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Introduction
River basin management reduces excess streamflow, thereby 
reducing soil erosion and non-point source pollutants in the 
form of nutrients from agriculture-dominated areas to ensure 
sustainable agricultural production (Tripathi et  al., 2005; 
Tuppad et al., 2011). Soil erosion and pollutant loads from agri-
cultural practices are the primary sources of the non-point 
sources pollutants (Himanshu et  al., 2019). In general, best 
management practices (BMPs) are designed to reduce or pre-
vent sediment movement, nutrient, and pesticide loadings from 
the agricultural land to surface or groundwater resources (Abbas 
& Fares, 2009). BMPs are useful, practical, and structural or 
non-structural methods, and the goal is to optimize crop pro-
duction and minimize environmental impacts, that is, land deg-
radation. India constitutes 18% of the world’s human population, 
supported by 2.4% of world land area, which led to land 

degradation to nearly 44% (Mythili & Goedecke, 2016), which 
is also a matter of concern. Therefore, suitable BMPs are needed 
to control land degradation due to soil erosion and other non-
point source pollutants from agricultural watersheds. Due to 
financial and technical constraints, it is challenging to imple-
ment the BMPs scenario on a whole watershed; hence, identify-
ing and prioritizing critical sub-watersheds is mandatory 
(Himanshu et  al., 2019; Pandey et  al., 2009; Tripathi et  al., 
2003). From an environmental point of view, abandonment 
results in an increase in the infiltration rates (Barrena-González 
et al., 2020(a)) due to vegetation recovery that results in changes 
in streamflow and landforms (Keesstra, 2007). Soil erosion is 
also reduced by the effect of the vegetation cover and the recov-
ery of organic matter (Cerdà et al., 2018). Many studies con-
firmed the positive impacts of soil and water conservation 
practices on soil physicochemical properties and crop yields. 
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ABSTRACT: About 44% of the Indian landmass experiences the adverse impact of land degradation. This loss of sediments caused by soil 
erosion reduces the water quality of local water bodies and decreases agricultural land productivity. Therefore, decision-makers must formu-
late policies and management practices for sustainable management of basins that are cost-effective and environment friendly. Application of 
the best management practices (BMPs) to properly manage river basins is difficult and time-consuming. Its implication under various climate 
change scenarios makes it more complicated but necessary to achieve sustainable development. In this study, the soil and water assessment 
tool (SWAT) model was employed to prioritize the Tons river basin’s critical areas in the central Indian states coupled with future climate scenario 
analysis (2030–2050) using Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios. The SWAT model was calibrated and 
validated for simulation of streamflow and sediment yield for daily and monthly scales using the sequential uncertainty fitting (SUFI-2) technique. 
The values of coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), and root mean square error (RMSE)-
observations standard deviation ratio (RSR) were .71, .70, −8.3, and .54, respectively during the calibration period, whereas for validation the 
values were .72, .71, −3.9, and .56, respectively. SWAT model underestimated the discharge during calibration and overestimated the discharge 
during validation. Model simulations for sediment load exhibited a similar trend as streamflow simulation, where higher values are reported dur-
ing August and September. The average annual sediment yield of the basin for the baseline period was 6.85 Mg ha−1, which might increase 
to 8.66 Mg ha−1 and 8.79 Mg ha−1 in the future years 2031–2050 and 2081–2099, respectively. The BMPs such as recharge structure, contour 
farming, filter strip 3 and 6 m, porous gully plugs, zero tillage, and conservation tillage operations have been considered to evaluate the soil and 
water conservation measures. Recharge structure appeared to be the most effective measure with a maximum reduction of sediment by 38.98% 
during the baseline period, and a 37.15% reduction in the future scenario. Sub-watersheds, namely SW-8, SW-10, SW-12, SW-13, SW-14, 
SW-17, SW-19, SW-21, SW-22, and SW-23, fall under the high category and are thus considered a critical prone area for the implementation and 
evaluation of BMPs. Compared to the baseline period, the effectiveness of BMPs is slightly decreasing in the 2040s, increasing in the 2070s and 
decreasing in the 2090s. Recharge structure and filter strip 6 m have been found to nullify the high soil erosion class completely. Overall, SWAT 
model simulations under the RCP 8.5 scenarios were observed to be reliable and can be adopted to identify critical areas for river basins having 
similar climatic and geographical conditions.
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Guadie et al. (2020) in Ethiopia, Novara et al. (2019) in Italy, 
and Keesstra et al. (2012) in the Netherlands found how rele-
vant management is to control soil and water losses.

Human activities like burning fossil fuels and land-use 
changes help increase greenhouse gas concentrations that lead 
to climate change. Climate change has shown its impacts on 
water resource availability and management throughout the 
world (V. P. Singh et al., 2014). These changes affect the hydro-
logical cycle’s critical components such as streamflow, the base 
flow that alters the transformation and movement characteris-
tics of sediment and other non-point source pollutants. There 
exist many uncertainties in the assessment of possible impacts 
of future climate changes on the hydrological cycle. The 
Intergovernmental Panel on Climate Change (IPCC) affirms 
that the Earth’s climate is warming (Pachauri et  al., 2014). 
However, hindcast modeling likely has less uncertainty and can 
be used to assess the climate change impact and evaluate the 
effectiveness of BMPs (Alibuyog et al., 2009; Chaubey et al., 
2010; Ghaffari et  al., 2010). Both climate and land use land 
cover (LULC) change will be very dynamic this century (Chen 
et al., 2018; Farjad et al., 2017; Mishra et al., 2018). However, 
knowledge about the combined impacts of climate and LULC 
changes is still limited due to the small amount of comprehen-
sive research (Aboelnour et al., 2019; Bussi et al., 2016; Giri 
et al., 2019; Luetzenburg et al., 2020; Woldesenbet et al., 2018). 
Land cover change due to deforestation also has an adverse 
impact on the streamflow generation and flood hazard in the 
basin (Khaleghi, 2017).

The world population is expected to rise by 9.7 billion by 
2050 for which to meet the food demand; global agricultural 
output will need to increase by as much as 70%; hence, to meet 
greater global demands by ensuring increased crop production, 
as well as the availability of water for competing demands, 
improvement in the management of water, sediment, and 
nutrients under future changes in climatic conditions, are 
needed.

In contrast, its implication concerning the climate change 
scenario makes it more complicated. Remote sensing and geo-
graphical information system (GIS)-based hydrological mod-
eling simplifies the process and evaluates it for proper decision 
and policymaking (Dayal et  al., 2021; Thakur et  al., 2020). 
Hydrological models are design or handling tools to answer 
those questions (V. P. Singh & Woolhiser, 2003). Some of the 
hydrological models used for the effectiveness of BMP are 
Capacity MIKE-SHE, soil and water assessment tool 
(SWAT), and Water Erosion Prediction Project (WEPP) 
models. MIKE_SHE and SWAT are the comparatively simi-
lar hydrological model, but the first one is propriety, whereas 
the SWAT model is free to use. WEPP model is data-inten-
sive, so it was also not used in this study. SWAT is selected for 
ease of use, and its capability in simulating the impact of dif-
ferent management scenarios. Among various hydrological 
models, the SWAT model was used by several researchers to 

evaluate hydrological regimes under different agro-climatic 
regimes (Pandey & Palmate, 2019; Swain et al., 2018). SWAT 
is a physically based, semi-distributed, and continuous-time 
model that simulates the water and sediment yield in basins 
over long periods. Rainfall and temperature are the two most 
essential climate variables in the SWAT model because they 
significantly impact various water balance components. Other 
variables do not have such a significant impact on the hydrol-
ogy of an area. Apart from climatic variables, soil classes and 
soil textures also significantly impact the streamflow of a 
watershed. Sandy soils allow a high water infiltration rate and 
produce less streamflow, while soils consisting of poorly 
drained clay soils allow a low infiltration and produce more 
streamflow (Haan et al., 1994). Soil characteristics have a con-
siderable variability and a significant effect on the hydrologi-
cal cycle’s different components, such as groundwater discharge 
(GWQ) and soil water content (SW) of the watershed. 
(Bouslihim et  al., 2019). One of the challenging issues in 
watershed management is the sedimentation process during 
the high streamflow period and sediment concentration with 
streamflow. Hosseini and Khaleghi (2020) and Varvani et al. 
(2019) reported high uncertainty in sediment flow simulation 
using the SWAT model and attributed this to the climatic and 
geological factors and the weakness in the model simulation. 
Farajzadeh and Khaleghi (2020) developed the regional ero-
sion model using GIS and a rainfall simulator. Sediment rat-
ing curves (SRCs) have been recognized as the most popular 
method for estimating sediment in hydrology, and multivari-
ate SRCs have better efficiency than the univariate SRCs 
(Varvani & Khaleghi, 2019).

BMP techniques are efficient measures to improve basin 
health and agricultural land productivity with a minimal nega-
tive impact on the environment (Uniyal et al., 2020). The prac-
tical application of the BMPs for the proper management of 
the river basin is difficult and time-consuming. For agricultural 
watersheds, SWAT is especially well suited for assessing the 
impact of future climate change scenarios on streamflow and 
accurately evaluating BMPs to assess pollutant load reduction 
(Boufala et al., 2021; Van Liew et al., 2012). Several researchers 
worldwide assessed the effectiveness of BMPs using the SWAT 
model and reported the model’s satisfactory performance 
(Bosch et al., 2013; Himanshu et al., 2019; Jeon et al., 2018; 
Park et al., 2014; Senent-aparicio & Srinivasan, 2019; Uniyal 
et al., 2020; Wang et al., 2018). We know that all basins and 
sub-basins have different characteristics, and their response to 
anthropogenic and natural changes also varies, so it is impor-
tant to model a variety of basins to understand complex flow 
and sediment transportation processes for the evaluation of 
BMPs. BMP performance varies both spatially and temporally 
by changing climate scenarios (Woznicki & Pouyan 
Nejadhashemi, 2014). Very few studies have been conducted 
focusing on the effectiveness of BMPs under the climate 
change uncertainities in Indian conditions. This study 
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prioritizes critical areas in the river basin and future climate 
scenario analysis using the SWAT model that aids in river 
basin planning and management. SWAT model was employed 
to simulate the water balance components for future scenarios 
in the 2040s (2031–2050), 2070s (2061–2080), and 2090s 
(2081–2099) and was compared against the baseline period 
(1984–1999). Similarly, implementing the seven different 
BMPs individually for present and future scenarios was per-
formed, and their effectiveness was evaluated based on the per-
centage reduction in sediment yield. For future climate change 
projections, precipitation, and temperature data of the 
Coordinated Regional Downscaling Experiment (CORDEX) 
South Asia Regional climate model (RCM)-ACCESS 1.0 for 

Representative Concentration Pathway (RCP) 4.5 and 8.5 sce-
narios has been used.

Material and Methods
Study area

The Tons river basin is selected as a case study area, and its 
geographic extent lies between 23° 57′–25° 20′ N latitude and 
80° 20′ E–83° 25′ E longitudes (Figure 1). Tons river/Tamsa 
river originates from Kamore hills in the Satna district of 
Madhya Pradesh and flows through Madhya Pradesh (M.P.) 
and Uttar Pradesh (UP) in the central part of India, finally 
joining River Ganga as its tributary near Sirsa. The Tons river 

Figure 1. Study area of Tons river basin.
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basin has a great significance to states Madhya Pradesh and 
Uttar Pradesh in India, concerning water resources aspects 
and the ecological balances (Kumar et al., 2017). Tons basin is 
dominated by agricultural land use. The region has a poor 
agricultural yield, mainly due to the rain-fed agricultural 
cropping system. In a large part of this region, only one crop 
is produced due to poor groundwater availability and lack of 
irrigation facilities (Darshana et al., 2013). This river basin is 
dominated by agricultural area with a total drainage area of 
around 17,500 km2, out of which 11,974 km2 lies in M.P., and 
the rest lies in UP. Total average annual rainfall ranges 
between 930 and 1,116 mm, while 90% of the rainfall occurs 
during June to September, and the temperature varies from 
46°C in summer to 5°C in the cold season (Duhan et  al., 
2013). It has undulating topography with land slopes ranging 
from 0% to 43%, but most areas fall under a gentle plain slope 
of less than 5%. The Tons river basin is a dominant agricul-
tural watershed with more than 63% coverage of cropland. 
Agricultural dominant major crops cultivated within the 
basin are paddy, wheat, soybean, millet, and pulses. The basin’s 
soil type can be classified mainly under sandy clay loam, clay, 
loam, and sandy loam.

Data set

Recorded meteorological data for daily precipitation and tem-
perature for the baseline period (1980–1999) were obtained 
from the Indian Meteorological Department (IMD), Pune. 
Other meteorological parameters, viz., relative humidity, wind 
speed, and solar radiation, were downloaded from the SWAT’s 
Global weather database. Daily discharge data measured at the 
Meja road gauge outlet was collected from the Central Water 
Commission (CWC) for 1980–1999. A digital soil map pre-
pared by the Food and Agriculture Organization (FAO) soil 
data (www.fao.org) was adopted. Similarly, Decadal Land Use 
and Land cover classification map for 1995 was prepared using 
Oak Ridge National Laboratory Distributed Active Archive 
Center (ORNL DAAC) (https://daac.ornl.gov). The Earth 
Explore website (https://earthexplorer.usgs.gov/) was used to 
downloaded Shuttle Radar Topography Mission (SRTM, 30 
m spatial resolution) Digital Elevation Model (DEM) data. 
Furthermore, precipitation and temperature data for future 
simulations were downloaded from CORDEX South Asia 
RCM ACCESS 1.0 for both the emission scenarios of RCP 
4.5 and RCP 8.5 from the website (https://cordex.org/). These 
data were bias-corrected and adjusted using the Quantile 
Mapping method through Climate Data Bias Corrector 
(CDBC) tool.

SWAT model set up

The SWAT model envisaged the hydrological cycle’s impor-
tant components in this study. The governing water balance 
equation (1) is given below

 SW SW R Q ET W Qt o Seep gw
i

n

= + − − − −( )
=
∑

1
 (1)

where SWt is the final soil water content (mm), SWo is the ini-
tial soil water content (mm), t is time in days, R is precipitation 
(mm), Q is surface streamflow (mm), ET is the evapotranspira-
tion (mm), wseep is percolation (mm), and Qgw is return flow 
(mm). The SWAT model used the Natural Resources 
Conservation Service Curve Number method and Penman–
Monteith method to assess surface streamflow and potential 
evapotranspiration, while the Muskingum method simulates 
channel routing.

The ArcSWAT interface carried out SWAT model con-
figuration and parameterization. The spatial layers such as 
DEM, land use land cover, soil, and slope maps are required 
for parameterization of the SWAT model and are presented in 
Figure 2. For the SWAT model setup, daily precipitation and 
temperature data were required. Delineation of the river basin 
and subsequent analysis of drainage pattern in the basin has 
been carried out using SRTM DEM. The study basin was 
divided into 23 sub-watersheds integrated with land use/cover 
and soil layers that led to 575 hydrological response units 
(HRUs). HRUs are the basic simulation units based on which 
the SWAT model simulates the hydrological processes. For 
initial soil water conditions balance, model simulations were 
carried out initially for the 4-year warm period of 1980–1983 
at a daily time scale. The simulation period (1984–99) was 
taken as a baseline period based on the availability of meas-
ured discharge at the river basin’s outlet. Therefore, the SWAT 
model was calibrated and validated for this period, and this 
has been taken as a base for comparison of the BMP’s. Three 
future scenarios have been considered in this study, which are 
the 2040s (2031–2050), 2070s (2061–2080), and 2090s 
(2081–2099).

Sensitivity analysis and calibration

The model sensitive analysis is necessary to identify the most 
sensitive parameters and reduce the redundancy of parameters 
during model calibration and simulation. SWAT-Calibration 
and Uncertainty Programs (SWAT-CUP) are the most popu-
lar tools used for sensitivity analysis of the parameters. One 
alternative of SWAT-CUP is IPEAT (Integrated Parameter 
Estimation an Uncertainty Analysis Tool) (Yen et  al., 2019). 
IPEAT has not been used in this study because it is recently 
developed and not much used in previous literature. Some of 
the algorithms used for uncertainty and calibration are 
Generalized Likelihood Uncertainty Estimation (GLUE), 
Parameter Solution (ParaSol), sequential uncertainty fitting 
(SUFI-2) algorithm, and a Bayesian framework implemented 
using Markov chain Monte Carlo (MCMC) and Importance 
Sampling (IS) techniques. Among these, GLUE is convenient 
and easy to implement, and widely used in hydrology. This 
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approach’s drawback is its prohibitive computational burden 
imposed by its random sampling strategy (Hossain et al., 2004). 
In this study, because of the high potential and efficiency of the 
SUFI-2 program (Abbaspour et al., 2007) for time-consuming 
large-scale models, it was implemented for sensitivity analysis, 
model calibration, and validation, and uncertainty analysis in 
the SWAT-CUP program. SWAT-CUP provides two options 
for the sensitivity analysis, namely All-At-a Time (AAT), that 
is, global, and One-At-a-Time (OAT) sensitivity analysis 
(Abbaspour et al., 2015). Moriasi et al. (2007) provided model 
evaluation guidelines for hydrological models. Model evalua-
tion techniques were divided into three categories: standard 
regression, dimensionless, and error-index. Some of the most 
popular statistics used in literature are slope and y-intercept, 
Pearson’s correlation coefficient (r), coefficient of determina-
tion R2, Nash–Sutcliffe efficiency (NSE), persistence model 
efficiency (PME), prediction efficiency (Pe), logarithmic trans-
formation variable (e), mean absolute error (MAE), mean 
square error (MSE), and root mean square error (RMSE); per-
cent bias (PBIAS), RMSE-observations standard deviation 
ratio (RSR), and daily root mean square (DRMS). Based on 
the literature review on the model application, Moriasi et al. 
(2007) recommended three quantitative statistics, NSE, 

PBIAS, and RSR. The t-stat provides a measure of sensitivity 
(large absolute value is more sensitive). The p value determines 
the significance of the sensitivity (a value close to 0 has more 
significance). It is observed that the parameter with the largest 
t-statistic value is the most sensitive parameter in SWAT-CUP 
sensitivity analysis results. There are negative and positive 
t-statistic values. The p value for each term tests the null 
hypothesis that the coefficient is equal to 0 (no effect). A low p 
value (<.05) indicates that you can reject the null hypothesis. 
A larger p value suggests that the parameter is not very sensi-
tive. Confidence intervals, Bayesian methods, effect sizes are 
alternatives for p values and t-stat (Denis, 2003). Global sensi-
tivity analysis is determined based on t-stat and p value. The 
higher the absolute t-stat value and the smaller the p value, the 
parameters are assumed to be more sensitive (Abbaspour et al., 
2015). Based on the sensitive parameters model, it has been 
calibrated and validated daily for discharge only. The SWAT 
model was run for the calibration period of (1984–1994) and 
the validation period of (1995–1999) with a warmup period of 
(1980–1983). Performance of the SWAT model was carried 
out by various statistical parameters such as NSE, percentage 
bias (PBIAS), coefficient of determination (R²), RMSE, and 
standard deviation ratio (RSR).

Figure 2. Raster input maps.
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Figure 3. Comparison of ACCESS 1.0 climate historical data with the observed data: (a) minimum temperature, (b) maximum temperature, and (c) 

rainfall.

Comparison of ACCESS-1.0 climate data with the 
observed data

Downloaded raw data for minimum temperature shows the 
mild or no change compared to the observed data for the wet 
months from June to September. Similarly, during those wet 
months, mild change from July to September, whereas the 
maximum temperature decreased by 3.69°C in June. There was 
an increase of 2.44°C–3.34°C for the minimum temperature 
and a rise of 1.48°C–7.07°C for maximum temperature in the 
remaining months. All these changes were consistently bal-
anced after the bias correction in both maximum and mini-
mum temperature, as shown in Figure 3. Rainfall being the 
complex process of formation, observed rainfall was not rea-
sonably captured by neither downloaded raw data nor the bias-
corrected rainfall data. Average annual rainfall was 
under-predicted by 41.91 mm (4.165%) from the observed 
average annual rainfall. There was a significant underpredic-
tion of rainfall by 31.97 and 17.08 mm in September and 
August, respectively, during the wet months from June to 
October.

Climate changes compared to baseline

The projected mean monthly minimum temperature for the 
future climate scenarios of CORDEX South Asia RCM-
ACCESS-1.0 for the periods the 2040s (2031–2050), 2070s 
(2061–2080), and 2090s (2081–2099) indicate an increase of 
2.13°C, 4.12°C, and 5.17°C, for the respective scenarios. Mean 
monthly maximum temperature increases by 1.6°C, 2.94°C, 
and 3.6°C for those respective scenarios (Figure 4). These 
increments are found to be similar to the projections of 

Narsimlu et  al. (2013). Average monthly precipitation for 
future scenarios compared to the baseline period shows an 
increasing trend in the rain by 16.25% in the 2040s and a 
slightly decreasing trend in the 2070s (15.55%), and then a sig-
nificant increasing trend by 32.09% in the 2090s.

Identif ication of critical prone areas and BMP 
implementation

The poor land use management and the lack of appropriate soil 
conservation measures are among the most critical threats to 
sustainable agriculture and watershed management worldwide. 
Rainfall- and streamflow-induced erosion from watersheds 
and farm fields produce major non-point source pollutants for 
many significant environmental resources. Riverbank erosion 
and the associated rise of channel beds can lead to a diminished 
flow capacity and higher vulnerability to floods. Land degrada-
tion caused by the acceleration of agricultural activities, defor-
estation, and urbanization remove fertile topsoil, resulting in a 
decrease in agricultural productivity. Predictions of streamflow 
and sediment yield support decision-makers in developing 
watershed management plans for better soil and water conser-
vation measures (Setegn et al., 2010). Therefore, in this study, 
the quantity and rate of streamflow and sediment transport 
from the land surface into streams and rivers for better river 
basin management has been modeled. Critical sub-watersheds 
prone to soil erosion were identified and subsequently prior-
itized based on the average annual sediment yields modeled for 
both present (baseline period) and future scenarios as per the 
criteria suggested by G. Singh et  al. (1992). BMPs imple-
mented to those critical sub-watersheds in this study were 
recharge structure, contour farming, filter strip of 3 m and 6 m, 
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Figure 4. (a) Comparison of the future climate with the baseline for (a) average monthly minimum and maximum temperature and (b) average monthly 

rainfall.

Table 1. BMPs Input Parameters.

S. NO. BMPS PARAMETERS INPuT PRE-BMP POST BMP VALuES

1 Contour farming CN2.mgt Varies −3

uSLE_P.mgt 1 slope 0%–5% = .55

Slope 5%–17% = .65

2 Porous gully plugs CH_N1.sub .014 .05

3 Recharge structures CH_K1.sub 0 25

CH_N1.sub .014 .08

4 Filter strip (3 and 6 m) FILTERW.mgt 0 3 and 6

5 Conservation tillage DEPTIL (.till) 150 100

EFFMIX (.till) .95 .25

CN2.mgt varies −2

6 Zero tillage DEPTIL (.till) 150 25

EFFMIX (.till) .95 .05

CN2.mgt varies −3

BMP: best management practices.

gully plugs, zero tillage, and conservation tillage operations. 
The summary of the BMPs and the modeled parameters in 
ArcSWAT has been presented in Table 1 (Tuppad et al., 2011). 
The methodology flowchart for the evaluation of BMPs is 
given in Figure 5.

Results and Discussion
Sensitivity analysis

Based on the literature and relevance of parameters in stream-
flow and sediment yield modeling, a total of 24 parameters 
were selected for sensitivity analysis. Finally, after sensitivity 
analysis, 14 parameters were found to be having a significant 
impact on modeling results. Other key parameters which have 
not been included in the study are due to their insignificant 
impact on discharge and sediment yield. The selected parame-
ters are highly sensitive to discharge and sediment yield. 

SWAT-CUP/SUFI-2 algorithm-based global sensitivity anal-
ysis with a 1,000-time run recommended by Abbaspour et al. 
(2015) was carried out with 24 parameters that influence the 
discharge at the river basin outlet. Global sensitivity analysis 
identified 14 parameters as sensitive with high absolute t-stat 
and minimum p value (Table 2). The list of parameters was 
similar to those reported by Himanshu et  al. (2017) and 
Suryavanshi et al. (2014) for the Indian river basins.

Evaluation of SWAT model performance

Initially, optimization of 14 sensitive parameters was carried 
out using SWAT-CUP 2019 for the calibration period (1984–
1994), followed by model validation for 1995–1999. The 
SWAT model’s performance was evaluated for both calibration 
and validation periods, daily and monthly scales for the Meja 
road gauge station (Figure 6). Typically, model simulations are 
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poorer for shorter time steps than for more extended time steps 
(e.g., daily versus monthly or yearly) (Engel et al., 2007; Larose 
et al., 2007). The reason for this could be because the monthly 
totals tend to smooth the data, which, in turn, results in a better 
simulation of the streamflow (Spruill et al., 2000). Model per-
formance evaluation criteria are presented in Table 3. The 
graphical comparison shows that the model usually under-pre-
dicted the peak flow during both calibration and validation 
periods daily while indicated a good response at a monthly 
scale. NSE values of .77 and .93 during calibration and values 
of .79 and .93 during validation were obtained at daily and 
monthly scales, respectively. This result shows that the model’s 
performance during calibration and validation is reasonably 
good, and the model can simulate the streamflow close to the 
observed streamflow. Similarly, for calibration of discharge on 
daily and monthly scales, the obtained values of PBIAS were 
−8.06 and −7.89, respectively. However, for daily and monthly 
validation, its value was 6.73 and 6.65 during validation at daily 
and monthly scales, respectively, indicating that the SWAT 
model underestimated the discharge during calibration and 
overestimated the streamflow during validation.

Furthermore, to visually analyze these results on daily and 
monthly scales, scatter plots of the observed and modeled 

discharge were drawn (Figure 7). Based on the recommendation 
criteria provided by Moriasi et al. (2007); (NSE > .75; PBIAS 
< ± 10% and RSR < .5), the overall SWAT model perfor-
mance for the study river basin area is found to be very good 
during both the calibration and validation periods.

SWAT water balance components

In the study area, hydrological water balance over the entire 
baseline period (1984–1999) was carried out employing the cali-
brated and validated SWAT model (Figure 8). It was noticed 
that evapotranspiration is more predominant in the basin, which 
accounts for about 59.03% of the average annual rainfall, which 
is 1,006.7 mm. Approximately 22.22% of rain flows out of the 
basin as surface streamflow. The average annual water balance 
chart month-wise presented in Table 4 shows that about 94% of 
the yearly rainfall occurs within 4 months from June to October, 
whereas about 90% of the annual streamflow flows out. 
Evapotranspiration was highest in August with a value of 115.71 
mm. Model simulations for sediment load exhibited a similar 
trend as streamflow simulation, where higher values are reported 
during August and September. Sub-basin wise distribution of 
the major water balance components is presented in Figure 9.

Figure 5. The methodology adopted for evaluation of BMPs.
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Impact on hydrology compared to baseline

Projected average monthly streamflow for the future years of 
2031–2050, 2061–2080, and 2081–2099 for both scenarios of 
RCP 4.5 and 8.5 are shown in Figure 10. The future flows fol-
low a similar pattern of the observed flow except for future 
scenarios (2081–2099) and (2061–2080) for RCP 4.5 and may 

be due to the uncertainty in the climate data prediction. While 
for RCP 8.5 scenarios, the results have been reliable, so most of 
the analysis has been carried out under the RCP 8.5 scenarios. 
The SWAT simulated annual water budget components com-
pared with the baseline period has been presented in Table 5.

This illustrates that the streamflow is also following the 
pattern traced by the rainfall, that is, the increasing trend at 

Table 2. Sensitive Parameters Identified Through Global Sensitivity Analysis.

RANK SENSITIVE 
PARAMETERS

SHORT DESCRIPTION t-STAT P VALuE DEFAuLT 
RANGE

FITTED 
VALuE

1 CN2.mgt Initial Soil Conservation Service (SCS) 
streamflow curve number

33.22 0 −.25 to .25 −.08

2 ALPHA_BNK.rte Base flow alpha factor for bank storage −18.02 0 0 to 1 .99

3 CH_K2.rte Effective hydraulic conductivity in main channel −9.01 0 0 to 500 300

4 GW_REVAP.gw Ground water revap coefficient −5.29 0 .02 to .2 .05

5 CH_N2.rte Manning’s n value for the main channel −5.22 0 o to .3 .023

6 ESCO.hru Soil evaporation compensation factor −2.45 .01 0 to 1 .6

7 EPCO.hru Plant uptake compensation factor 1.84 .07 0 to 1 .7

8 ALPHA_BF.gw Base flow alpha factor −1.32 .19 0 to 1 .25

9 CANMX.hru Maximum canopy storage 1.11 .27 0 to 100 40

10 OV_N.hru Manning’s n value for overland flow .90 .15 0 to 23 1.4

11 GW_DELAY.gw Ground water delay time .88 .24 0 to 500 .5

12 RCHRG_DP.gw Deep aquifer percolation factor −.73 .25 0 to 1 .36

13 SOL_AWC().sol Available water capacity of soil layer .65 .24 −.25 to .25 .23

14 SOL_BD.sol Moist bulk density .61 .16 1.1 to 1.9 1.4

Figure 6. (a) Daily flow comparison (calibration), (b) daily flow comparison (validation), (c) monthly flow comparison (calibration + validation), and (d) 

average monthly flow comparison.
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Table 3. SWAT Model Evaluation Statistics.

TOTAL STREAM FLOW

S. NO. EVALuATION 
STATISTICS

DAILY MONTHLY

CALIBRATION VALIDATION CALIBRATION VALIDATION

1 NSE .77 .79 .93 .93

2 PBAIS −8.06 6.73 −7.89 6.65

3 R2 .77 .78 .93 .94

4 RSR .48 .46 .27 .26

SWAT: Soil and Water Assessment Tool; NSE: Nash–Sutcliffe efficiency; RSR: RMSE-observations standard deviation ratio; PBAIS: Percent bias.

Figure 7. (a, b) Scatter plots of daily observed flow versus simulated flow and (c, d) scatter plots of monthly observed flow versus simulated flow.

the 2040s by 30.23%, slightly decreasing in 2070s by 20.19%, 
and increase in the 2090s by 57.94% compared to baseline. 
The maximum of 93.5% increment in end-century was con-
cluded by Narsimlu et  al. (2013). Sediment yield from the 
basin has also been found to be increased by 26.42% in 2031–
2050, then only by 10.95% in 2061–2080, and again by 28.32% 
in 2081–2099. Different from them, evapotranspiration has 
been found to have an increasing trend in all three future 
scenarios.

Identif ication and prioritization of critical areas

Sediment yield data from a watershed is useful in many ways. 
It helps us to identify and prioritize the crucial watershed 
among others in the basin and aids in planning and managing 
the structural and agricultural BMPs of the basin. So it is a 
common practice to use average annual sediment yield data in 
the identification and prioritization of critical watersheds in 
the basin. The average annual sediment yield of the basin for 
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Figure 8. (a) Average annual SWAT water balance and (b) balance chart for the baseline period.

Table 4. Annual Water Budget for Future.

SCENARIO PERIOD RAINFALL (MM) STREAMFLOW (MM) ET (MM) SED YIELD (T/HA)

Baseline 1,006.49 329.33 594.12 6.85

2040s (2031–2050) 1,170 (16.25%) 428.87 (30.23%) 665.76 (12.06%) 8.66 (26.42%)

2070s (2061–2080) 1,163.04 (15.55%) 395.83 (20.19%) 688.96 (15.96%) 7.6 (10.95%)

2090s (2081–2099) 1,329.48 (32.09%) 520.14 (57.94%) 729.23 (22.74%) 8.79 (28.32%)

ET: evapotranspiration.

Figure 9. Spatial distribution of the water balance components.

the baseline period was 6.85 ton/ha, which increased to 8.66 
and 8.79 t/ha in future scenarios of 2031–2050 and 2081–2099, 
respectively. For future scenarios, the maximum possible sedi-
ment yield that could occur in each sub-basin was analyzed, 
and the spatial distribution of sediment was plotted, as shown 
in Figure 11. Based on the sediment yield data, the sub-basin 
were classified in to different categories of soil erosion classifi-
cation as recommended by G. Singh et al. (1992), namely slight 
(0–5 ton/ha/yr), moderate (5–10 ton/ha/yr), and high (10–20 
ton/ha/yr) erosion classes. It was adopted to assign the priority 
levels of I–III (Table 6).

The results clearly show that slight erosion and moderate 
erosion class may decrease in the future. However, there may be 
an increase in the high erosion class from 16.07% to 53.61%. It 
necessitates to take up proper BMPs in the high erosion-prone 
areas. In an earlier study by Himanshu et al. (2019), high ero-
sion-prone regions were considered to implement and evaluate 
BMPs. Similarly, all total 10 sub-watersheds, namely SW-8, 
SW-10, SW-12, SW-13, SW-14, SW-17, SW-19, SW-21, 
SW-22, and SW-23 falling under high erosion class, are con-
sidered as a critical prone area for the implementation and 
evaluation of BMPs.
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Figure 10. Future hydrology (a) comparison of future streamflow and (b) comparison of future water balance chart.

Table 5. Average Annual Water Balance: Monthly Break up.

MONTH RAINFALL 
(MM)

SuRFACE 
STREAMFLOW 
(MM)

WATER 
YIELD 
(MM)

ET (MM) SEDIMENT 
(TON/HA)

January 10.41 .01 5.17 20.36 0

February 17.89 .15 3.62 24.69 0

Mar 4.79 0 2.88 29.16 0

April 2.9 0 2.04 21.9 0

May 5.59 0 1.55 16.31 0

June 108.84 6.36 5.14 39.2 .11

July 276.65 47.28 43.28 101.42 1.19

August 316.17 90.05 112.83 115.71 2.85

September 221.61 75.51 115.54 103.05 2.57

October 31.05 4.18 20.52 68.87 .13

November 3.04 0 9.52 32.78 0

December 7.55 .1 7.24 20.67 0

Annual 1,006.49 223.64 329.33 594.12 6.85

ET: evapotranspiration.

Evaluation of BMPs

In this study, seven BMPs, namely recharge structure, contour 
farming, filter strip 3 & 6 m, porous gully plugs, zero tillage, 
and conservation tillage operation, were evaluated for the soil 
and water conservation treatment in the Tons river basin. Each 
of the BMPs was analyzed individually for both the present 
baseline and future scenarios of the 2040s, 2070s, and 2090s. 
The percentage reduction on the sediment yield was deter-
mined and plotted, as presented in Figure 12. Compared to the 
baseline period analysis, the effectiveness of BMPs has been 
found to decrease slightly for future 2040s, increase in 2070s, 

and decrease in 2090s. An increasing trend in the 2040s, a 
declining trend in the 2070s, and a rising trend in the 2090s 
were observed in the case of sediment yield. Prioritization of 
the BMPs concerning the percentage reduction basis was car-
ried out initially with recharge structure followed by other 
BMPs such as filter strip-6 m, contour farming, filter strip-3 m, 
gully plugs, zero tillage, and conservation tillage operations.

Recharge structure appeared to be the most effective meas-
ure with a maximum reduction of sediment by 38.98% during 
the baseline period and a 37.15% reduction in the future sce-
nario. Specifically, all sub-watersheds except three sub-water-
sheds (SW-10, SW-21, and SW-22) indicated the highest 
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Figure 11. Spatial distribution of the sediment yield (a) baseline period and (b) future period.

Table 6. Categorization of the Sub-Basin as per the Sediment Yield.

SEDIMENT YIELD 
(TON/HA/YR)

SuB-WATERSHED AREA % SOIL EROSION 
CLASS

PRIORITY 
CLASS

Baseline

 0–5 1,3,4,5,6,16,18 24.38 Slight III

 5–10 2,7–11,13,15,17,19,20,22,23 59.56 Moderate II

 10–20 12,14,21 16.07 High I

Future

 0–5 6,4 11.69 Slight III

 5–10 1,2,5,7,9,11,15,16,18,20 34.70 Moderate II

 10–20 8,10,12,13,14,17,19,20,21,22,23 53.61 High I

Figure 12. Effectiveness of BMPs in percentage reduction for present 

and future scenarios.

reduction in the sediment yield when simulations were carried 
out with this BMP (Figure 13). Percentage reduction vary from 
11.00% at SW-21 to 82.59% for SW-19 (Figure 13). The high 
erosion category in pre-BMP covers 16.07% in baseline condi-
tions and 53.61% in future scenarios, indicating the higher cat-
egory’s transformation to slight and moderate categories after 
implementing these management practices (Table 7). This also 

notifies that the BMP effectiveness in the tributary channel is 
more dominant.

Implementation of filter strip of 3 and 6 m shows that filter 
strip of 3 m (21.9%) provides nearly the same amount of sedi-
ment reduction of 22.63% as provided by the contour farming. 
However, a filter strip of 6 m resulted in about 26.54% of sedi-
ment reduction in baseline and future scenarios. The baseline 
period filter strip of 6 m was found to remove the high erosion 

Figure 13. Effectiveness of BMPs in the critical sub-watersheds of Tons 

river basin.
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class, whereas, for the future scenario, it reduced that coverage 
area by 74.72%. Gully plugs effectiveness was found to be near 
about 12.0%, and two tillage operations; zero tillage and conser-
vation tillage provides 6.57% and 4.53% reduction in the sedi-
ment yield. Change in the extent of three soil erosion classes 
demonstrated that the moderate class area was found to be 
increased during future scenarios. The slight erosion class area 
was increased in the baseline period to balance the high erosion 
class’s decreased area. High erosion class from the coverage of 
53.61% in future scenarios was brought to 0%, 13.55%, 18.25%, 
18.25%, 34.48% after recharge structure, filter strip of 6 m, con-
tour farming, gully plugs, and two tillage operations, respec-
tively. These percentage reductions are within the percentage 
reduction of sediment yield as obtained by a different researcher, 
such as 71% reduction by the implementation of contour farm-
ing (López-Ballesteros et al., 2019); up to 37.2% reduction with 
the recharge structure (Tuppad et al., 2011), 51% reduction by 
the gully plugs (Park et al., 2014); 5.4%–6.8% reduction in case 
of conservation tillage and zero tillage, respectively (Himanshu 
et  al., 2019); 25% reduction by the application of filter strip 
(Parajuli et al., 2008).

Our results can be compared to measurements carried out in 
other watersheds worldwide, and similar situations are found. 
In general, the use of vegetation covers such as the one gener-
ated when agricultural land abandonment occurs results in a 
reduction in soil and water delivery. Keesstra (2007) found a 
reduction in the sedimentation in the Dragonja basin in 
Slovenia due to the natural afforestation. These are called 
nature-based solutions, such as later (Keesstra, Nunes, Novara, 
et  al., 2018; Uniyal et  al., 2020) disseminated with examples 
from different regions. The role vegetation plays in agriculture 
and forest land is definitive at the watershed scale due to its 
impact on the connectivity of the flows (Keesstra, Nunes, Saco, 
et al., 2018). This has been intensively studied in vineyards by 
Rodrigo-Comino et al. (2018b) with traditional topographical 
measurements and fieldwork assessment and later with lidar 

use (Rodrigo-Comino et al., 2018a; Rodrigo-Comino, Lucas-
Borja, et al., 2020).

The basin and watershed behavior are determined by the 
impact of the management at the pedon scale. This is why 
farmers and forest users should apply the changes. The use of 
catch crops, straw mulches, chipped pruned branches and other 
covers such as plants and geotextiles are definitive to achieve 
the best management of the land to reduce sediments in the 
river discharge (Barrena-González et al., 2020(b); Cerdà et al., 
2020; López-Vicente et  al., 2020; Rodrigo-Comino, Terol, 
et al., 2020).

Conclusion
Climate change and inefficient management of the basin may 
lead to an increase in land degradation. So soil conservation is 
one of the major tasks in sustainable basin management.

In this study, the SWAT model has been applied to evaluate 
the effectiveness of seven various BMPs for the present (1984–
1999) and future 2040s (2031–2050), 2070s (2061–2080), and 
2090s (2081–2099) scenarios. The study generated future sce-
narios using CORDEX South Asia RCM-ACCESS 1.0 for 
RCP 4.5 and RCP 8.5. SWAT model has been successfully 
calibrated and validated at daily and monthly time scales for 
simulation of streamflow and sediment. Evapotranspiration 
was the predominant water balance component for the baseline 
period, accounting for 59.03% of precipitation. However, 
22.22% of rainfall flows out as surface streamflow.

In future, RCM-derived climate data, the minimum tem-
perature rises from 2.13 C to 5.17°C, and the increase in 
maximum temperature was 1.6°C to 3.6°C compared to base-
line (1984–1999). Precipitation has an increasing trend in the 
2040s, slightly decreasing in the 2070s, and increasing trend 
by 2090s. Streamflow and sediment followed a similar 
pattern.

Critical sub-watersheds have been identified, and the imple-
mentation and evaluation of BMPs have been performed 

Table.7. Changes Observed in the Erosion Classes under Different BMPs in the Percentage of Area Basis.

BASELINE

EROSION 
CLASS

PRE-BMP 
(BASELINE)

RECHARGE 
STRuCTuRE

FILTER 
STRIP-6 M

CONTOuR 
FARMING

GuLLY 
PLuGS

ZERO 
TILLAGE

CONSERVATION 
TILLAGE

Slight 24.38 65.31 63.57 55.05 41.11 24.38 24.38

Moderate 59.56 34.69 36.43 36.83 46.07 62.80 62.80

High 16.07 .00 .00 8.12 12.83 12.83 12.83

FuTuRE

EROSION 
CLASS

PER-BMP 
(FuTuRE)

RECHARGE 
STRuCTuRE

FILTER 
STRIP-6 M

CONTOuR 
FARMING

GuLLY 
PLuGS

ZERO 
TILLAGE

CONSERVATION 
TILLAGE

Slight 11.69 45.88 41.85 41.85 22.08 22.08 22.08

Moderate 34.70 54.12 44.60 39.89 59.67 43.44 43.44

BMP: best management practices.
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individually through the SWAT model. Recharge structure has 
been identified as the most effective BMP measure with a 
maximum reduction of sediment by 38.06%, followed by a fil-
ter strip of 6 m with 26.54%, and a contour farming with 
22.07% considering both present and future. Compared to the 
baseline period, the effectiveness of BMPs is slightly decreas-
ing in the future 2040s, increasing in the 2070s and decreasing 
in the 2090s. Recharge structure and filter strip 6 m have been 
found to nullify the high soil erosion class completely. 
Adaptation of these management practices will reduce one of 
the significant components of non-point source pollution, thus 
maintaining the natural and sustainable environment. These 
management practices could be applied to the basin, which has 
similar basin characteristics. A major limitation of this study 
was the unavailability of the sediment data for the validation of 
the sediment yield modeling results using SWAT. One of the 
other limitations of this study is that no consideration has been 
given to the cost involved in implementing these BMPs. The 
quality of work could have been improved if the recent data 
had been available. This study’s analysis has carried out assum-
ing constant LULC, whereas there is a rapid change in LULC 
affecting the basin characteristics. Therefore, it is recom-
mended to consider temporal variation in LULC to develop a 
more realistic scenario for the evaluation of BMPs. This work’s 
future scope can be the multiple criteria evaluation, including 
cost as an essential parameter to evaluate BMPs for better 
management of the basin. Optimization techniques could be 
applied to select BMPs, which are cost-effective and environ-
ment friendly. It is also recommended for the sediment load 
data collection on suitable locations to improve the efficacy of 
the BMPs.
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