along with the crop inventory cate-
gorical variable were then used for recursive feature elimina-
tion using both the QRF and GBM models. This process fur-
ther reduced the variable set by 40%–45% for predicting TOC
and POXc. For example, the QRF-TOC model finally retained
21 variables as top predictors since adding more variables af-
ter this point did not equally improve the model accuracy
(Fig. 4). The top variables were mainly dominated by topo-
graphic and Landsat indices. The Landsat variables derived
from the pre- and postgrowing season images were found to
be among the strongest predictors for all models (Fig. 5). Dur-
ing these seasons, soils in the annual crop fields are typically
exposed and can also be differentiated from perennial crop

fields. Particularly, the greenness and wetness of the surface
and the bare soil index powerfully contributed to the predic-
tion using both machine learning models. For example, the
greenness and wetness were the most dominant predictors
for QRF-TOC and QRF-POXc models (Fig. 5).

The top topographic predictors for all models included
variables representing local relief, landscape relief, and hy-
drology. The valley depth and modified catchment area, for
example, were the most dominant topographic predictors
for QRF-TOC and QRF-POXc models (Fig. 5). The crop inven-
tory variable strongly contributed to all predictions, how-
ever, the soil clay content was found as a top predictor only
for POXc. Although the topographic covariates were derived
from a high-resolution LiDAR DEM, most of the topographic
covariates, except a few, contributed weakly or moderately
to predicting TOC and POXc. Such contribution by the topo-
graphic covariates may be related to the relatively homoge-
neous terrain of the study area. This outcome was in con-
trast to Grimm et al. (2008), who identified topographic co-
variates as the most important predictor of SOC in a study
conducted on Barro Colorado Island, Panama. Interestingly,
soil and vegetation indices derived from time-series Landsat
images, as well as the crop inventory data, which was also
produced from Landsat and other coarser-resolution remote
sensing images, performed remarkably well for predicting
TOC and POXc in our analysis. These remote sensing indices,
particularly those derived from pre- and postgrowing season
images, could effectively differentiate between various agri-
cultural management and land use practices and hence, con-
tributed strongly to the prediction of TOC and POXc. Rial et
al. (2017) and Lamichhane et al. (2019) also concluded that
remote sensing-derived agricultural management and land
use information could be important predictors for SOC dy-
namics at local scales. Furthermore, the better performance

Downloaded From: https://complete.bioone.org/journals/Canadian-Journal-of-Soil-Science on 26 Aug 2024
Terms of Use: https://complete.bioone.org/terms-of-use

http://dx.doi.org/10.1139/CJSS-2022-0012


Canadian Science Publishing

Can. J. Soil Sci. 103: 64–80 (2023) | dx.doi.org/10.1139/CJSS-2022-0012 73

Fig. 5. Environmental variables used for the final prediction of (A) total organic carbon (TOC, n = 21) and (B) permanganate
oxidizable carbon (POXc, n = 22) predictions using Quantile Regression Forest. The variables are of three different categories——
(i) topographic variables——derived from the digital elevation model, (ii) AAFC inventory variables——derived from Agriculture
and Agri-Food Canada crop rotation (2012–2019) and soil survey data, and (iii) Landsat variables——derived from Landsat imagery
of 2015 and 2019 for pregrowing, growing, and postgrowing seasons.
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Fig. 6. (A) Distribution of total organic carbon (TOC) across the study area in 2019/2020. (B) Upper and (C) lower prediction
limits derived using Quantile Regression Forest (Meinshausen and Ridgeway 2006). (D) 90% prediction interval or uncertainty
calculated from upper and lower prediction limits. Nonagriculture areas were not predicted for TOC. (Base map sources: Esri,
DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.)

of the pre- and postgrowing season Landsat indices was sup-
ported by the findings of Bartholomeus et al. (2011) and Paul
et al. (2020b) who identified that surface reflectance of bare
soil during these seasons was highly correlated to SOC con-
centration. Landsat imagery captured during these seasons
can also efficiently discriminate between annual and peren-
nial vegetation, which likely contributes to better prediction
performance in heterogeneous agricultural landscapes (Paul
et al. 2020b).

3.4. Spatial distribution of TOC and POXc
2019/2020

The study area exhibited relatively higher variability for
POXc compared to TOC (Figs. 6 and 7). Overall, the POXc

concentrations were about 2%–3% of the TOC concentrations
in the study area. In 2019/2020, TOC concentration ranged
from 8 to 80 g/kg, with a mean of 21 g/kg, while POXc con-
centration varied from 190 to 994 mg/kg, with a mean of
563 mg/kg. The farm fields in the northern portion of the
area showed comparatively higher TOC concentration; how-
ever, high POXc values were distributed across the study area.
The farms with the lowest TOC and POXc were mostly con-
centrated on the eastern bank of the Salmon River. An un-
certainty analysis was conducted for TOC (Fig. 6B–6D) and
POXc (Fig. 7B–7D) predictions using the best-performing QRF
model. Figure 6D shows a map of the TOC 90% prediction
interval width (i.e., uncertainty), which ranged from 0.20
to 70 g/kg for the whole study area. Similarly, Fig. 7D ex-
hibits POXc prediction interval width that varies from 146
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Fig. 7. (A) Distribution of permanganate oxidizable carbon (POXc) across the study area in 2019/20. (B) Upper and (C) lower
prediction limits derived using Quantile Regression Forest (Meinshausen and Ridgeway 2006). (D) 90% prediction interval or
uncertainty calculated from upper and lower prediction limits. Nonagriculture areas were not predicted for POXc. (Base map
sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS
User Community.)

to 719 mg/kg at the 90% confidence level across the study
area. The prediction uncertainty for TOC and POXc showed
a similar spatial pattern; however, POXc prediction had rel-
atively higher uncertainty. In addition, the crop fields along
the riverbanks were predicted with greater uncertainties, es-
pecially for TOC. Interestingly, areas with higher TOC and
POXc values were generally associated with high prediction
uncertainties.

The fields that were consistently either on pasture or
grassland or forage production had the highest mean TOC
of 22 g/kg in 2019/2020. For the fields with rotation of
grassland–forage and other annual crops, the mean TOC was
found to be 19 g/kg in 2019/2020, while the fields consistently
on other annual crops had a mean TOC of 18 g/kg. A similar

trend was detected for POXc concentration in 2019/2020 with
the highest mean value (i.e., 580 mg/kg) associated with the
fields constantly used for pasture, grassland, and forage pro-
duction. The fields on the rotation of grassland/forage and
other annual crops had a mean POXc of 510 mg/kg while the
fields that were always used for annual crops had a slightly
higher mean of 530 mg/kg. A small fraction of crop fields
were on perennial berry production and had a mean TOC and
POXc of 21 g/kg and 540 mg/kg, respectively. Some substan-
tially high and low TOC and POXc values were observed for all
these crop types; however, the lowest TOC and POXc values
were associated with the annual crop fields and the highest
values were concentrated in the fields consistently on pas-
ture.
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Fig. 8. Relative changes in (A) total organic carbon (TOC) and (B) permanganate oxidizable carbon (POXc) from 2015/2016 to
2019/2020. Non-agriculture areas were not predicted for TOC and POXc. (Base map sources: Esri, DigitalGlobe, GeoEye, i-cubed,
USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.)

3.5. Changes in TOC and poxc (2015/2016 to
2019/2020)

This study area exhibited highly variable SOC dynamics
from 2015/2016 to 2019/2020 with gains, losses, and no
change in TOC and POXc concentrations. As expected, POXc
was more dynamic compared to TOC during the study pe-
riod where 65% of the area observed absolute losses in POXc,
while absolute gains were detected in 33% of the area. There-
fore, 98% of the study area exhibited some degree of abso-
lute change in POXc; however, only 27% of the area (loss
in 22% and gain in 5%) experienced an absolute change in
TOC. Furthermore, the relative change in TOC (2015/2016 to
2019/2020) ranged from −30% to 17%, while for POXc, it var-
ied from −35% to 21% (Fig. 8). For both soil properties, the
highest negative changes were mainly observed along the
banks of the watercourses. The crop fields with high gains in

TOC and POXc were scattered over the study area; however,
some fields in the northeast corner of the area exhibited con-
siderable gains in TOC and POXc. It is, however, important
to note that our study could not validate the predictions for
2015/2016 year due to the unavailability of field data, which
might have incorporated some degree of uncertainty in the
change analysis.

This study identified four dominant change categories for
agricultural management (2015/2016 to 2019/2020): (i) con-
sistently managed for either pasture or grassland or forage;
(ii) consistently managed for annual crops other than for-
age; (iii) rotation of grassland–forage and other annual crops;
and (iv) conversion of pasture–grassland–forage to perennial
berry crop (see Section 2.3.4 for the description of agricul-
tural management and crop rotation classes). 75% of the study
area was constantly either on pasture or grassland or forage,
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Fig. 9. Relative changes in (A) total organic carbon (TOC) and (B) permanganate oxidizable carbon (POXc) from 2015/2016 to
2019/20 for different agricultural management categories. Boxplots showing the first quartile, median (bar), third quartile,
and mean (circles). Error bars represent maximum and minimum values. Significant test results are indicated by ∗∗(p < 0.01)
and ∗∗∗(p < 0.001).

while 8% of the area was managed consistently for annual
crops (other than forage), 16% for rotation of grassland–
forage and other annual crops, and only 1% was converted
to perennial berry crop. An overall decline was predicted for
mean TOC and POXc for all agricultural management cate-
gories whether they were changed or not during the study
period (Fig. 9). However, the crop fields that were consistently
managed for pasture–grassland——forage observed the lowest
decline in predicted mean TOC and POXc (i.e., 3% and 4%,
respectively). The fraction of the croplands converted from
pasture–grassland–forage to perennial berry crop faced losses
of 6% and 2% for mean TOC and POXc, respectively. On the
contrary, the predicted mean TOC declined by slightly over
10% for the fields consistently cultivated for annual crops
(other than forage) and the fields in rotation with grassland–
forages and other annual crops. These two agricultural man-
agement categories, however, experienced relatively smaller
losses in mean predicted POXc (6% and 8%, respectively). In-
terestingly, substantial increases in TOC and POXc were also
observed in some areas for all management categories. For
example, some annual crop fields exhibited TOC increases as
high as 17% during the study period. Similar results were also
predicted for POXc under different management categories.
We applied a statistical test——Kruskal–Wallis test (Vargha
and Delaney 1998) to evaluate whether the changes of TOC
and POXc differ between different agricultural management

categories. It was observed that TOC and POXc changes were
significantly different between the management categories
(p < 0.01 or p < 0.001, Fig. 9).

This study successfully applied the DSM approach for track-
ing changes in SOC pools within a 5-year period (2015/2016
to 2019/2020) across the study area. This spatially explicit
change analysis allowed detection of key areas, where SOC
was being lost, gained, or remained unchanged. Our analy-
sis also identified specific agricultural management that was
likely responsible for these changes. Overall, our analysis pre-
dicted a mean absolute TOC change of −0.15 (±0.09) g/kg/year
across the study area while POXc experienced a mean ab-
solute change of −5.77 (±11.48) mg/kg/year. The larger de-
cline was found in annual crop fields, which might be at-
tributed to intensive agricultural management, such as heavy
tillage or aggressive low residue crop (soybeans and corn
silage) production (Grandy et al. 2002; Haddaway et al. 2017).
Such management practices might also contribute to over-
all SOC loss in the crop fields rotated between grassland-
forage and other annual crops. However, a marginal TOC and
POXc loss were also observed in the crop fields constantly
on pasture, grassland, or forage production. A variety of rea-
sons may have contributed to these losses in this manage-
ment category, such as improper nutrient management or
organic amendment, animal stocking rate, and pattern. Stud-
ies reported that excess nitrogen input to the soil as manure

Downloaded From: https://complete.bioone.org/journals/Canadian-Journal-of-Soil-Science on 26 Aug 2024
Terms of Use: https://complete.bioone.org/terms-of-use

http://dx.doi.org/10.1139/CJSS-2022-0012


Canadian Science Publishing

78 Can. J. Soil Sci. 103: 64–80 (2023) | dx.doi.org/10.1139/CJSS-2022-0012

or synthetic fertilizer may enhance microbial respiration or
even suppress the microbial population and hence, result in
loss of SOC (McCarty and Meisinger 1997; Christopher and
Lal 2007). Over-application of nitrogen is a common chal-
lenge in pasture and forage management and this might
have contributed to SOC losses in our study area as well. In
addition, Franzluebbers and Stuedemann (2010) found that
haying or high-intensity cattle stocking when grazing pas-
tures could lead to SOC decline in the topsoil layers over
12 years.

Although POXc exhibited strong responses to changes in
management practices in our short-term analysis, Pérez-
Guzmán et al. (2021) reported highly variable POXc responses
between management treatments in Ontario, Canada, and
highlighted the use of more sensitive indicators, such as
the combined enzyme assay technique. In addition, our
study could not differentiate between pasture, grassland,
and forage fields due to the inadequate spatial resolution
of the satellite imagery and lack of reliable agricultural
land use information. Since management practices can sub-
stantially vary between these production systems, having
more precise information could help determine the specifics
of SOC dynamics in these production systems. Given that,
three-fourths of the study area were included in the con-
sistent pasture-grassland-forage category, careful identifica-
tion of SOC gains and losses within this category would
be highly important for devising an informed SOC man-
agement strategy for this region. Although we identified
that the changes in TOC and POXc between different man-
agement categories were statistically significant, investigat-
ing the magnitude of these statistical differences for each
pixel across the study area was out of scope for our anal-
ysis, mainly due to data insufficiency. Incorporating such
pixel-level statistical tests in future change analysis would
reinforce the outcomes of DSM-based spatiotemporal SOC
modeling.

4. Conclusions
This study presented a cost-effective approach for model-

ing spatiotemporal dynamics of multiple SOC pools in agri-
cultural landscapes. The application of freely available time-
series satellite images, high-resolution LiDAR data, and his-
torical crop inventory information produced an accurate
prediction of TOC and POXc at multiple time steps. This study
also demonstrated the first application of the AAFC crop in-
ventory data set for DSM of multiple SOC pools. The highly ac-
curate soil maps generated in this study could serve as a base-
line for modeling greenhouse gas emissions and farm-level
carbon budgeting across the study area, but with a caveat
that the unavailability of field observation from 2015/2016
year might have contributed to some uncertainties in the
change analysis. In addition, future analysis should consider
incorporating additional on-farm management information
for a more accurate prediction of SOC dynamics, particularly
for identifying changes in POXc. The study approach should
also be tested in other agricultural landscapes and compared
against robust process-based modeling techniques to verify
and enhance the utility.
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