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Abstract: The terms bioaccumulation and bioconcentration refer to the uptake and build-up of chemicals that can occur in living 
organisms. Experimental measurement of bioconcentration is time-consuming and expensive, and is not feasible for a large number of 
chemicals of potential regulatory concern. A highly effective tool depending on a quantitative structure-property relationship (QSPR) 
can be utilized to describe the tendency of chemical concentration organisms represented by, the important ecotoxicological parameter, 
the logarithm of Bio Concentration Factor (log BCF) with molecular descriptors for a large set of non-ionic organic compounds. QSPR 
models were developed using multiple linear regression, partial least squares and neural networks analyses. Linear and non-linear 
QSPR models to predict log BCF of the compounds developed for the relevant descriptors. The results obtained offer good regression 
models having good prediction ability. The descriptors used in these models depend on the volume, connectivity, molar refractivity, 
surface tension and the presence of atoms accepting H-bonds.

Keywords: BCF, non-ionic organic compounds, structure property relationships (QSPR), partial least square (PLS), principal 
components artificial neural networks (PC-ANN)
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Introduction
Bioaccumulation is the process where the chemical 
concentration in an aquatic organism achieves a level 
exceeding that in the water, as a consequence of chem-
ical uptake through all means of chemical exposure 
(e.g. dietary absorption, transport across the respi-
ratory surface, dermal absorption, and  inhalation). 
 Bioconcentration is defined as the absorption of a 
chemical concentrations in an aquatic organism′s tis-
sues that is greater than that in the water as a result 
of exposure of the organism to a chemical concentra-
tion in the water via non-dietary routes. The extent to 
which a contaminant will concentrate in an organism 
is articulated as BCF which is the ratio of the chemi-
cal concentration in the organism (CB) and the water 
(Cw)1:

 BCF = CB /Cw (1)

Within a species, BCFs vary for different chemical 
compounds. The BCF of a chemical is the result of 
four processes: Absorption, Distribution, Metabolism 
and Excretion (ADME).2 Bioconcentration is usually 
derived under laboratory conditions where the  chemical 
is absorbed from the water via the respiratory surface 
and/or the skin only. Generally, the experimental mea-
surement of bioconcentration is time-consuming and 
expensive, and is not feasible for a large number of 
chemicals of potential regulatory concern. For this 
reason attention is turning to estimation of BCF val-
ues by QSPRs. BCF values can be estimated from the 
octanol/water partition coefficient (Kow) using QSPR 
models. In addition, Kow values, either experimentally 
determined or estimated, can be used directly to assess 
the potential for bioaccumulation.

QSPRs are usually observed between log BCF and 
log Kow. The majority of these are linear  regression 
models3–8 which give satisfactory results only for 
chemicals with log Kow , 6, while for highly hydro-
phobic chemicals (log Kow . 6), non-linear,9,10 
bilinear11,12 or polynomial13 relationships have been 
proposed and applied for more satisfactory BCF 
prediction/ estimation. Zhao et al14 performed a 
QSPR study on a large set of 473 compounds that 
was  created with ISIS BASE 2.5 SP2. Lu15 proposed 
models for the  prediction of BCF using connectivity 
indices and  comprising experimental BCF data in fish 
(at steady-state) for 239 non-ionic organic  compounds. 
This approach was applied by Gramatica and Papa16,17 

with the same data set previously modeled by Lu15 
using a large starting set of theoretical molecular 
descriptors and by  applying a genetic algorithm (GA) 
approach as the variable subset selection method to 
obtain multilinear regression models with few vari-
ables correlated with BCF. Fatemi et al18 reported a 
QSAR study on a set of 53 compounds using geomet-
ric, electronic and topological descriptors by artificial 
neural networks (ANN) to predict the value of log 
BCF for some compounds. Recently, a QSAR model 
for fish BCFs of 8 groups of compounds was devel-
oped employing partial least squares (PLS) regres-
sion, based on linear solvation energy relationship 
(LSER) theory and theoretical molecular structural 
descriptors.19–21

Khadikar et al22 reported QSAR study on the 
 estimation of bioconcentraction factor of polyhaloge-
nated biphenyls using a distanced-based index called 
Padmakar-Ivan index, abbreviated as PI. Incited by 
these results, we have used the molecular  descriptors 
used by Lu et al15 Gramatica and Papa16,17 and  Khadikar 
et al22 in addition to large set of other topological indi-
ces to model the BCF. It is worth to mention that, to 
our knowledge and to date, no attempt has been made 
to investigate neural network modeling using princi-
pal components for prediction of BCFs of the set of 
nonionic organic compounds.

Before discussing our results it is necessary 
to mention that both Lu et al15 and Gramatica and 
Papa in16,17 used the same data set of 238 compounds, 
while Khadikar et al22 used only 16 polyhalogenated 
biphenyls from the original set of 238 compounds 
reported by Lu et al.15 Furthermore, Gramatica and 
Papa16,17 did not verify the data and only deleted 
 acrolein from the original data set reported by 
Lu et al.15 In this contribution, we observed that 
9 compounds  (compounds: 210–215, 218, 220, and 
234) out of the larger set of 238 compounds need to 
be removed in order to obtain excellent models. The 
main reason for removing these 9 compounds is that 
the molecular descriptors used by us failed to estab-
lish structure-property relationship.

In view of the above, we used principal 
 components—artificial neural networks (PC-ANN) 
and PLS methods on the data set of 229 non-ionic 
compounds modeled by Lu et al.15 The proposed 
models were checked for their internal and external 
predictive power using cross validation parameters.
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experimental
software
Geometry Optimization was performed by  HyperChem 
(Version 7.0 Hypercube, Inc) at the AM1 level. Descrip-
tors were calculated using HyperChem and Dragon 
software.23 SPSS Software (version 13.0, SPSS, Inc.) 
was used for the simple multiple linear regression 
(MLR) analysis. PCA, ANN and PLS regression were 
performed in the MATLAB  (Version 7.0.1 (R14), 
Mathworks, Inc.) environment.

chemical data and descriptors
Compounds name and their BCFs are included in 
Table 1. Chemical structure of these compounds was 
obtained from HyperChem software and optimized 
on AM1 semi-empirical level. An AM1 optimization 
was chosen since it was developed and  parameterized 
for common organic structures. The Optimiza-
tion was preceded by the Polak-Rebiere algorithm 
to reach 0.01 root mean square gradient. In this 
study, 24 molecular descriptors including topologi-
cal, 2D-autocorrelation, GETAWAY, properties and 
 functional groups descriptors were calculated using 
HyperChem and Dragon software, see Abbreviations.

MLr analysis
MLR analysis using the method of maximum -R2 
with stepwise selection and elimination of variables24 
was employed to model the logarithm of the BCF (log 
BCF) relationships with different set of descriptors to 
select initial input models for the artificial neural net-
works algorithm (ANN).

Pc-Ann
Principal component analysis (PCA) and more spe-
cifically factor analysis (FA) groups together vari-
ables that are collinear to form a composite indicator 
capable of capturing as much of common information 
of those indicators as possible. Each factor reveals the 
set of variables having the highest association with 
it. The idea under this approach is to account for the 
highest possible variation in the indicators set using 
the smallest possible number of factors. Therefore, 
the index no longer depends upon the dimensionality 
of the dataset but it is rather based on the “statisti-
cal” dimensions of the data. Application of PCA on a 
descriptor data matrix results in a loading matrix con-
taining factors or principal components, which are 

orthogonal and therefore do not correlate with each 
other. We used these factors as the inputs of ANN 
instead of the original descriptors.

In contrast to MLR, the artificial neural networks 
(ANN) are capable of recognizing highly nonlinear 
relationships. The flexibility of ANN enables it to 
discover more complex relationships in experimen-
tal data, when it is compared with the traditional 
 statistical models. The PC-ANN was proposed by 
Gemperline25 to improve training speed and decrease 
the overall calibration error.

In this method, as a preliminary treatment, the 
input data (i.e. molecular descriptors) was normal-
ized so as to have zero mean and unity variance, 
and then were subjected to principal component 
analysis (PCA) before being introduced into the 
neural network. The most significant principal com-
ponents (PCs), which explain most of the variance 
in the original data (.95%), were selected, ranked 
according to decreasing Eigen-value and then used 
as ANN input.

It should be noted for each model obtained with 
MLR separate PC-ANN models were developed 
so that the input’s descriptors were the subsets 
selected by the stepwise MLR methods. In the case 
of each MLR model, a feed-forward neural network 
with back- propagation of error algorithm was con-
structed to model the activity structure relationships 
between the extracted PCs of the descriptors in one 
hand and the logarithm of BCF data of the non-ionic 
organic compounds in the other hand. More details 
about the model development in PC-ANN and the 
network architecture are explained.26–29 Over- fitting 
problem or poor generalization  capability hap-
pens when a neural network over-learns during the 
 training period. A too well-trained model may not 
perform well on unseen data set due to its lack of 
generalization capability. An approach to overcome 
this problem is the early stopping method in which 
the training process is concluded as soon as the 
overtraining signal appears. This approach requires 
the data set to be divided into three subsets: train-
ing, test and validation sets. The training and the 
validation sets are the norm in all model training 
processes. The test set is used to test the trend of the 
prediction accuracy of the model trained at some 
point of the training process. At later training stages, 
the validation error increases. This is the point when 
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Table 1. non-ionic organic compounds used in this study 
and their experimental log BcF values.

no. compound name Log BcF
1 1,2-Dichloroethane 0.30
2b Trichloromethane 0.78
3 1,1,2,2-Tetrachloroethane 0.90
4 Trichloroetheylene 1.59
5 1,1,1-Trichloroethane 0.95
6b Tetrachloroetyelene 1.74
7 Tetrachloromethane 1.48
8 Pentachloroethane 1.83
9 Hexachloroethane 2.92
10 1,1,2,3,4,4-Hexachloro-1, 

3-Butadiene
3.83

11 Benzene 0.64
12 Toulene 1.12
13b styrene 1.13
14 Ethylebenzene 1.19
15b o-Xylene 1.24
16 m-Xylene 1.27
17 p-Xylene 1.27
18 p-Methyle styrene 1.50
19 m-Methyle styrene 1.55
20 Isopropylebenzene 1.55
21 2-Phenyledodecane 2.65
22b Octachlorostyrene 4.52
23 napthalene 1.64
24 Acenaphtylene 2.58
25 Acenaphtalene 2.59
26 Biphenyle 2.64
27 Anthracene 2.83
28 2-Methylenapthalene 3.20
29b Fluorene 3.23
30 Phenanthrene 3.42
31 Benzo[a]pyrene 3.42
32b Pyrene 3.43
33 2-Methylephenanthrene 3.48
34 2-chlorophenanthrene 3.63
35 9-Methylanthracene 3.66
36 Benzo[a]anthracene 4.00
37b chlorobenzene 1.85
38 1,2-Dichlorobenzene 2.48
39 1,4-Dichlorobenzene 2.52
40 1,3-Dichlorobenzene 2.65
41 1,2,3-Trichlorobenzene 3.11
42b 1,2,4-Trichlorobenzene 3.26
43 1,2,3,5-Tetrachlorobenzene 3.36
44 1,3,5-Trichlorobenzene 3.38
45 1,2,4,5-Tetrachlorobenzene 3.76
46 1,2,3,4-Tetrachlorobenzene 3.77
47b Pentachlorobenzene 3.86
48 2,4,5-Trichlorotoulene 3.87
49 Hexachlorobenzene 4.26
50 Bromobenzene 1.70
51 1,3-Dibromobenzene 2.80

(Continued)

Table 1. (Continued)

no. compound name Log BcF
52b 1,2,3-Tribromobenzene 2.83
53 Hexabromobenzene 3.04
54 1,2-Dibromobenzene 3.10
55 1,2,4-Dibromobenzene 3.66
56b 1,2,4,5-Tetrabromobenzene 3.79
57 1,3,5-Tribromobenzene 3.85
58 Octachloronapthalene 3.44
59 1,4-Dichloronapthalene 3.56
60 2-Monochloronapthalene 3.63
61b 1,8-Dichloronapthalene 3.79
62 2,3-Dichloronapthalene 4.04
63 2,7-Dichloronapthalene 4.04
64 1,2,3,4-Tetrachloronapthalene 4.10
65 1,3,5,8-Tetrachloronapthalene 4.40
66b 1,3,7-Trichloronapthalene 4.43
67 1,3,5,7-Tetrachloronapthalene 4.53
68 4-chlorobipheyl 2.69
69 2,2′-Dichlorobiphenyl 3.26
70 4,4′-Dichlorobiphenyl 3.28
71b 2,2′,4,4′,6-Pentachlorobiphenyl 3.37
72 2,4′-Dichlorobiphenyl 3.55
73 2,4′,5-Trichlorobiphenyl 3.75
74 3,5-Dichlorobiphenyl 3.78
75 2,2′,6,6′-Tetrachlorobiphenyl 3.85
76b 3,3′,4,4′-Tetrachlorobiphenyl 3.90
77 2,2′,4,4′-Tetrachlorobiphenyl 4.02
78 2,4,5-Trichlorobiphenyl 4.02
79 2,2′,3,3′,4,4′,5,5′,6,6′- 

Decachlorobiphenyl
4.02

80 2,5-Dichlorobiphenyl 4.20
81b 2,2′,3,3′-Tetrachlorobiphenyl 4.23
82 2,3-Dichlorobiphenyl 4.25
83 2,2′,5-Trichlorobiphenyl 4.27
84 2,4,4′-Trichlorobiphenyl 4.63
85 2,3′,4′,5-Tetrachlorobiphenyl 4.77
86b 2,2′,4,4′,5,5′-Hexachlorobiphenyl 4.83
87 2,2′,3,5′-Tetrachlorobiphenyl 4.84
88 2,2′,4,5′-Tetrachlorobiphenyl 4.84
89 2,2′,5,5′-Tetrachlorobiphenyl 4.87
90 2,2′,4,4′,6,6′-Hexachlorobiphenyl 4.93
91b 2,2′,4,5-Tetrachlorobiphenyl 5.00
92 2,2′,3,3′,4,4′,5,5′- 

Octachlorobiphenyl
5.08

93 2,2′,3,4,5′-Pentachlorobiphenyl 5.38
94 2,2′,4,5,5′-Pentachlorobiphenyl 5.40
95 2,2′,3′,4,5-Pentaclorobiphenyl 5.43
96b 2,2′,3,3′,6,6′-Hexachlorobiphenyl 5.43
97 2,2′,3′,5,5′,6′-Hexachlorobiphenyl 5.54
98 2,2′,3,3′,4,4′,5,5′,6,- 

nonachlorobiphenyl
5.71

99 2,2′,3,3′,4,4′-Hexachlorobiphenyl 5.77
100 3,3′,4,4′,5′-Pentachlorobiphenyl 5.81
101b 2,2′,3,4,5,5′-Hexachlorobiphenyl 5.81

(Continued)
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Table 1. (Continued)

no. compound name Log BcF
102 2,2′,3,3′,5,5,6,6′- 

Octachlorobiphenyl
5.82

103 2,2′,3,4,4′,5,6′- 
Heptachlorobiphenyl

5.84

104 2,2′,3,4,4′,5′-Hexachlorobiphenyl 5.88
105 2,2′,3,3′,4′,5,5′,6- 

Octachlorobiphenyl
5.88

106b 2,2′,3,3′,4,4′,5,6- 
Octachlorobiphenyl

5.92

107 2,2′,3,4,5,5′,6′-Heptachlorobiphenyl 5.93
108 3,3′,4,4′,5,5′-Hexachlorobiphenyl 5.97
109 2,4,6-Tribromobiphenyl 3.93
110 2,2′,4,4′,6,6′-Hexabromobiphenyl 3.96
111b 4,4′-Dibromobiphenyl 4.19
112 2,2′,5,5′-Tetrabromobiphenyl 4.80
113 2,7-Dichlorodobenzo-p-dioxin 2.13
114 1,2,4-Trichlorodibenzo-p-dioxine 2.36
115 1,2,3,4-Tetrachlorodibenzo- 

p-dioxine
2.55

116 Octachlorodibenzo-p-dioxine 2.76
117b 2,8-Dichlorodibenzo-p-dioxine 2.82
118b 1,2,3,4,6,7,8- 

Heptachlorodibenzo-p-dioxine
3.16

119 1,2,3,4,7-Pentachlorodibenzo- 
p-dioxine

3.21

120 1,2,3,7-Tetrachlorodibenzo- 
p-dioxine

3.24

121 1,3,6,8-Tetrachlorodibenzo- 
p-dioxine

3.36

122 1,2,3,4,7,8-Hexachlorodibenzo- 
p-dioxine

3.54

123b Dibenzo(1,4)dioxine 3.85
124 2,3,7,8-Tetrachlorodibenzo- 

p-dioxine
4.06

125 1,2,3,7,8-Pentachlorodibenzo- 
p-dioxine

4.50

126 Benzo[b]furan 2.56
127 Octachlorodibenzofuran 2.94
128b Dibenzofuran 3.34
129 2,3,7,8-Tetrachlorodibenzofuran 3.53
130 1,2,3,4,6,7,8- 

Heptachlorodibenzofuran
3.62

131 2,3,4,7,8- 
Pentachlorodibenzofuran

4.03

132 4-cyanophenol 0.91
133b 2-Methylphenol 1.03
134 Phenol 1.24
135 3-chlorophenol 1.25
136 2,4-Dichlorophenol 1.50
137 4-Bromophenol 1.56
138b p-sec-Butylphenol 1.57
139 Hydroquinone 1.60
140 2,6-Dibromo-4-cyanophenol 1.67

(Continued)

Table 1. (Continued)

no. compound name Log BcF
141 4,6-Dichloroguaiacol 1.74
142 4-t-Butyylphenol 1.86
143b 4,5,6-Trichloroguaiacol 1.97
144 4,5-Dichloroguaiacol 2.03
145 2,3,5,6-Tetrachlorophenol 2.15
146b 2,4-Dimethylphenol 2.18
147 2-chlorophenol 2.33
148 3,4,5-Trichloroguaiacol 2.41
149 2,4,6-Trichlorophenol 2.43
150 p-nonyl phenol 2.45
151 Tetrachloroguaiacol 2.71
152b 2,4,6-Tribromophenol 2.71
153 Pentachlorophenol 2.74
154b p-Dodecyl phenol 3.78
155 4-chloroaniline 0.23
156 3-chloroaniline 0.34
157 Aniline 0.41
158b 2-chloroaniline 0.57
159 Diphenylamine 1.48
160 3,4-Dichloroaniline 1.48
161 2,4-Dichloroaniline 1.98
162 n-Phenyl-2-napthylamine 2.17
163b 2,3,4-Trichloroaniline 2.31
164 2,4,5-Trichloroanaline 2.61
165 2,3,4,5-Tetrachloroaniline 2.69
166 3,4,5-Trichloroaniline 2.70
167 2,4,6-Trichloroaniline 2.73
168b 3,3′-Dichlorobenzidine 2.79
169 2,3,5,6-Tetrachloroaniline 3.03
170 Pentachloroaniline 3.17
171 Ethyl acetate 1.48
172 Dimethyl phtalate 1.76
173b Diethyl phtalate 2.07
174 Bis(2-ethylehexyl)phalate 2.34
175b Deltamethrin 2.66
176 Fenalerate 2.79
177 Benzyl butyl phatalate 2.89
178 cypermethrine 2.91
179a 2-t-Butoxy ethanol -0.22
180 t-Butyl methyl ether 0.18
181a t-Butyl isopropylether 0.76
182 Bis(2-chloroethyl)ether 1.04
183 2,4,6-Trichloroanisole 2.94
184 2,4,6-Tribromoanisole 2.94
185 Methoxychlore 3.10
186b 2,4,5-Trichlorodiphenyle ether 4.18
187 3,3′,4,4′-Tetrachlorodiphenyl ether 4.51
188 2-Methyl-4,6-dinitrophenol 0.16
189 4-nitroaniline 0.64
190 2-nitroaniline 0.91
191b 3-nitroaniline 0.92
192 3-nitrophenol 1.40
193 2-nitrophenol 1.60

(Continued)
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the model should cease to be trained to overcome 
the over-fitting problem. To achieve this purpose, 
the extracted PCs for each MLR model were clas-
sified into training set (60%), validation set (20%) 
and external test set (20%). Then, the training and 
validation sets were used to optimize the network 
performance. The regression between the network 
output and the activity was calculated for the three 
sets individually. The training function “trainscg” 
in MATLAB was used to train the network. To find 
models with lower errors, the ANN algorithm was 
run many times, each time run with different geom-

etry and/or initial weights. The different ANN runs 
were carried out in a systematic way so that the 
obtained models have low training and testing root-
mean-square errors (i.e. low fitness).

Partial least squares (PLs) analysis
PLS is a method for building regression models 
on the latent variable (LV) decomposition relating 
two blocks, matrices X and Y, which contain the 
independent and dependent variables, respectively. 
These matrices can be simultaneously decom-
posed into a sum of LV′s. In this procedure, it is 
necessary to find the best number of LV′s, which 
is normally performed by using cross-validation, 
based on  determination of minimum prediction 
error. Leave-one-out cross  validation was carried 
out using the NIPALS  algorithm. Applications of 
PLS have been discussed by several workers.30,31 
For model validation, the dataset is required to be 
divided into training set for building the QSAR 
model and external test set for investigating its pre-
dictive ability. The most important indicators of the 
QSAR model superiority are the statistical param-
eters of the external test set. In a similar manner to 
our previous work,32 the data was divided into 80% 
training set and 20% test set. To have comparable 
data with that used in the ANN analysis, the outli-
ers and test set compounds are kept the same as in 
the PC-ANN analysis.

Results and Discussion
MLr analysis
Table 2 records the regression models suggested from 
MLR analyses and their correlation coefficients (R). 
The number of descriptors in these models is varied 
between 3 and 15. The highest correlation  coefficient 
obtained is 0.923 for a regression model with 
15 descriptors (model 15) whereas the R2

CV (Q2) 
 values shown in Figure 1 suggest that model 4 can be 
the optimal.

The regression equation for models 4 is:

log BCF = - 18.551 (±1.508) + 1.681 (±0.075) V1M
D,deg

-  0.535 (±0.030) nHAcc + 16.806  
(±1.561) MATS2m

- 0.417 (±0.084) GATS2e 

(2)

Table 1. (Continued)

no. compound name Log BcF
194 2,4,5-Trichloronitrobenzene 1.84
195 3-chloronitrobenzene 1.89
196b 2,3,4,5-Tetrachloronitrobenzene 1.89
197 4-chloronitrobenzene 2.00
198 2,5-Dichloronitrobenzene 2.05
199 2,4-Dichloronitrobenzen 2.07
200 3,4-Dichloronitrobenzene 2.07
201b 2-chloronitrobenzene 2.10
202 2,3-Dichloronitrobenzene 2.16
203 2,3,4-Trichloronitrobenzene 2.20
204 3,5-Dichloronitrobenzene 2.23
205 Pentachloronitrobenzene 2.40
206b 2,4,6-Trichloronitrobenzene 2.88
207 chloronitrofen 3.04
208 2,3,5,6-Tetrachloronitrobenzene 3.20
209 Phenthoate 1.56
210 Fenthion 2.68
211b EPn 3.05
212 Leptophos 3.78
213 carbaryl 1.22
214 Molinate 1.41
215 BPMc 1.41
216 Acrylonitrile 1.68
217 Thiobencarb 2.03
218 Acridine 2.61
219b Lindane 2.84
220 Β-HcH 2.86
221 α-HcH 2.95
222 Hexachlorocyclopentadiene 3.09
223 Xanthene 3.62
224b Dieldrine 3.71
225 Heptachlore 4.14
226 o-p′-DDT 4.57
227 chlordane 4.58
228 p,p-DDE 4.71
229 p,p′-DDT 4.84

notes: acompounds were considered as outliers; bCompound classified 
in the test set.
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Table 2. Correlation coefficient for MLR, PLS and ANN models 3–15 and cross validation parameters obtained from PLs 
and Ann analysis.

M#a Descriptors MLR pc-Ann pLs
R se #pcs Rc R2

cV
c Rp Rsep% LV Rc R2

cV
c Rp Rsep%

3 V1M
D,deg, nHAcc,  

MATs2m
0.895 0.619 3 0.906 0.820 0.876 0.851 3 0.899 0.764 0.878 0.192

4 V1M
D,deg, nHAcc,  

MATs2m,  
gATs2e

0.906 0.589 4 0.915 0.837 0.877 0.847 4 0.913 0.800 0.899 0.174

5 V1M
D,deg, nHAcc,  

MATs2m,  
gATs2e, 2Xv

0.910 0.5800 4 0.891 0.793 0.818 1.026 4 0.914 0.804 0.887 0.184

6 V1M
D,deg, nHAcc,  

MATs2m,  
gATs2e, 2Xv, sT

0.912 0.574 5 0.898 0.806 0.822 1.023 5 0.917 0.810 0.907 0.168

7 V1M
D,deg, nHAcc,  

MATs2m, gATs2e, 
2Xv, sT, JhetZ

0.914 0.568 5 0.902 0.813 0.810 1.052 4 0.918 0.814 0.892 0.180

8 V1M
D,deg, nHAcc,  

MATs2m,  
gATs2e, 2Xv, sT, 
JhetZ, Jhetv

0.916 0.565 5 0.902 0.813 0.808 1.060 6 0.919 0.815 0.895 0.177

9 V1M
D,deg, nHAcc,  

MATs2m, gATs2e,  
2Xv, sT, JhetZ,  
Jhetv, Mr

0.917 0.561 5 0.900 0.810 0.822 1.015 5 0.921 0.821 0.912 0.163

10 V1M
D,deg, nHAcc,  

MATs2m, gATs2e,  
X2v, sT, JhetZ,  
Jhetv, Mr, pl

0.918 0.559 4 0.886 0.784 0.804 1.052 5 0.921 0.822 0.900 0.174

11 V1M
D,deg, nHAcc,  

MATs2m, gATs2e,  
2Xv, sT, JhetZ, Jhetv,  
Mr, pl, 0Xv

0.919 0.557 4 0.887 0.786 0.810 1.031 4 0.921 0.822 0.892 0.180

12 V1M
D,deg, nHAcc,  

MATs2m,  
gATs2e, 2Xv, sT, 
JhetZ, Jhetv,  
Mr, pl, 0Xv, H6p

0.920 0.556 5 0.896 0.802 0.813 1.028 7 0.922 0.824 0.902 0.172

13 V1M
D,deg, nHAcc,  

MATs2m, gATs2e,  
2Xv, sT, JhetZ, Jhetv,  
Mr, pl, 0Xv, H6p,  
BAc

0.921 0.555 5 0.896 0.802 0.815 1.032 8 0.923 0.827 0.888 0.184

14 V1M
D,deg, nHAcc,  

MATs2m,  
gATs2e, 2Xv, sT, 
JhetZ, Jhetv, Mr, 
 pl, 0Xv, H6p,  
BAc, J

0.922 0.552 5 0.903 0.814 0.848 0.931 6 0.924 0.829 0.884 0.187

15 V1M
D,deg, nHAcc,  

MATs2m, gATs2e,  
2Xv, sT, JhetZ, Jhetv,  
Mr, pl, 0Xv, H6p,  
BAc, J, Pc

0.923 0.552 4 0.893 0.796 0.839 0.954 5 0.924 0.830 0.879 0.192

aM# refers to model number; crefers for calibration set; Prefers for prediction set.
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Eq. (2) shows that log BCF can be modeled by 2D 
autocorrelation descriptors (MATS2 m and GATS2e), 
the information indices descriptors (V1M

D,deg) and the 
functional group descriptor (nHAccc). 2D autocor-
rekation descriptors are molecular descriptors calcu-
lated from molecular graph by summing the products 
of atom weights of the terminal atoms of all the paths 
of the considered path length (the lag). 2D autocorrela-
tions by Moran (MATS) and Geary (GATS) algorithms 
are calculated from lag 1 to lag 8 for 4 different weight-
ing schemes. The information indices descriptors are 
molecular descriptors calculated as information con-
tent of molecules, based on the calculation of equiva-
lence classes from the molecular graph. Eq. (2) shows 
that the most significant descriptor is the Moran auto-
correlation of a topological structure -lag2/weighted 
by atomic mass (MATS2 m) which is among the 2D 
autocorrelation descriptors. Furthermore, eq. (2) shows 
that log BCF increases with increasing MATS2M and 
V1M

D,deg and decreases with increasing Geary autocorre-
lation -lag2/weighted by atomic Sanderson electrone-
gativities (GATS2e) as well as the number of acceptor 
atoms for H-bonds (nHAcc) values.

Nevertheless, the number of descriptors is 
small according to the rule of the thumb suggested 
by Tute.33 Partial least squares (PLS) and artificial 
neural networks algorithm (ANN) were used for 
further investigation of the linear and nonlinear 
relationships in the obtained regression models.

Pc-Ann
The inputs of the ANN were the subset of the 
 descriptors used in different MLR models (Table 2 
and S1 in the supplementary material). The correla-
tion data matrix for these descriptors is represented in 
supplementary material (Table S2). As it is observed, 

some descriptors represent high degree of collinearity. 
 Collinear descriptors add redundancy to the input data 
matrix and therefore the performances of the models 
obtained by using these descriptors will be degraded. 
Therefore, we used principal components as the inputs 
of ANN instead of the original descriptors.

Firstly, PCA was used to classify the molecules into 
training, validation and prediction sets. Performing PCA 
overall the data set of 229 compounds and 24 descrip-
tors and plotting the first and second  principal, shows 
that compounds 179 and 181 are outliers, see  Figure 2. 
In other words, molecules 179 and 181 behave dif-
ferently from other molecules with respect to both 
molecular structure (descriptors) and the logarithm of 
BCF (log BCF). Therefore, these molecules were not 
used in the future analysis. According to the pattern 
of the distribution of the data in factor spaces (Fig. 2) 
the training, validation and prediction molecules were 
selected homogenously, so that molecules in different 
zones of Figure 2 included to all three subsets. After 
removing the outliers and subjecting the data for the 
remaining 227 compounds to the preliminary treat-
ment mentioned above, the classified data was used 
as an input for the ANN.

In this study, a three–layered feed–forward ANN 
model with back–propagation learning algorithm34 
was employed. At the first, the nonlinear relationship 
between the subset of descriptors selected by step-
wise selection-based MLR (Table 2) and log BCF 
was preceded by PC-ANN models with similar struc-
ture. The number of hidden layer’s nodes was set 7 
for all models and the number of nodes in the input 
layer was the number of PCs extracted for each sub-
set of descriptors. The results of PC-ANN modeling 
for MLR models number 3–15 are given in Table 2. 
This table shows that models 4 and 14 have almost 
the highest correlation coefficient for the external 
test set (0.877 and 0.848, respectively) which indi-
cates a high predictive power. The training set cor-
relation coefficients for models 4 and 14 are 0.915 
and 0.903, respectively. The R2

CV values for model 4 
is 0.837 and the correlation coefficient of prediction 
is 0.877, which means that the four PCs selected by 
eigenvalue ranking procedure can explain at least 
83.7% and 76.5% variance in log BCF for the cali-
bration and prediction, respectively. Model 14 has a 
lower R2

CV values (0.814) and correlation coefficient 
of prediction (Rp = 0.848) than model 4 which models 
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4 PCs while model 14 models 5 PCs. This suggests 
that the variables in model 4 are not so strictly cor-
related between themselves (4 variables represents by 
4 PCs) and the network probably would not lose its 
performance due to collinearity while the variables 
in model 14 (14 variables) are correlated, they were 
represented by only 5 PCs.

Figure (3a) shows plots of predictive residual sum 
of squares (PRESS) against regression models num-
ber 3 -15 for training and test sets obtained from ANN 
analysis. As it is seen, the values of PRESS for ANN 
models 4 and 14 are the minima for training and test 
sets at the same time which make each of them a good 
candidate for performing feature analysis on. Hence, 
the number of hidden nodes for models 4 and 14 was 
optimized and compared.

In order to optimize the performance of the ANN 
models 4 and 14, we trained the ANN using differ-
ent number of hidden nodes starting from 1 hidden 
node to 20 hidden nodes. Figure (3c) shows plots of 
PRESS against number of hidden nodes for training 
and test sets for ANN model 4. Although the minima 
on PRESS curves for this model occurs when using 
19 and 20 hidden nodes, such large number of hidden 

nodes can lead to overfitted models.35 Therefore, we 
will consider the models with the lower number of 
hidden nodes (10 hidden nodes, in this case). The 
PRESS values for the external test set are mainly 
lower than that for the training set for all models.

The results for the ANN optimization for model 4 are 
shown in Table S3. Using 19 or 20 hidden nodes gives 
comparable network performance to that obtained when 
using 10 hidden nodes. Although the former models have 
better statistical parameters than those obtained when 
using 10 hidden nodes, the model obtained using10 hid-
den nodes was chosen as the optimal one to avoid the 
risk of overfitting that may be associated with the use of 
large number of hidden nodes. Using 10 hidden nodes, 
we obtained a high correlation coefficient for the training 
set (0.918) and for the prediction set (0.882). This model 
has a high R2 value for the cross–validation (0.841) and 
low prediction error (RSEP% = 0.824%).

Figure (3d) shows plots of PRESS against num-
ber of hidden nodes for training and test sets for ANN 
model 14. The results for the ANN optimization for 
model 14 are shown in Table S3. This table shows that 
the minimum on the PRESS curves occurs when using 
16–20 hidden nodes. Following the same argument used 
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for model 4, we consider the model with the next lower 
PRESS value which is in this case 14. For this model, 
we obtained a relatively high correlation coefficient for 
both the training (0.917) and the prediction sets (0.845). 
This model has a high R2 value for the cross–validation 
(0.840) and an RSEP% value of (0.946%). From a sta-
tistical point of view, models 4 and 14 (obtained using 
10 and 14 hidden nodes, respectively) are similar. Since 
large numbers of hidden nodes often draws the attention 
to overfitting risk,35 model 4 obtained using 10 hidden 
nodes is preferred over model 14 that is obrained using 
14 hidden nodes. The relative standard error of predic-
tion (RSEP%) is an important parameter for the evalua-
tion of the predictive ability of a multivariate calibration 
model. RSEP% is calculated according to eq. (3)

RSE
BCF BCF

BCF

P predicted observed

obs

%
log log

log
= ×

-





100

2
Σ

Σ eerved( )2  
  (3)

Model 4 with 10 hidden nodes gives lower RSEP% 
(0.824%) than that for model 14 with 14 hidden 
nodes (0.946%). For deciding on the best model is 
normally performed by using cross-validation, based 
on determination of minimum prediction error,36 thus 
the choice for model 4 with 10 hidden nodes as opti-
mal one is confirmed.

Table S4 in the supplementary material shows the 
results for randomization test that was performed to 
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investigate the probability of chance correlation for 
model 4 with 10 hidden nodes in the network. The 
proposed models were also checked for reliability 
by permutation testing (Y-scrambling). The results 
of this procedure (Table S4 in the supplementary 
material) show that all models have low correlation 
coefficients and PRESS values. This indicates that 
model 4, obtained using 10 hidden nodes, has low 
 susceptibility towards chance correlation and gives 
direct evidence that the proposed models are well 
founded. Figure 4 demonstrates regression between 
observed and predicted log BCF as well as their resid-
uals for this model.

PLs
PLS analysis with cross validation was carried out 
for advance investigation of the linear relationships 
of the obtained regression models. Model validation 
was achieved through leave-one-out cross-validation 
(LOO CV) and external validation (for a test set), 
and the predictive ability was statistically evaluated 
through the root mean square errors of calibration 
and validation. The calibration and prediction quali-
ties were quantified with the correlation coefficients 
for the training and test sets as well as the R2

CV (leave 
one out cross-validation on training set), select the 
LV when the R2

CV has a high number, or determine 
it by computing the prediction error sum of squares 
(PRESS) for cross- validated models which is a stan-
dard index to measure the accuracy of a modeling 
method based on the cross-validation technique.

The cross-validation method employed was to 
eliminate only one sample at a time and then PLS 
calibrate the remaining standard descriptor. By using 
this calibration, the log BCF of the sample left out 
was predicted. This process was repeated until each 
standard had been left out once. Figure (3b) shows 
the associated PRESS of the training and test sets 
for each model. Table 2 shows that the minimum 
 prediction error (0.163%) occurs for model 9. The 
cross validation coefficient of determination for this 
model is high (0.821).

This model has the lowest PRESS values for the 
training and test sets at the same time. While other mod-
els have higher R2

CV values than this model, they also 
have higher prediction errors. Accordingly, model 9 
was the best model according to PLS analysis. This 

model has a regression coefficient of 0.921 and 0.912 
for the training and tests sets, respectively.

(Table S5) in the supplementary material shows 
regression and cross validation parameters for ran-
domization test that is performed to investigate the 
probability of chance correlation for models 3–15 
using PLS analysis. This table shows that the pro-
posed optimal PLS model (model 9) is superior to 
that obtained by chance. Figure 5 shows regression 
between observed and predicted log BCF as well as 
their residuals for training and test sets of model 9 
using PLS analysis.

This model contains the following nine descrip-
tors: V1M

D,deg, nHAcc, MATS2m, GATS2e, 2Xv, ST, 
JhetZ, Jhetv, MR (see appendix) which are represented 
by 5 LV′s.

The following conditions proposed by Golbraikh 
and Tropsha37 were applied to conclude that the QSAR 
model has acceptable prediction power if:

(1) Q2 (R2
CV) . 0.5

(2) R2 . 0.6
(3) (R2 – R2

0)/R
2 , 0.1 and 0.85 , k , 1.15

Or
(R2–R′2

0)/R
2 , 0.1 and 0.85 , k′ , 1.15

where R2
0 and R′2

0 are the coefficients of determination 
characterizing linear regression with  Y-intercept set at 
zero, the first associated with observed vs. predicted 
values, the second related to predicted vs. observed 
values; k and k΄ are the slopes of the  regression lines 
forced through zero, relating observed vs. predicted 
and predicted vs. observed values. Alternatively, the 
parameter R2

m, where R2
m = R2* (1-(R2-R2

0))
1/2, can 

be used.38 This parameter penalizes a model for large 
differences between observed and predicted values, 
was also calculated. R2

m should be larger than 0.5 for a 
good external prediction, which is the case for model 4 
from the ANN analysis (R2

m = 0.754) and model 9 
from the PLS analysis (R2

m = 0.756). If a model shows 
good statistical performance for all these criteria, on 
both the training and the test sets, its reliability and 
robustness are high.

Comparing the linear (PLS) and nonlinear (PC-ANN) 
models shows that nonlinear relations improved the 
models over linear ones. Table 2 shows that  compared 
with PLS and ANN results, MLR underestimate the 
regression coefficient values for small number of vari-
ables. Both ANN and MLR results show that Model 4 is 
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the optimal model to predict the BCF  values for the 
set of compounds in this study. However, PLS  analysis 
improves the statistics compared with ANN and MLR. 
It gives models with higher correlation coefficients and 
R2

CV values in addition to lower prediction errors. PLS 

analysis suggests that the optimal model is model 9. 
Taking into account the complexity of the neural net-
work based models; PLS based models are better to 
describe the QSPR of the BCF for the data set in this 
investigation. The descriptors used in these models 
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depend on the volume, connectivity, molar refractivity, 
surface tension and the presence of atoms accepting 
H-bonds.

In summary, this study utilizes theoretical molecular 
descriptors to estimate BCF directly from the structure 
of the chemical. The most important molecular descrip-
tors to model the BCF are topological (mainly 2d auto-
correlation descriptors), geometrical (mainly encoding 
molecular size) and generally related to chemicals’ 
dimensions, polarizability, surface tension, molar ref-
reactivity and number of acceptor atoms for H-bonds.

comparison with previous studies
Table 3 summarizes the results obtained in the  present 
study as well as other QSPR studies performed on 
the BCF. Zhao et al14 performed a QSPR study on 
a large set of 473 compounds that was created with 
ISIS BASE 2.5 SP2. Wang et al39 obtained a QSAR 
model by adopting topological properties and flex-
ibility of chemicals to predict the BCF. Gramatica 
and Papa16,17 have performed QSAR study on the 
same set of non-ionic organic compounds using GA 
and MLR analysis without verifying the data. Fatemi 
et al18 applied ANN using descriptors selected with 

GA but did not use PCA in the stepwise pre-selection 
of variables. Both Gramatica and Papa16,17 as well as 
Fatemi et al18 split the data randomly, while in this 
contribution the data is split homogenously using the 
space of PCs. This implies that the training, validation 
and test sets include the molecules in different zones 
of the data distribution shown in Figure 2. Chen et al19 
developed a QSAR model for fish BCFs of 8 groups 
of compounds employing PLS regression, based on 
LSER theory and theoretical molecular structural 
descriptors. Their model showed that the molecular 
size plays a critical role in affecting the bioconcentra-
tion of organic pollutants in fish which agrees with the 
results found in this study where theoretical descrip-
tors were used to develop the model and assist the 
mechanism interpretation. Nevertheless, the model 
found in this study has performed external validation 
in addition to the usage of a validation set of 46 com-
pounds to detect overfitting as implemented in the 
early stopping method while no such procedure was 
used in the other studies mentioned above.

Wang et al obtained coefficients of determination 
of 0.80 and 0.79 for calibration and cross validation, 
respectively, while in this study we obtained higher 
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values (0.85 and 0.82). Generally, the calibration 
and cross validation coefficient of determinations 
(R2 and R2

CV) obtained in this study (ANN model: 0.84 
and 0.84/PLS model: 0.85 and 0.82) are higher than 
those obtained in the other studies shown in Table 3. 
An exception is for the R2 and R2

CV values obtained 
by Fatemi et al (0.88 and 0.89–0.92) and Chen et al 
(0.87 and 0.86). However, in this study, we used a 
larger number of compounds which implies that the 
results obtained in this study are more general than 
those obtained by Fatemi et al and Chen et al.

conclusions
A quantitative–structural property relationship analy-
sis has been conducted on BCF (log BCF) for 227 
different non-ionic organic compounds by using PLS 
and the principal component–artificial neural net-
works modeling methods, with application of eigen-
value ranking factor selection procedure. The PLS 
gives improved regression models with better pre-
diction ability compared with PC-ANN. Taking into 
account the complexity of the neural network based 
models; PLS based models are quite good to describe 
the QSPR of the BCF for the data set in this investi-
gation. A 0.921 correlation coefficient was obtained 
using PLS with 5 LV′s. The optimal model contains 
the descriptors V1M

D,deg, nHAcc, MATS2m, GATS2e, 
2Xv, ST, JhetZ, Jhetv and MR.
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