
Harmonizing Goals for Agricultural Intensification and
Human Health Protection in Sub-Saharan Africa

Authors: Trimmer, John T., Bauza, Valerie, Byrne, Diana M., Lardizabal,
Amanda, and Guest, Jeremy S.

Source: Tropical Conservation Science, 10(1)

Published By: SAGE Publishing

URL: https://doi.org/10.1177/1940082917720666

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://complete.bioone.org/journals/Tropical-Conservation-Science on 18 Oct 2024
Terms of Use: https://complete.bioone.org/terms-of-use



Special Issue: Commercial Agriculture in Tropical Environments

Harmonizing Goals for Agricultural
Intensification and Human Health
Protection in Sub-Saharan Africa
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Amanda Lardizabal1, and Jeremy S. Guest1

Abstract

Increased agricultural production will be necessary to feed rapidly growing populations in sub-Saharan Africa, where many

households currently practice low-input, subsistence farming. Efforts to expand food production will likely include agricul-

tural intensification to enhance productivity of existing cropland, and holistic frameworks are needed to quantitatively

evaluate trade-offs and synergies between intensification and other dimensions of development. Beyond well-documented

interactions with environmental and economic issues, intensification’s complex relationship with human health should take a

position of primary importance in any framework designed to advance food security. While intensification can lead to

improvements in nutritional status, neglecting sources of potential adverse health impacts, including water source contam-

ination and direct contact with agricultural inputs or environmental pathogens, may undermine prospective gains.

Harmonizing goals will require interdisciplinary teams applying frameworks that integrate tools such as quantitative risk

assessment, environmental life cycle assessment, and economic models to comprehensively evaluate potentially dissimilar

strategies across common metrics while accounting for interdependencies and uncertainties. With local implementation

partners, these teams will be well-equipped to develop holistic interventions that effectively promote food security and

protect human health while considering local constraints and opportunities across multiple dimensions of development.
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Placing Agricultural Intensification Within a
Broader Framework

To feed the growing global population, current agricul-
tural production must double by 2050 (Godfray et al.,
2010). Increased production will be particularly crucial
in sub-Saharan Africa (SSA), where populations are pro-
jected to grow from 1.0 billion in 2017 to 1.9 to 2.3 billion
in 2050 (United Nations, 2015), and where approximately
218 million people are currently undernourished
(Food and Agriculture Organization of the United
Nations, 2015) with increased risk of morbidity and mor-
tality (Bain et al., 2013; de Onis & Branca, 2016). For
example, among Ghanaian children younger than 5 years,
23% were stunted and 57% were afflicted with anemia
in 2011 (United States Agency for International
Development, 2014). The poorest households in SSA
typically rely on smallholder farmers, themselves

hovering precariously on the threshold of food insecurity,
who practice subsistence agriculture characterized by low
chemical inputs and high labor requirements (Frelat
et al., 2016; Goldsmith, 2017; van Ittersum et al., 2016;
Tscharntke et al., 2012). Considering agriculture already
represents the largest land use on the planet (Foley et al.,
2011), one plausible path to increasing food production
involves agricultural intensification (Palm et al., 2017;
Spera, 2017), which enhances productivity of existing
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cropland through increased cropping intensity, irrigation,
fertilizer and pesticide use, and monoculture (Foley et al.,
2011; Matson, Parton, Power, & Swift, 1997; van
Ittersum et al., 2016).

Achieving the greatest benefits through agricultural
intensification requires considering its interactions with
other dimensions of development (Garnett et al., 2013).
Perhaps the most well-established connections concern its
negative environmental impacts, including greenhouse
gas emissions, water scarcity due to irrigation demands
and climate change, soil erosion, pesticide resistance, and
highly altered nitrogen and phosphorus cycling (Alliance
for a Green Revolution, 2014; Foley et al., 2011; Matson
et al., 1997; Kassie, Teklewold, Jaleta, Marenya, &
Erenstein, 2015; Steffen et al., 2015; Tilman, Cassman,
Matson, Naylor, & Polasky, 2002; West et al., 2014),
suggesting that any agricultural transition should focus
on resource efficiency and conservation along with
improved yields (Mueller et al., 2012; van Ittersum
et al., 2016). From an economic standpoint, offering
households greater opportunities to diversify and safe-
guard their livelihoods through improved market
access, off-farm employment, and rural infrastructure
may be at least as important as agricultural intensifica-
tion in reducing rural poverty (Frelat et al., 2016;
Godfray et al., 2010; Rosegrant & Cline, 2003; van
Ittersum et al., 2016). Beyond these considerations, the
relationship between agricultural intensification and
human health should take a position of primary impor-
tance in any framework designed to advance food secur-
ity. While substantial improvements in nutrition, health
status, and economic well-being could be achieved
through intensification, neglecting sources of potential
adverse health impacts could create cycles that undermine
prospective health gains.

Elucidating Connections Between Human Health
and Agricultural Intensification

While agricultural intensification has the potential to
contribute to increased food security and improved
health outcomes, it can also open various risk pathways
that may compromise human health in other ways. For
example, one aspect of intensification involves farmers
using greater quantities and application rates of pesti-
cides, but many widely-used pesticides are known to
have negative health effects, both acute (e.g., enzyme
inhibition causing vomiting, diarrhea, or respiratory fail-
ure) and chronic (e.g., endocrine disruption, neuropsy-
chiatric impairment, heart and liver damage, and
multiple cancers; Swiss Federal Institute of Aquatic
Science and Technology [EAWAG], 2016). Moreover,
the most hazardous pesticides, banned in many high-
income countries, continue to be stockpiled and circu-
lated in SSA, where workers who may have limited

access to protective equipment also may not be informed
of proper handling procedures or health impacts
(EAWAG, 2016; Jepson et al., 2014; Sheahan, Barrett,
& Goldvale, 2017). Pesticide exposure can occur through
numerous pathways, including through consuming
foods retaining pesticide residues and drinking water con-
taminated by agricultural runoff (Akoto, Andoh,
Darko, Eshun, & Osei-Fosu, 2013; Akoto, Gavor,
Appah, & Apau, 2015; Bempah, Donkor, Yeboah,
Dubey, & Osei-Fosu, 2011; Fosu-Mensah, Okoffo,
Darko, & Gordon, 2016). For farmers and their families
in SSA, the highest risks may come from direct contact or
inhalation during pesticide application, mixing, and
in-home storage, due to improper handling and insuffi-
cient protective equipment (EAWAG, 2016; Jepson et al.,
2014).

Increased fertilizer application can lead to another set
of health risks, although their severity likely depends on
local soil conditions and nutrient retention (Neill et al.,
2017; Palm et al., 2017). Along with increased eutrophi-
cation potential (Smith, Tilman, & Nekola, 1999), surface
water or groundwater sources contaminated with agricul-
tural runoff or leachate can exhibit elevated nitrate and
nitrite concentrations (Matson et al., 1997; Tilman, 1999),
which are connected with methemoglobinemia (blue baby
syndrome; Fewtrell, 2004; Sadler et al., 2016). Possible
connections with birth defects and various cancers have
also been reported (Brender et al., 2013; Sadler et al.,
2016; Ward et al., 2005), although these links remain
uncertain and have not been incorporated into interna-
tional drinking water guidelines (World Health
Organization, 2011). Furthermore, if animal manure or
human waste are used as supplementary nutrient sources,
the risk of pathogenic exposure through direct contact or
drinking water contamination may be significant (Gerba
& Smith, 2005; Tyrrel & Quinton, 2003).

Pathogenic exposure and infection, while not always
directly related to agriculture, can undermine the benefits
of increased food availability by affecting human nutrient
absorption. Enteric infections, including diarrheal dis-
eases, soil-transmitted helminths, and environmental
enteric dysfunction (EED), can reduce intestinal absorp-
tion and divert nutrients away from growth to immune
response, contributing to a cycle in which infection causes
worsened nutritional status and leading to greater sus-
ceptibility for further infection (de Onis & Branca,
2016; Guerrant, Oriá, Moore, Oriá, & Lima, 2008;
Korpe & Petri, 2012). Acute exposure to infected feces
can cause diarrheal and soil-transmitted helminth infec-
tions, while chronic fecal pathogen exposure is hypothe-
sized to be the primary cause of EED (Korpe & Petri,
2012; Trehan, Kelly, Shaikh, & Manary, 2016). Exposure
to environmental chemicals, including pesticides, may
also contribute to EED (Mapesa, Maxwell, & Ryan,
2016). Enteric infections that reduce nutrient absorption
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and impair immune function may play a substantial role
in malnutrition, as gold standard nutrition interventions
are estimated to reduce child stunting by only one third
(Bhutta et al., 2008). Therefore, reducing enteric infec-
tions through water, sanitation, and hygiene (WASH)
interventions may enable greater realization of the nutri-
tional benefits of increased food security.

Harmonizing Goals and Moving Toward Holistic
Interventions

To achieve lasting and consequential gains in nutritional
security, efforts toward agricultural intensification should
account for interactions with health and other-related
dimensions of development (e.g., water and sanitation,
education, energy; Sanchez, Denning, & Nziguheba,
2009; Wallington & Cai, 2017). In this effort, planners
must identify and understand diverse, locally relevant,
and often uncertain variables and decisions, such as
those related to hydrology, climate, local soil quality,
chemical storage and application practices, the types of
fertilizers and pesticides available, knowledge and applic-
ability of organic farming practices, and water sources
(Godfray et al., 2010; Michelson, 2017; Mueller et al.,
2012). Harmonizing goals for improved human health
and increased agricultural productivity constitute a core
aspect of this endeavor and can encompass a variety of
possibilities. Holistic approaches explicitly integrating
improved food security, nutrition, and WASH could gen-
erate synergistic benefits by breaking the cycle surround-
ing enteric infections. The results of current trials (Arnold
et al., 2013; Humphrey et al., 2015) testing nutrition and
WASH interventions’ individual and combined effects
may provide strong evidence for future integration
across these dimensions of development. In addition,
strategies already being explored to address the environ-
mental concerns of intensification could provide simulta-
neous human health protection. Techniques including
precision agriculture, reduced tillage, contour farming,
crop rotation, polyculture, agroforestry, and improved
farmer education on crop-specific nutrient requirements
and pesticide application have the potential to limit fer-
tilizer and pesticide use, reduce environmental contami-
nation, and improve crop resilience to climate change,
thereby lessening associated health risks (Godfray et al.,
2010; Goldsmith, 2017; Matson et al., 1997; Mueller
et al., 2012; Waldron et al., 2017).

Given the broad range and varied effects of possible
strategies, maximizing intended benefits and minimizing
unintended consequences require structured frameworks
capable of identifying and analyzing trade-offs and syner-
gies across dimensions of development (Wallington & Cai,
2017). For example, pesticide use is correlated with
improved agricultural output and income, but it can also
cause adverse health outcomes that lead to increased

health-care costs and time lost due to illness (Sheahan
et al., 2017). As another illustration, intensification may
reduce crop diversity on smallholder farms, potentially
diminishing dietary diversity and its nutritional benefits
(Jones, Shrinivas, & Bezner-Kerr, 2014; Pellegrini &
Tasciotti, 2014), although access to new and better mar-
kets may counteract these dietary losses (Sibhatu, Krishna,
& Qaim, 2015) and enhance food security and rural devel-
opment (Endres & Endres, 2017). Quantitative risk assess-
ment (QRA) frameworks (Haas, Rose, & Gerba, 2014),
applicable to chemical and microbial contaminants and
various exposure pathways, may be particularly appropri-
ate in ensuring that human health is protected. QRA pro-
vides a proactive approach capable of estimating the
effects of potential interventions and suggesting improve-
ments before any health hazards occur. Furthermore,
QRA can be integrated with other tools, such as environ-
mental life cycle assessment, to simultaneously evaluate
outcomes and consider trade-offs across multiple dimen-
sions of development (Kobayashi, Peters, Ashbolt, Shiels,
& Khan, 2015; Kobayashi, Peters, & Khan, 2015). Linking
QRA and life cycle assessment with economic models that
estimate altered labor availability, health-care expendi-
tures, and income from correlations with crop yields,
food security, and health status (Sheahan et al., 2017)
could lead to comprehensive frameworks able to compare
dissimilar interventions across common metrics, account-
ing for the interdependencies that connect agriculture,
environmental sustainability, economics, and health
(Brawn, 2017; Cohn, 2017; Waldron et al., 2017;
Wallington & Cai, 2017).

Any multifaceted framework or intervention must
additionally consider a wide array of social, political,
economic, and historical dimensions while accounting
for various spatial scales, value systems, local constraints,
and variabilities inherent in relevant variables and deci-
sions (Endres & Endres, 2017; Garnett et al., 2013;
Godfray et al., 2010; Palm et al., 2017; Sheahan et al.,
2017; Tilman et al., 2002; Waldron et al., 2017). Building
analytical models that allow for stochastic variables, ran-
domly generated simulations, stakeholder involvement,
and multicriteria decision analysis (Mendoza &
Martins, 2006) will be particularly useful in addressing
the uncertainties surrounding various parameters (e.g.,
health outcomes) and comprehensively evaluating con-
text-specific strategies with disparate aspects across mul-
tiple scenarios. This level of complexity suggests a
pressing need for dynamic interdisciplinary research
teams capable of thinking holistically to harmonize multi-
ple, qualitatively distinct goals. As evidenced by the con-
nections and risks outlined above, any such team focused
on improving agricultural productivity should include
environmental and health specialists, as well as experts
on complementary topics such as government policy,
market access and employment, rural infrastructure,
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sociology, and gender equity. With local implementation
partners (Palm et al., 2017), these diverse teams are well-
equipped to develop holistic interventions that promote
food security, protect health, and produce positive,
appropriate, and enduring change.
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