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Introduction
In the southeastern United States there are several important 
mosquito vectors that utilize artificial container habitats.1 The 
3 most important are the naturalized Aedes aegypti L., the inva-
sive Aedes albopictus (Skuse), and the native Aedes triseriatus 
(Say). As container-ovipositing mosquitoes, they lay desicca-
tion resistant eggs, which allows for easy sampling through 
artificial containers as traps (ovitraps) and the transport of live 
eggs.2 Both Ae. aegypti and Ae. albopictus are found throughout 
the globe and are implicated in the transmission of dengue, 
chikungunya, and Zika viruses, with Ae. aegypti considered the 
principal vector.3,4 Aedes triseriatus is also an important vector, 
responsible for the transmission of La Crosse virus, a zoonotic 
pathogen that primarily afflicts children in North Carolina.5,6 
Transmission of these viral pathogens is determined in part by 
the presence and abundance of vectors, which is, in turn, deter-
mined by biogeographic factors at a variety of scales.

Aedes aegypti is confined to urban areas in the tropics and 
subtropics, while Ae. albopictus (Skuse) is a cosmopolitan 
mosquito, found in all continents except Australia and 
Antarctica.7,8 Aedes albopictus is limited by dry conditions, but 
can persist in Mediterranean climates, and is now found in 
California, along with Ae. aegypti.9,10 Aedes albopictus is ubiq-
uitous in human dominated areas throughout the eastern 
United States, as far north as New York.7,11-13 Historically, Ae. 
aegypti was found in North Carolina, but has only been 
caught twice in the state since 2000, and in these instances 
were likely transient populations.1,14,15 On the other hand, Ae. 
albopictus is found in nearly every sampled location in North 
Carolina, although its abundance varies.13 The native eastern 
tree-hole mosquito, Ae. triseriatus is found in deciduous 
wooded areas east of the Rocky Mountains.16

The factors that determine the abundance of Ae. albopictus 
and Ae. triseriatus are not well known at a local scale. There is 
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some evidence that socio-economic factors are important,17-19 
as well as environmental factors at various scales.7,8,13,20-22 
Several studies have suggested that local land-use is the most 
important determinant of relative Ae. albopictus abundance, 
outweighing socio-economic and temporal factors,18,23 
although land-use may interact with temporal (eg, climate/
weather) and/or socioeconomic (eg, income/property value) 
factors.23

The characterization of land-use to predict mosquito species 
presence and abundance has generally taken 3 approaches.24 First 
is hand digitization from aerial images,25,26 which is very accurate, 
but time consuming and 2-dimensional. The second is the use of 
satellite images with classified land-use patterns as predictors, 
which can provide large-scale coverages of areas with existing 
data, but may be limited by pixel size (30 m in commonly used 
Landsat derived classification) and 2-dimensionality.27 Finally, 
the recent availability of Light Detection And Ranging (LIDAR) 
data, which uses light to image objects at various scales, provides 
a third landscape data source. LIDAR data can be very fine-scale, 
accurate, and 3-dimensional, possibly providing the best of hand-
digitization and widespread land-classification approaches. 
However, LIDAR has not been applied frequently to mosquito 
data, and then only in a limited context.28,29

We had 2 goals in this study: (1) to develop and implement 
an a priori landscape classification to assist local cooperators 
with Ae. aegypti surveys and surveillance in North Carolina, 

and (2) to examine the influence of spatial factors, as measured 
by 2-dimensional National Landcover Classification Database 
(NLCD) and 3-dimensional LIDAR data, on the presence and 
abundance of artificial container utilizing mosquitoes in North 
Carolina. To achieve these goals, we conducted a cross sectional 
survey of container mosquitoes in 6 counties in North Carolina, 
and then examined the ability of LIDAR and NLCD data to 
explain variation in egg presence and abundance of container 
mosquitoes.

Methods
Overview of study system

In this study, we examined the distribution of container mos-
quitoes across the coastal plain and piedmont areas of North 
Carolina, including the 2 major urban counties of Wake and 
Mecklenburg. We chose these counties as the most likely 
areas to encounter Ae. aegypti, being either coastal with a 
moderate climate or urban.12,30 For each one of these 6 coun-
ties (Figure 1), we developed a priori landscape predictions of 
Ae. aegypti habitat, then asked cooperators in those counties 
to set 60 ovitraps, with at least 30 placed in areas with the 
highest predicted likelihood of having Ae. aegypti (see red 
areas in Figure 1). Cooperators were asked to place the other 
30 ovitraps throughout their respective counties at their con-
venience. Cooperators were county or municipal workers 

Figure 1. Maps showing egg sampling locations in 6 counties in North Carolina. Blue to red scale shows estimated probability of Aedes aegypti, based 

upon a priori land-use modeling from low to moderate (mod) to high. White areas failed to meet any criteria for inclusion, often either open water or 

agricultural fields without any tree canopy. Black triangles show sampling locations within each county. At least half of sites were in areas proposed to 

have a high risk of Ae. aegypti, but no Ae. aegypti were found.
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already engaged in some mosquito surveillance or control 
activities as a part of their normal routines. Ovitraps are use-
ful because of their ease of use, sensitivity to the presence of 
container Aedes spp., and correlation with biting 
mosquitoes.2,31,32

A priori Landscape Prediction of Aedes aegypti 
Presence

We generated predictions of likely Ae. aegypti populations 
based upon several factors taken from the literature, as well as 
expert opinion of the authors based upon field experience 
(MSD and MHR) concerning both population establishment 
(eg, migration) and persistence (Table 1).33 The weights given 
to factors were decided based upon the literature as well as 
desiring to capture certain landscape features, including sites of 
tire or trash concentration. As these predictions needed to be 
operational for mosquito control personnel, certain abiotic fac-
tors, like temperature and precipitation that are highly predic-
tive of Ae. aegypti presence at coarse-scales8 were not useful in 
this context, because the variation in available temperature and 
precipitation data was not large enough within a county. We do 
suspect that fine-scale variation of precipitation and tempera-
ture could impact population dynamics,30 but as we were col-
lecting data over a short time frame, we did not deem this 
critical. Some factors were not weighted, but included in 

instructions for placement, such as prioritizing outdoor areas 
where people are likely to congregate.

Sampling of container Aedes mosquitoes

We provided instructions and sampling material to mosquito 
control employees (hereafter “cooperators”) in each county to 
collect the egg-stage of container Aedes, following published 
protocols.13 Briefly, we sent all cooperators sixty 473-ml black 
plastic cups (“ovitraps”) (www.discountfavors.com), printed 
with information about the survey and contacts, 76# seed ger-
mination paper (Anchor Paper Co., Plymouth, MN USA) cut 
into 8.9 × 25.4 cm strips for placing in the cups to collect eggs 
(“ovistrip”), and a written protocol for trap placement and 
handling (available upon request from the corresponding 
author). Each cooperator was assigned an individual university 
partner for the duration of the study and received mailing 
information to send eggs to a university partner for hatching 
and identification. Pitt and New Brunswick Counties used 
East Carolina University (ECU), Wake and New Hanover 
Counties used North Carolina State University (NCSU), and 
Mecklenburg and Carteret Counties used Western Carolina 
University (WCU). All cups had a weep-hole drilled to pre-
vent overflow (eg, due to rainfall), making the water volume in 
each cup ~350 ml. We instructed cooperators to attach the 
cups to existing structures (eg, trees, fences, etc.) on the ground 

Table 1. Priority of site selections for Ae. aegypti.

CATEgORy (gEOMETRy TyPE) LOgIC WEIgHT (100% = PRIORITy SAMPLINg)

Tire dump (point) Concentration of migrant mosquitoes and many 
potential habitats for container-ovipositing mosquitoes

100% (these are rare)34

Impervious surfaces 
(continuous)

Positively associated with Ae. aegypti in south Florida 75% with more impervious surfaces25

Canopy cover (continuous) Negatively associated with Ae. aegypti in south Florida 
(about 50%), but positively associated with Ae. 
albopictus. May be important in providing habitat near 
impervious surfaces (eg, the parking lot effect)

25% with canopy25

Housing density (continuous) More humans = more human associated mosquitoes 50% with high housing density35

Ports (point) Traffic flow node, likely entry site for mosquitoes 100% with presence (ports are points 
and not polygons, potentially 
underestimating area)36

Vehicular traffic (continuous) More migrant mosquitoes 25% with higher traffic37,38

Landfills/dumps/convenience 
centers (point)

Container and junk concentrations, increased 
probability of migrants

75% with presence34,38

Cemeteries (point) Convenient sampling; used in other studies of 
container mosquitoes

50% with presence39

Outdoor recreation (point) Concentrations of humans for blood-feeding, may be 
Ae. aegypti preferred habitats

75%

Historic districts (area) Preferred Ae. aegypti habitat in Key West 90% with older housing

Commercial traffic nodes (point) Increased opportunity for migrant mosquitoes 50%37

Socioeconomic status Poorer housing construction/accumulation of container 
habitats/less reliance on air conditioning

50% with lower SES17
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level in a shaded location away from foot traffic; the specific 
trap location within these parameters was guided by our a 
priori Ae. aegypti preference maps (Figure 1). Cooperators 
were asked to fill the cup with tap water, line it with the ovis-
trip, and set in the field for 7 days. After 7 days, the ovistrip 
was collected, and any water in the cup discarded. Cooperators 
placed each ovistrip in a separate, labeled plastic bag (Whirl-
Pak®, Nasco, Fort Atkinson, WI USA) or sealable sandwich 
bag, before sending it to the assigned university partner for 
processing. Seven days was chosen as the maximum amount of 
time without risk of generating adult mosquitoes, as well as a 
standard for ovitrapping studies.40 Cooperators were asked to 
conduct the survey over 2 weeks, with 30 sites each week, in 
late June to early July 2017 to standardize the timing across all 
counties. This window was based upon seasonal activity pat-
terns of Ae. aegypti and Ae. albopictus in areas of co-occurrence 
in Florida, which suggest Ae. aegypti (our main target) occurs 
earlier in the summer.30,41 Each site was only trapped once (for 
1 week), and we received a total of 373 ovistrips from the 6 
participating counties over the course of the summer. Thirty-
two from Pitt County were collected late July and early 
August, and were removed from the data set. Another 12 sites 
had unidentifiable locational data, and were also removed 
from the data set. Although 60 sites were the goal for each 
county, 2 counties, Brunswick and Carteret, set 70 and 63 
traps, resulting in a final data set of 327 sites out of a possible 
377 sites (Table 2).

Handling of ovistrips, egg counting, and 
identif ication

When the ovistrips were received at each university, we counted 
the total mosquito eggs, noting those that appeared to have 
hatched (the apical cap having dehisced). We then placed ovis-
trips in a nutrient broth (1:1 ratio yeast:liver powder, 0.15 g/l of 
water) to facilitate hatching. Larvae were allowed to grow in 

this media to fourth instar or pupae. We identified the mosqui-
toes as either fourth instar larvae or as adults, following 
Harrison et al.1 All hatched eggs were identified.

Landscape data

LIDAR data acquisition and processing. Light Detection and 
Ranging (LIDAR) is a remote sensing method used to gen-
erate precise, 3-dimensional information about the shape of 
the Earth and its surface characteristics. LIDAR data were 
obtained from the NC Department of Public Safety (https://
sdd.nc.gov/sdd/). These data are part of a statewide LIDAR 
dataset acquired for the NC Floodplain Mapping Program 
over the course of 4 years in 4 different phases (Table 3).42 
Phases 1 to 3 were collected in leaf-off conditions during 
2014 and 2015 using a traditional linear aerial sensor col-
lected at 2 points per square meter (ppsm). Phase 4 utilized 
the new Geiger technology, which allowed for a 30 m post 
spacing collection with 8 ppsm processed and delivered. All 
data included multi-return and intensity values and were  
collected to support a 9.25 cm (3.36 inch) RMSEz for non-
vegetated areas based on National Digital Elevation Program 
(NDEP) guidelines. All data meet the United States Geo-
logical Service LIDAR Base Specifications, ASPRS Guide-
lines for Vertical Accuracy, and North Carolina Technical 
Specifications for LIDAR Base Mapping.43 LIDAR points 
were classified by the vendor. All geospatial deliverables were 
produced in NAD83 (2011) North Carolina State Plane 
Coordinate System, US survey feet, NAVD88 (Geoid 12A), 
US survey feet; data for Phase 4 is in Geoid 12B. LIDAR 
data were processed for areas within a 100-m buffer around 
each of the 327 sampling sites, consistent with other studies 
focused on container Aedes sp., and their dispersal dis-
tances.44,45 The classification of LIDAR data returns in 
accordance with a classification scheme to identify the type 
of target from which each LIDAR return is reflected. The 

Table 2. Description of total eggs, Ae. albopictus and Ae. triseriatus larvae reared from egg, and proportion of sites positive for eggs, Ae. 
albopictus, and Ae. triseriatus, by county.

COUNTy N TRAPS 
SITES

PROPORTION 
(+) FOR EggS

MEAN 
AEdEs spp. 
EggS/TRAP

PROPORTION 
(+) FOR AE. 
AlbopIctus

MEAN AE. 
AlbopIctus/
TRAP

PROPORTION 
(+) FOR AE. 
tRIsERIAtus

MEAN AE. 
tRIsERIAtus 
PER TRAP

Brunswick 70 0.886 (62/70) 51.01 0.771 (54/70) 19.1 0 0

Carteret 63 0.841 (53/63) 74.4 0.746 (47/63) 19.03 0.063 (4/63) 3.13

Mecklenburg 58 0.931 (54/58) 96.77 0.862 (50/58) 23.57 0.241 (14/58) 3.39

New Hanover 51 0.902 (46/51) 66.96 0.882 (45/51) 24.43 0 0

Pitt 28 0.929 (26/28) 55.32 0.929 (26/28) 19 0 0

Wake 57 0.930 (53/57) 80.65 0.772 (44/57) 33.95 0.105 (6/57) 0.895

Total 327 0.896 (293/327) 71.65 0.844 (276/327) 23.29 0.073 (24/327) 1.36
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process allows future differentiation between bare-earth ter-
rain points, water, noise, vegetation, buildings, other man-
made features, and objects of interest. Various data were 
extracted from the classified point cloud data (PCD) for use 
as predictor variables in statistical models (Table 4). Noise 
points subsequently identified during manual classification 
and quality assurance/quality control were assigned the 
appropriate standard LAS classification values for noise. 
Noise classes are primarily used to denote points that are 

valid but not earth-bound (for example, birds) or spurious 
(for example, artificially induced deviations in elevation at or 
near land/water interfaces). Further, unclassified points can 
also result in “noise” in the point cloud dataset as these points 
are processed and present in the dataset, but are not assigned 
to a particular class, so they can be representative of one of 
several classes (eg, road, water, vegetation, etc.). Predictor 
variables were generated by rasterizing the PCD then calcu-
lating land cover class percentage statistics. By rasterizing 
the PCD, pixels were created and assigned the primary land 
cover class that occurs in the 100-m PCD directly above that 
pixel. The result is a “bird’s eye view” of the land cover class 
present in each 1-m pixel. The advantage of this type of ras-
ter-based land cover classification is the ability to look 
beneath the tree canopy rather than seeing only the tree tops. 
For example, in a traditional image-based land cover classifi-
cation, if a tree canopy is dominant across several pixels in an 
image, they will be classified as vegetation. By using the clas-
sified PCD to create a LIDAR-based land cover classifica-
tion, we are able to see other classes, such as grassy or 
impervious surfaces, that may cover the ground beneath the 
tree canopy, and these pixels can be classified accordingly.

National land cover database (NLCD) acquisition and process-
ing. National Land Cover Database (NLCD) is an ongoing 
land cover modeling effort to produce current, nationally con-
sistent, land cover products for all 50 states and Puerto Rico 
using satellite imagery and remote sensing-based image clas-
sification techniques. The most recent NLCD product from 
2016 was obtained from the Multi-Resolution Land Charac-
teristics Consortium. The NLCD is a ready-to-use remote 
sensing product so no analysis is needed to extract land cover 
information. These data, however, are created from Landsat 
satellite imagery, and thus have 30 m pixels, versus the 1 m pix-
els of the LIDAR-based classification. That said, these prod-
ucts contained much more detailed land cover information 
than the LIDAR-based classification (see Table 4), such as the 
locations of open water, and more detailed information about 
vegetation and impervious class characteristics (eg, deciduous 
versus evergreen forest and low-, medium-, and high-intensity 
development). We used the same 100-m buffers around the 

Table 3. LIDAR data acquisition characteristics.

COUNTy ACqUISITION yEAR TECHNOLOgy RESOLUTION

Carteret Phase 1 2014 Linear aerial sensor 2 ppsm

Pitt Phase 1 2014 Linear aerial sensor 2 ppsm

Brunswick Phase 2 2014 Linear aerial sensor 2 ppsm

New hanover Phase 2 2014 Linear aerial sensor 2 ppsm

Wake Phase 3 2015 Linear aerial sensor 2 ppsm

Mecklenburg Phase 4 2016 geiger sensor 8 ppsm

Table 4. LIDAR- and NLCD-derived model variables. Note that all NLCD 
variables are percentages of the areas around each collecting site.

LIDAR-DERIVED VARIABLES NLCD-DERIVED VARIABLES

Elevation at the central point for 
each buffer zone (m)

Open water

Maximum canopy height (m) Developed, open space

Average canopy height (m) Developed, low intensity

Standard deviation for average 
canopy height (m)

Developed, medium 
intensity

Percent vegetation cover from 
ground level to 2 m high (%)

Developed, high intensity

Percent vegetation cover from 2 m 
to 7 m high (%)

Barren land

Percent vegetation cover from 5 m 
to 7 m high (%)

Deciduous forest

Percent vegetation cover above 
7 m high (%)

Evergreen forest

ground (<1.0 m) (%) Mixed forest

Low veg/strata (0.5 m ⩽ 2.0 m) (%) Shrub/scrub

Medium veg/strata (2.0 ⩽ 5.0 m) 
(%)

grassland/herbaceous

Buildings (%) Pasture/hay

Roads (%) Cultivated crops

 Woody wetlands

 Emergent herbaceous 
wetland
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327 sampling sites to examine NLCD-based land cover class 
percentages for pixels within buffers at each location, and these 
were used as predictor variables in statistical models.

Statistical analyses

We examined and compared the ability of 3-dimensional 
LIDAR PCD and 2-dimensional NLCD data to explain the 
variation in the presence and number of Aedes eggs, Ae. albopic-
tus, and Ae. triseriatus between ovitraping locations. Abundance 
of Ae. albopictus, and Ae. triseriatus, and total eggs was modeled 
using a negative binomial distribution, while presence was 
modeled using a binomial distribution. In addition, a hurdle 
model was included for all models to account for zero-infla-
tion. We found strong support for using zero-inflated models, 
with the zero-inflated parameter significant in all cases 
(P < .0001), and visual inspection of the distribution of egg 
counts.46 Models were fit in R,47 using the pscl package48,49 for 
hurdle models.

Three datasets were used to model each of the response 
variables. The first used exclusively variables from the LIDAR 
dataset, the second exclusively used variables from the NLCD 
dataset, and the third combined both datasets. Due to issues 
with non-identifiability and correlation that are inherent to 
both the LIDAR and NLCD data, model fits using the origi-
nal datasets were not possible. Instead, we chose to transform 
the datasets using principle component analysis (PCA).50 
Models were then fit to the transformed observations for each 
dataset.

Model fits using the LIDAR and NLCD dataset were then 
compared using AIC to determine which dataset provided a 
better fit for the responses, with each then compared to the 
final combined model to determine if any additional informa-
tion was gained by using both datasets in conjunction. Data are 
available on Dryad (www.datadryad.org).

Results
Descriptive results

In spite of our a priori attempts to identify and trap in likely Ae. 
aegypti habitats, no Ae. aegypti were found. Likewise, Ae. hen-
dersoni was not caught in any locations. Aedes japonicus was rare, 
with only 8 sites positive for this species across the 327 sur-
veyed sites, which precluded statistical analyses. On the other 
hand, container Aedes spp. eggs were commonly found (89.6% 
of sites), and Ae. albopictus was by far the most common species 
found (84.4% of sites, found in every county). Aedes triseriatus 
was not common, found in only 7.3% of sites, only in Carteret, 
Wake, and Mecklenburg Counties (Table 2), but had sufficient 
numbers to be analyzed.

Prediction of abundance

The summary results of all model selections are presented in 
Table 5. Each principal component is comprised of all original 

variables weighted to different degrees. The loadings for each 
principal component for the 3 model sets is available in the 
supplementary materials. The models built using principal 
components from NLCD variables explained slightly more 
variation in egg and A. albopictus abundance than the principal 
components constructed from LiDAR variables, though nei-
ther explained more than 3% of the variation in abundance. 
The combined model built from both LiDAR and NLCD 
variables explained the most variation in abundance for eggs, A. 
albopictus, and A. triseriatus, with a pseudo-R2 of 1.87%, 2.39%, 
and 5.73% respectively.

Prediction of Aedes albopictus and Aedes 
triseriatus Presence

As with the abundance models, the principal components 
models built using both LiDAR and NLCD variables explained 
the most variation in presence of A. albopictus and A. triseriatus 
eggs (pseudo R2 = 12.27% and 43.64% respectively). The model 
built using LiDAR variables explained more variation in both 
A. triseriatus presence than the NLCD-based model (pseudo 
R2 = 25.98% and 23.79% respectively), and A. albopictus pres-
ence (pseudo R2 = 6.28% and 4.26% for the LiDAR- and 
NLCD-based models, respectively).

Discussion
We did not find Ae. aegypti in counties surveyed here, which 
agrees with other recent surveys,13 and may suggest that other 
reports represent transient observations.14 Aedes aegypti is gen-
erally considered the principal vector of dengue, Zika, and chi-
kungunya viruses, and its absence likely means a lower risk of 
transmission of these anthroponoses. However, we did find Ae. 
albopictus in a vast majority of sites across the 6 counties. The 
ubiquity of this competent vector of human arboviruses sug-
gests at least some risk of pathogen transmission and human 
disease almost everywhere we sampled.

Although our data suggest the vast majority of eggs were Ae. 
albopictus with a minority Ae. triseriatus (and no Ae. aegypti or 
Ae. hendersoni were detected, although theoretically possible) we 
decided to analyze presence of Aedes spp. eggs, even though it 
might be confounded by the potential mixture of 2 (or more) 
species. We did this because there were some ovitrap papers that 
did not hatch, but we still wanted to see if there were landscape 
correlates with Aedes spp. egg presence. In keeping with the 
observation that >75% of eggs that did hatch were Ae. albopic-
tus, the model for any Aedes spp. egg presence and Ae. albopictus 
presence was similar, and our model was only able to explain a 
small amount of the variation in presence. The remarkable 
ubiquity of Ae. albopictus eggs likely limited the ability of the 
presence/absence model to explain variation, with Ae. albopictus 
only absent at a few sites. The presence of Ae. triseriatus eggs 
was the most well modeled of the outcomes compared, which 
may reflect their relative rareness in the landscape. Our model 
approach does not provide us with biologically interpretable 
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variables. The abundance of all species eggs was poorly pre-
dicted by our models, possibly because egg abundance is deter-
mined by environmental and behavioral factors which are not 
correlated with landcover, including weather events, presence of 
other containers, and skip-oviposition behavior known from 
these species.

Although significant models were generated to explain the 
variation in egg counts using LIDAR, NLCD or a combina-
tion, neither LIDAR nor NLCD classifications resulted in 
robust models capable of explaining much variation in egg 
presence or abundance. There may be several reasons for this. 
Although LIDAR data has the potential to provide a very fine-
scale estimation of surrounding landscape variables, many of 
our sites had a large percentage of unclassifiable data points 
(“noise”) that suggest the LIDAR data processing could be 
improved. This is beyond the scope of our study to address. The 
NLCD data was not very effective at explaining the egg distri-
bution patterns and may be due to the coarseness (30 m pixels) 
of the coverage relative to the pertinent biological distribution 
of these species. Furthermore, our biological sampling may also 
be problematic. These data posed statistical difficulties, with an 

inherently high degree of correlation between explanatory vari-
ables, in addition to the standard difficulties associated with 
modeling count data. We address this using principal compo-
nent analysis,50 but we lose interpretability with this approach.

We attempted to describe the patterns of abundance across 
a large area with synchronous, short term sampling of the egg 
stage of container Aedes. This presented a number of advan-
tages and disadvantages. Ovitrapping puts minimal training 
expectations on public health, environmental health, or other 
municipal employees, allowing them to add the collection into 
their routine work.2 The desiccation resistance of eggs allows 
them to be shipped to central receiving locations, hatched, and 
identified by experts.2,13 With some coordination, this allowed 
us to sample from 327 sites within a 2-week period. However, 
egg counts over a single trapping period present the statistical 
difficulties of fitting a negative binomial model with inflation 
of cups not having any eggs. In spite of the large sample size, 
the structure of the data limited the strength of our inference. 
Furthermore, egg counts may not strongly correlate with adult 
abundance, so inferring risk of pathogen transmission may be 
problematic from these data.32 This deficit might be addressed 

Table 5. Summary results for models using principal components (PCs) derived from LiDAR variables, NLCD variables, and combined LIDAR & 
NLCD variables, including the PCs retained using the broken stick method, the PCs that were statistically significant, and the pseudo R2. Variable 
loadings available in supplementary materials.

MODEL SIgNIFICANT PCS PSEUDO R2

LIDAR models: 13 principal components

Egg abundance PC 2 (p = .0269); PC 5 (p < .0010); PC 7 (p = .0340) 0.0082

A. albopictus abundance PC 2 (p = .0315); PC 5 (p < .0010) 0.0094

A. triseriatus abundance PC 13 (p = .0427) 0.0504

A. albopictus presence PC 6 (p = .0147); PC 13 (p = .248) 0.0628

A. triseriatus presence PC 1 (p < .0010); PC 3 (p = .0233); PC 6 (p = .0043) 0.2598

NLCD models: 14 principal components

Egg abundance PC 5 (p = .0020); PC 9 (p = .0196); PC 11 (p = .0247) 0.0096

A. albopictus abundance PC 5 (p = .0115); PC 9 (p = .0024);PC 11 (p = .0148) 0.0134

A. triseriatus abundance PC 5 (p = .0098); PC 8 (p = .0264); PC 10 (p = .0380) 0.0417

A. albopictus presence None 0.0426

A. triseriatus presence PC 1 (p = .0409); PC 2 (p = .0489) 0.2379

Combined LiDAR & NLCD models: 27 principal components

Egg abundance PC 3 (p = .0136); PC 5 (p = .0057); PC 6 (p = .0061); PC 9 (p < .0010); PC 10 
(p = .0436); PC 14 (p = .0196); PC 15 (p = .0208); PC 16 (p = .0029); PC 24 (p = .0185)

0.0187

A. albopictus abundance PC 3 (p = .0010); PC 5 (p = .0033); PC 9 (p < .0010), PC 10 (p = .0065);
PC 14 (p = .0186); PC 15 (p = .0215); PC 16 (p = .0059)

0.0239

A. triseriatus abundance PC 2 (p = .0173); PC 3 (p = .0087); PC 4 (p = .0273); PC 9 (p = .0278); PC 11 
(p = .0107); PC 12 (p = .0303); PC 13 (p = .0431); PC 15 (p = .0187)

0.0573

A. albopictus presence PC 18 (p = .0124), PC 19 (p = .0027) 0.1227

A. triseriatus presence PC 22 (p = .0440) 0.4364
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by season long ovitrapping13 or trapping host-seeking or egg-
laying adults. Targeting adult mosquitoes is one step closer to a 
public health outcome (eg, biting abundance or pathogen 
infection rates), but would likely require repeated sampling to 
properly characterize the mosquito population at a given loca-
tion and may still lack predictability.51 Finally, we did not assess 
the degree to which county cooperators were able to follow 
instructions, so we cannot be sure of the consistency in trap 
placement across counties. This may confound the biological 
differences between counties with the implementation of the 
surveillance program, and county level differences should be 
interpreted with caution.

However, as a general conclusion neither of these data 
sources explained much variation in egg counts. LIDAR data 
still has tremendous promise in modeling mosquito distribu-
tions, but there will also be a need for appropriate, robust sam-
pling of mosquitoes. Furthermore, the LIDAR data itself, 
provided by, in this case, the state of North Carolina, can be 
improved with better processing and improved data capture 
technology. The ultimate goal of making accurate predictions 
of container Aedes densities via remotely sensed data remains 
elusive, but is a worthwhile pursuit.
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