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In natural environments, wild animals seldom experience ful-
fillment of all their biotic and abiotic requirements and are rou-
tinely exposed to a variety of environmental stressors. To 
combat these stressors, they have evolved highly successful 
strategies.1,2 Much of the field of stress biology has focused on 
multiple physiological changes of test organisms to reveal such 
strategies that enable them to survive under stressful environ-
ments. It is becoming apparent that various cellular and molec-
ular mechanisms essential for stress resistance and tolerance 
occur in organisms. A representative example of the research is 
the finding that heat shock proteins (Hsps) are conserved in a 
wide variety of organisms not only in the ways they are induced 
by stress but also in their primary structures.3,4 A prolonged 
production of unfolded or misfolded proteins triggers the 
expression of Hsps, which represents an essential cellular strat-
egy in all organisms to deal with stress conditions such as high 
temperature.5,6 Despite substantial attention to stress resist-
ance mechanisms, the processes of the recovery phase after 
stress have not been actively explored yet. It is therefore poorly 
understood whether animals possess a specific mechanism to 
recover from the damage done by environmental stresses.

We recently investigated the effects of acute heat stress on 
feeding activities and body weights of Drosophila melanogaster 
larvae of the y w strain during the poststress period to test our 
hypothesis that animals possess systemic mechanisms to cope 
with and survive the damage caused by environmental stress-
ors.7 Feeding rates of Drosophila larvae were shown to decrease 
soon after the stress at 35°C for 1 hour, which caused reduction 
in body weight 2 hours after the stress. Thereafter, feeding 

activities increased to higher levels compared with control lar-
vae at 3 hours after the heat stress. This enhanced feeding 
action led to weight restoration by around 4 hours after heat 
stress. Those observations enabled us to surmise that Drosophila 
larvae possess a compensational recovery mechanism during 
poststress periods.

We examined the mechanism by which animals increase 
their feeding activity after the stress treatment (at 35°C for 
1 hour). It is generally known that taste neurons expressing 
gustatory receptor genes (Grs) in insect gustatory organs detect 
tastants by direct interactions between Grs and ligands.8,9 We 
expected that expression levels of Grs in mouths would be 
changed before and after the heat stress, which affects larval 
feeding activities. The results showed that expression of all 
sweet taste Grs such as Gr5a, Gr64a, Gr64f, and Gr43a was 
elevated at around 4 hours after the heat stress. By contrast, 
expression of bitter taste Grs such as Gr66a and Gr33a was 
depressed after the heat stress (Figure 1). No change was 
observed in expression of a nontypical taste Gr, Gr68a, sensing 
acoustic signals after the heat treatment10 (Figure 1). Similar 
changes in expression levels of sweet taste Gr5a and bitter taste 
Gr66a genes were recorded in the mouths of test larvae after 
cold-stress treatment 4°C for 12 hours. We interpreted these 
results as an indication that enhanced expression of sweet taste 
Grs and depressed expression of bitter taste Grs would contrib-
ute to the increased feeding activities of Drosophila larvae.

Although we have not examined how expression of those 
Grs is controlled during the poststress period, we might take 
some hints from prior reports on starvation.11 It is undoubted 
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that starved animals have increased appetite; at that time, they 
must become less selective in their food choices. Increasing 
their sweet taste sensitivity enhances their appetite.12,13 In 
Drosophila, it has been reported that hunger elevates gustatory 
sensitivity to sweet, in part, via enhanced dopamine release in 
Gr5a-expressing neurons, which rises calcium responses to Gr 
activation.14,15 Hunger also reduces sensitivity to inedible and 
toxic bitter compounds. It is possible that the upregulated 
sweet taste Gr expression and downregulated bitter taste Gr 
expression concomitantly occur in the gustatory organs of 
starved animals. We speculate that sugar-sensing neurons with 
increased sweet taste Gr expression and bitter-sensing neurons 
with decreased bitter taste Gr expression are, respectively, acti-
vated and inactivated via dopaminergic regulation in Drosophila 
larvae during the poststress phase just as in starved larvae.

Quantitative analysis of protein and messenger RNA spe-
cies in the mouths of Drosophila larvae showed elevated expres-
sion of tropomyosin and ATP (adenosine triphosphate) 
synthase β subunit 3 to 5 hours after heat stress. In insects, 
feeding responses are physically controlled by synchronous 
muscle movement in which one nerve excitation leads to one 
muscle contraction. The muscle contraction unit structure is 
extremely conserved within the animal kingdom, together with 
a similar conservation of the major myofibrillar proteins chiefly 
consisted of actin, myosin, troponin, and tropomyosin.16 
Muscle tension is caused by interaction of myosin crossbridges 
on thick filaments with actin in thin filaments. Tropomyosin 
directly interacts with both actin and myosin and plays a piv-
otal role in regulating the actin-myosin interaction.17 Therefore, 
elevated expression of tropomyosin in the mouth parts must 
enable Drosophila larvae to move the mouth hooks for accelera-
tion of diet intake. Furthermore, enhanced expression of the 

ATP synthase β subunit would contribute to supplying ATP 
more efficiently because it has been reported that the ATP syn-
thase β subunit serves as a key component in ATP synthesis in 
rat pancreatic β cells.18,19 Therefore, it is reasonable to assume 
that both enhanced expressions of tropomyosin and ATP syn-
thase β subunit are essential for Drosophila larvae to accelerate 
the diet intake by speedily moving the mouth hooks (Figure 2).

In summary, our recent study supported our hypothesis that 
insects have evolved a systemic mechanism that promotes their 
recovery from the damage done by stressors during poststress 
periods. The 2 new findings mentioned above, which are inter-
esting in terms of physiological aspects, allow us to propose that 
this recovery system is composed of multiple functional compo-
nents. First, we found the elevated taste-sensing capacities in 
test larvae after heat stress. Upregulation of sweet taste Gr 
expression and concomitant downregulation of bitter taste Gr 
expression during the accelerated feeding periods led us to pro-
pose that insect feeding activities would be controlled by expres-
sion patterns of sweet and bitter taste Gr genes. Although 
starvation has been found to facilitate odor representation in 
odor receptor–expressing neurons that process olfactory input,20 
it has not been reported any Gr expression changes in starved 
Drosophila larvae. Therefore, this must be the first observation 
implying that population of both sweet and bitter taste Grs in 
the mouths directly or indirectly controls feeding activities of 
insects. Second, we found the enhanced mouth movement abil-
ity of Drosophila larvae after heat stress. This is due to elevated 
expression of the mouth myofibrillar protein, tropomyosin, and 
the key enzyme in ATP synthesis, ATP synthase β subunit. Our 
data suggest that enhancement of feeding activity during 

Figure 1. Tendency curves of sweet taste, bitter taste, and nontypical 

taste Gr expression changes after heat stress at 35°C for 1 hour. Figure 2. Graphic summary showing upregulated and downregulated 

expression of genes in the mouth part of Drosophila larvae after heat 

stress at 35°C for 1 hour.
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poststress periods would be supported by supplied mouth mus-
cle fiber component together with the fuel ATP.

The fact that insects have evolved such a complicated and 
highly elaborate system is regarded as a testament to the impor-
tance of the mechanisms that overcome the damages caused by 
stressors. If the stress-induced damages significantly retard lar-
val growth rates, their reproductive maturation and the syn-
chronized emergence of matured male and female adults would 
be affected. Given that this is applied to animals with short life 
spans such as insects, it is reasonable to assume that the recovery 
mechanism characterized in this study crucially contributes to 
preventing their population from decreasing.
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