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POINTS OF VIEW

Contemporary Philosophy and Methods for Studying Speciation and

Delimiting Species

Frank T. Burbrink1 and Sara Ruane2

Species delimitation is a first step for realizing the extent of biodiversity and is relevant for all downstream applications
in biology. The production of large genome-scale datasets for non-model organisms combined with the development of
methodological tools have allowed researchers to examine fine-scale processes of speciation such as timing of origin,
degree of migration, population-size changes, selection, drift, and recombination. Studies using reptiles and
amphibians have, in part, paved the way for the development and use of such methods for exploring speciation and
delimitation. While these methodologies have improved our understanding of processes of diversification, researchers
are far from agreeing upon a set of criteria to delimit species. In cases where genetic lineages are discovered that are
unique to geographic areas, researchers usually agree that two entities exist. Disagreement about taxonomic status
often centers on the degree of reproductive isolation between taxa and probability of remaining distinct. However,
reproductive isolation is frequently inferred without examining gene flow, understanding the nature of hybrid zones,
or determining the amount and type of introgression. Here, we review some of the vexing problems for delimiting
reptiles and amphibians, which include isolation by distance, gene flow and differential allelic introgression, hybrid
zone dynamics, and the nature of genomic islands of divergence. We also respond to recent literature criticizing model-
based species delimitation in North American snakes in the context of these methodological advancements and address
how scientists can move forward with studies on speciation.

S
PECIES delimitation is a primary objective for research-
ers working in systematics and the outcomes affect all
downstream applications including studies on biodi-

versity, evolution, ecology, physiology, and even medicine.
Setting methodological standards for delimiting species may
be useful, but as our ability to generate larger datasets and
address more complex phenomena change, these sets of
standards will, of course, also have to change. Massive
genetic datasets analyzed with modern computational
methods, frequently integrated with morphology and ecol-
ogy, enable researchers to study the processes of speciation at
a fine-scale level. These advances have already been applied
in numerous herpetological studies that examine timing,
area of origin, and diversification in reptiles and amphibians
(Wollenberg Valero et al., 2019; Leaché et al., 2020),
including snakes (Schield et al., 2017; Myers et al., 2019a,
2019b; Thanou et al., 2020), lizards (Brown et al., 2016; Tollis
et al., 2018; Kolora et al., 2019), crocodilians (Srikulnath et
al., 2015; Pacheco-Sierra et al., 2018), turtles (Georges et al.,
2018; Scott et al., 2018; Martin et al., 2020), tuataras
(Gemmell et al., 2020), frogs (Wang et al., 2018; Bell and
Irian, 2019; Dufresnes et al., 2020a), salamanders (Hime et
al., 2016; Bryson et al., 2018; Jones and Weisrock, 2018), and
caecilians (Torres-Sánchez et al., 2019).

Datasets used to examine the origins of species are quickly
trending towards genome-scale data that when combined
with evolutionary models can help us better determine the 1)
timing of origins of species, 2) the degree of migration

between species, 3) variation in historical demography
relative to environmental change, and 4) the effect of habitat
or geographic isolation on reptile and amphibian communi-
ties; this is well illustrated in recent studies on reptiles and
amphibians (e.g., Ptychadena, Reyes-Velasco et al., 2018;
sphenomorphine skinks, Singhal et al., 2018; Pseudacris,
Banker et al., 2019; North American snakes, Myers et al.,
2019a, 2019b, 2020; multiple African reptiles and amphib-
ians, Leaché et al., 2020). Genome-scale sampling is also
being used to explore phylogeny at deeper levels such as the
origins of squamates (Burbrink et al., 2020; Singhal et al.,
2021), Neotropical crocodiles (Milián-Garcı́a et al., 2020),
amphibians (Hime et al., 2021), and turtles within Amniota
(Crawford et al., 2012). The currency used to run these
model-based methods includes anonymous loci using re-
striction-site-based approaches (RAD-seq; ddRAD-seq; geno-
type by sequencing, GBS) or conserved loci sequenced via
target-capture approaches (ultraconserved elements, UCEs;
anchored hybrid enrichment, AHE; or more specifically for
herpetology, squamate conserved loci, SqCL, and FrogCap;
Miller et al., 2007; Elshire et al., 2011; Faircloth et al., 2012;
Lemmon et al., 2012; Singhal et al., 2017; Hutter et al., 2019,
bioRxiv: 825307). Restriction-based approaches usually pro-
duce .10,000 short loci (~50–150 bp) with thousands of
single-nucleotide polymorphisms (SNPs) and target-capture
datasets generate hundreds to thousands of longer loci
(~200–2000 bp). At greater expense, a variety of platforms
can be used to sequence the whole genome, producing
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chromosomal levels of assembly. Whole genomes are being
used to address questions in evolutionary biology, ecology,
and physiology for reptiles and amphibians (e.g., Nanorana,
Wang et al., 2018; Lacerta, Kolora et al., 2019; Python, Castoe
et al., 2013; Crotalus, Schield et al., 2019; Sphenodon, Gemmel
et al., 2020; Macey et al., 2021) and soon processes of
speciation. We also note major advances towards generating
high-resolution images of external and internal morpholog-
ical features to better describe and quantify anatomical
structures through the use of technology such as micro-
computed tomography (CT) data (Broeckhoven and Du
Plessis, 2018). With adequate sampling of individuals and
genome-scale data combined with models accounting for a
wide variety of speciation processes, we can more accurately
delimit species, realize the complexity of how species are
formed, revise general taxonomy within herpetology, and
properly grasp the tree of life.

Delimiting species using any kind of data must be
connected to a species concept. Unfortunately, though,
determining when a population should conceptually and
operationally be considered a species remains the thorniest of
problems. A strict interpretation of reproductive isolation
from the biological species concept (BSC), as well as many
other concepts (Mayr, 1942; Wiley, 1978; Eldredge and
Cracraft, 1980; Hey, 2001), is now bound within the general
lineage species concept, which is the framework we use
throughout our discussion here. This concept maintains that
distinct species comprise separately evolving metapopula-
tions. The theory is derived from the evolutionary species
concept where unique species are lineages that retain distinct
evolutionary trajectories (Simpson, 1951; Wiley, 1978; Frost
and Kluge, 1994; de Queiroz, 1998, 2007). Therefore,
previous concepts (e.g., biological, phylogenetic, ecological,
morphological) simply operate as criteria for determining if
lineages have independently diverged. Importantly for
delimiting species using genetic data, evolutionary concepts
of speciation have been conceptualized by the aspatial gray
zone of speciation, a graph showing the trajectory of two
populations in continuous gene flow at deep-time scales with
nearly complete reproductive isolation at more recent time
scales (Frost and Kluge, 1994; de Queiroz, 1998, 2007; Roux
et al., 2016). Phylogeographic studies often discover geo-
graphic lineages in this intermediate position of the gray
zone, where distinct lineages can be detected but gene flow
continues (Roux et al., 2016; Leaché et al., 2019). These
lineages could therefore be in the process of reducing gene
flow and emerging as biological species, increasing gene flow
and merging into a single species, or remain in a state of low-
level gene flow. Even though it is clear that two recognizable
geographic entities exist, this intermediate position in the
gray zone underscores where acrimonious debates on
recognizing species occur. Here, researchers often consider
the degree of gene flow and how this may render distinct
lineages as transient; naming these entities could be
considered premature without some metric of hybridization.
Unfortunately, applying a measure of reproductive isolation
still enforces the BSC as the ultimate arbitrator for delimiting
species. This non-phylogenetic species concept in many
cases will group unique, non-sister taxa because they fail to
be reproductively isolated. Therefore, classification will not
follow genealogy and the BSC will distort phylogenetic
history (Rosen, 1978; Cracraft, 1983; Velasco, 2008). It may
be just as useful to recognize the independent history of

lineages as species prior to hybridization particularly since
the existence of these lineages must be recognized before
understanding the extent of hybridization (Nelson and
Platnick, 1981).

Another concern voiced by some taxonomists is that when
using genetic datasets, the potential to artificially subdivide
groups that are not representative of unique species increases
(Bauer et al., 2011; Galtier, 2019; Leaché et al., 2019).
Methodologies should be able to differentiate species from
artificially designated genetic clusters regardless of the upper
boundary of loci analyzed by researchers. This then increases
difficulty two-fold: 1) properly identifying unique geographic
lineages and 2) correctly determining if geographic lineages
represent unique evolutionary trajectories. For the second
part, applying a metric of strict reproductive isolation is
unhelpful; two species can maintain unique evolutionary
trajectories even when some level of gene flow is maintained
heterogeneously throughout the genome (Mallet, 1995;
Edwards et al., 2020). Ironically, while researchers have not
agreed on how to delimit species, even with whole-genome
datasets, studying divergence has become more tractable
(Galtier, 2019). Where two historical entities have been
identified, processes of divergence can be studied along
several predictable avenues of research.

Herein, we review methods used to dissect the gray zone of
speciation, usually involving a complex process that includes
the six major parameters in evolutionary biology: mutation,
genetic drift, selection, migration, recombination, and
population demography (Harvey et al., 2019; Peñalba and
Wolf, 2020). Currently, no method has been developed to
seamlessly provide a single framework to model speciation
using all of these parameters simultaneously. However, we
examine progress made to integrate many of these parame-
ters, highlighting coalescent theory-based methods, which,
for modern studies in herpetology, have dominated the field
over the last two decades. Beyond the assumptions and
findings made by the coalescent, we address the importance
of properly detecting lineages, understanding selection, the
formation of hybrid zones and maintenance of reproductive
isolation, and the effects of recombination, genetic drift, and
differential introgression of alleles on species boundaries. We
then respond to some recent criticisms of model-based
methods for inferring species boundaries within herpetolog-
ical systems and provide suggestions for ways to ameliorate
these problems.

IDENTIFYING GEOGRAPHIC LINEAGES AND ISOLATION BY
DISTANCE

The first step for identifying candidate species is to examine
the structure of genetic or morphological discontinuities over
a landscape. Most species initially formed due to some degree
of extrinsic reproductive isolation, such as allopatry or
parapatry (Kozak and Wiens, 2006), though the less common
sympatric speciation is possible (not examined here; see
Fitzpatrick et al., 2009; Edwards et al., 2020). Functionally,
detecting independently evolving lineages using genetic data
should minimally show that putative species occupy geo-
graphically discrete areas. These putative species must have
acquired more substitutions via selection or drift between
them than those within their respective populations (Ran-
nala, 2015). Since the advent of phylogeography, detecting
geographic structure over a landscape has been accomplished
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via tree-based or population clustering methods, plotting the
locations of individuals from these groups on a map, and
subsequently testing species boundaries and processes re-
sponsible for the origins of these groups using coalescent or
integrated-data models (Avise, 2000a; Pritchard et al., 2000;
Knowles and Carstens, 2007a; Knowles et al., 2007; Jombart
et al., 2008; Fujita and Leaché, 2010; Leaché and Fujita,
2010).

Crucially, inferences on species boundaries rendered by
clustering of allelic data alone or in the context of geography
and coalescent estimators may be in error given isolation by
distance (IBD) effects (Wright, 1943; Slatkin, 1993). Isolation
by distance proposes that migration among populations
decreases continuously with increasing spatial distance
between populations. Where intermediate populations re-
main unsampled, distinct but spurious lineages appear to
have formed near spatial endpoints. This is in contrast to
when geographic groupings form due to adaptation to
unique habitats (i.e., ecological speciation or isolation by
ecology or adaptation), become isolated by physical barriers
preventing gene flow (isolation by barrier), or a combination
of both (Mayr, 1963; Avise, 2000a; Rundle and Nosil, 2005;
Schluter, 2009; Pyron and Burbrink, 2010; Pyron et al., 2015).
Multiple phylogeographic studies on reptiles and amphibi-
ans have demonstrated the importance of such environmen-
tal and physical barriers in structuring populations and
promoting speciation, e.g., African frogs (Barratt et al., 2018),
Anolis (Gray et al., 2019), Boa (Card et al., 2016), Hyla
(Dufresnes et al., 2018, 2019), and Liopholis (Atkins et al.,
2020). Poor sampling across the ranges of species will not
account for population connectivity, and it is likely to
exacerbate the probability of finding artificial geographic
groups (Mason et al., 2020). It is imperative therefore to
establish that the observed geographic clustering is not
predicted by IBD to avoid subdividing potential lineages
within a species unnecessarily (Yang, 2004; Jensen et al.,
2005). The minimum divergence across the landscape must
be in excess of what would be predicted by IBD alone to
understand the effect of contemporary or historical climate
and geographic barriers on genetic structure. However,
knowing the minimum amount of sampling necessary to
exclude the effects of IBD is complex given the interactions
among several variables: the size of the range, dispersal
distance, genetic variation, and variable migration rates
among populations. This is likely to be an especially
important consideration for herpetological studies. For many
reptiles and amphibians, extensive range-wide sampling is
difficult given that populations may occur at low frequencies
and seasonally, and the total area occupied can be large and
discontinuous and cover numerous political boundaries.

Several methods have been used to address the effects of
IBD on population structures given genomic data and the
location of individuals alone. For instance, effective estimates
of migration surfaces (EEMS; Petkova et al., 2016) can
visualize where genetic similarity by migration decays faster
than expected by IBD, thus highlighting areas of reduced
gene flow at geographic boundaries. This method has been
used successfully in studies on reptiles and amphibians to
identify areas of low migration (Homola et al., 2019; Myers et
al., 2019b; Chan and Brown, 2020; Burbrink et al., 2021).
Modeling population structure given continuous (geograph-
ic) and discrete (reproductive isolation) processes can be used
to separate clines vs. geographic clusters using programs such

as conStruct (Bradburd et al., 2018). Additionally, redundan-
cy analyses or machine learning can be used to isolate non-
spatial effects on genetic structure, fully supplanting reliance
on incorrect Mantel tests (Diniz-Filho et al., 2013; Burbrink et
al., 2021; Martin et al., 2021). Resistance or conductive
surfaces representing spatial and environmental covariates
on genetic dissimilarity between mapped individuals can also
partial out the effects of space of population structure
(Peterman and Pope, 2021), though these methods may
only indicate that genetic changes are occurring over
environmental gradients. Identifying candidates that may
be distinct species occurs where geographically continuous
groups are inferred from divergences in excess of those
predicted by IBD, which may be due to adaptations to
different environments or isolation at particular barriers. For
many researchers, determining if these entities are species
still comes down to the degree of gene flow, which can then
be further examined via coalescent methods, diffusion
techniques, or hybrid zone dynamics.

COALESCENT SPECIES DELIMITATION

Many contemporary methods for studying population
history and speciation rely on some form of the coalescent
model (Kingman, 1982; Griffiths and Tavaré, 1994; Wakeley,
2008). Within herpetology, coalescent-based methods have
been frequently used to help identify candidates for
additional investigation and/or delimit species across every
continent inhabited by reptiles and amphibians (e.g., Hemi-
dactylus, Leaché and Fujita, 2010; Ptychozoon, Brown et al.,
2012; Euparkerella, Fusinatto et al., 2013; Leptopelis, Portillo et
al., 2015; Plethodon, Kuchta et al., 2016, 2018; Carlia, Afonso
Silva et al., 2017; Eupsophus, Correa et al., 2017; Tropidurus,
Domingos et al., 2017; Pseudechis, Maddock et al., 2017;
Podarcis, Psonis et al., 2017; Rana, Yang et al., 2017; Mesaspis,
Solano-Zavaleta and Nieto-Montes de Oca, 2018; Eurycea,
Devitt et al., 2019; Philothamnus, Engelbrecht et al., 2019;
Melanophryniscus, Pie et al., 2019; Papuascincus, Slavenko et
al., 2020; Leptotyphlops, Busschau et al., 2021). Coalescent
theory models alleles within populations (or species) back-
wards through time until lineages merge (i.e., coalesce; for a
more detailed description see Degnan and Rosenberg, 2009;
Edwards, 2009). Using neutral loci, these methods allow us to
predict changes in population size and address timing of
divergences leading to testable theories about the origins of
species (Knowles and Maddison, 2002; Drummond et al.,
2005; Fujita et al., 2012; Burbrink et al., 2016; Myers et al.,
2019a, 2019b). Additional parameters can be added to basic
coalescent models to assess migration rates between lineages
(Beerli and Felsenstein, 2001; Won and Hey, 2005), while
other coalescent-based methods can be used to examine
recombination and identify departures from neutrality to
detect unique signatures of selection (McVean et al., 2002;
Harris and Jensen, 2020). Such methods can be scaled up
from the population level to examine relationships among
species; this species-specific model is referred to as the
multispecies coalescent (MSC; Rannala and Yang, 2003) and
may include parameters to address migration, timing, and
historical demography (Hey, 2010). Alternatively, these
parameters can be estimated without with the MSC using
diffusion approximation with the joint frequency spectrum
(Gutenkunst et al., 2009). As with any robust statistic,
increasing the size of the genetic datasets scales with
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increasing accuracy provided that the model is correct
(Felsenstein, 2006; Liu et al., 2009; Ruane et al., 2015a).

Coalescent methods provide an explanation of why
individual gene trees often do not follow the same branching
patterns of population or species trees, a concept known as
incomplete lineage sorting (ILS; Maddison and Knowles,
2006; Degnan and Rosenberg, 2009). Looking backwards in
time from contemporary lineages, ILS describes the common
phenomenon where alleles fail to coalesce within the most
immediate speciation event. Genetic polymorphisms scale
with population size; therefore, larger ancestral populations
and recent speciation events will exacerbate the problem of
ILS. Using the MSC for genome-scale datasets incorporates
ILS by modeling species/population splitting given both the
timing of divergence and historical demography. Prior to
considering ILS, many authors used the principle of
reciprocal monophyly by gene to determine if candidate
taxa represent real groups (‘‘good’’ species). This prediction
may be incorrect for young species with large population
sizes, which are likely to suffer from ILS and therefore will
not generate reciprocally monophyletic genes (Carstens and
Knowles, 2007). Furthermore, when ancestral populations
are large, the timing for reaching reciprocal monophyly for
even half of all loci can be extremely long (Hudson and
Coyne, 2002; Carstens and Knowles, 2007; Rannala and
Yang, 2020). Thus applying the criterion of reciprocal
monophyly may result in failure to recognize distinct species.
Alternately, small and young founder populations could be
incorrectly recognized as species given the criterion of
reciprocal monophyly (Rannala and Yang, 2020).

Coalescent methods have recently been at the heart of
controversial species delimitations (Sukumaran and Knowles,
2017; Leaché et al., 2019). The MSC has been criticized for
improperly identifying species under the assumption that
they delimit population structure and not species structure
(Sukumaran and Knowles, 2017), resulting in taxonomic
inflation affecting downstream fields such as macroecology,
macroevolution, conservation, and medicine. However, the
MSC will likely delimit population structure and deeper
species structure depending on the group and nature of the
data (Leaché et al., 2019). For example, if we chose multiple
deeply sampled individuals from four North American
ratsnakes of the genus Pantherophis, the MSC would correctly
delimit with a probability of 1.0 at each node: P. guttatus (P.
vulpinus (P. obsoletus, P. bairdi)). This topology and the
support for each of these four species would be consistent
with our knowledge until ~2001 (see Conant and Collins,
1998). Exploring population structure within each species
across their geographic ranges using coalescent-based species
delimitation methods would find additional structure con-
sistent with what has subsequently been described as species
within Pantherophis obsoletus, P. guttatus, and P. vulpinus
(Burbrink et al., 2000, 2021; Burbrink, 2001, 2002; Crother et
al., 2011; Myers et al., 2020). Whether these additional
delimitations represent species or populations may be
difficult to answer using the MSC alone, though morphology
and ecology have aided delimitation in some of these.

Researchers have attempted to model a property referred to
as the conversion factor in a protracted speciation model,
which should infer when populations convert to species
using neutral genetic data (Sukumaran and Knowles, 2017;
Leaché et al., 2019). It is unclear what biological process the
conversion factor represents, though it presumably functions

as a surrogate for the origin of adaptive traits or endogenous
selection related to intrinsic reproductive isolation. However,
Leaché et al. (2019) pointed out that inferring if an entity is a
species or a population using the protracted speciation model
of Sukumaran and Knowles (2017) is arbitrary given that the
input data (genomic) are uninformative for understanding
this conversion process. Additionally, the methodology
requires reference to a related group where the taxonomy
has been established for estimating the conversion factor in
the target group. Therefore, philosophical and practical
knowledge about speciation is not inherent to the study
system but rather borrowed from ‘‘good’’ species.

The MSC can be used to identify candidate species, such as
when using the program Bayesian Phylogenetics and Phylo-
geography (BPP; Yang and Rannala, 2010; Rannala and Yang,
2020) or when using newer software that simultaneously
addresses gene flow (Jackson et al., 2016; Flouris et al., 2019;
Smith and Carstens, 2020). A disturbing trend suggests that
populations may be artificially delimited as species with
increasing numbers of loci using BPP (Leaché et al., 2019).
However, it is unclear if other MSC-based methods used to
delimit populations/species have this problem (Bryant et al.,
2012). Rather than relying solely on model predictions to
delimit species, it is possible to use estimates from other
parameters derived from coalescent models and determine
where migration times exceed 104 generations, where
migration rates (Nm) ,1/generation, and where long-term
migration rates are significantly lower than the frequency at
which F1 hybrids are produced (Leaché et al., 2019). For taxa
in the gray zone, only a single or a few combinations of these
parameters might cross the particular numerical threshold to
indicate species status, still leaving researchers with a difficult
decision to make. Unfortunately, the underlying issue with
using MSC models, even those that incorporate gene flow, is
that researchers fail to provide a measurable criterion that
identifies when a population differs from a species using
neutral genetic data only. This may then render MSC metrics
to delimit species alone problematic without qualification.
Ultimately, if we cannot decide on a well-formulated
definition of species given the intricacies of process discov-
erable in the genome, then we cannot expect models or
metrics to do that job alone.

Applying only a single measure to delimit species is
unlikely to account for the complexity of parameter space
needed to model speciation and therefore has greater
potential for failure (Carstens et al., 2013). Most herpetolo-
gists, however, do not use MSC or other genetic-based
methods exclusively but rather address putative species
delimitations explicitly with other independent data such
as geographic spatial and environmental niche data, ecology,
morphology, estimates of migration rates, reproductive
isolation, mating calls, and even chemical communication
systems. These multifaceted approaches are common in
herpetology, such as in Agkistrodon (Burbrink and Guiher,
2015); Cuora (Spinks et al., 2012); Discoglossus, Pelodytes
(Dufresnes et al., 2020b); Eurycea (Devitt et al., 2019); Eutropis
(Barley et al., 2013); Gonatodes (Pinto et al., 2019); Heteronotia
(Zozaya et al., 2019); Lampropeltis (McKelvy and Burbrink,
2017); Liolaemus (Camargo et al., 2012); Megophrys (Liu et al.,
2018); Mimophis (Ruane et al., 2018); Plestiodon (Pavón-
Vázquez et al., 2018); Phyllodactylus (Koch et al., 2016);
Pithecopus (Ramos et al., 2019); Phrynosoma (Leaché et al.,
2009); Pristimantis (Ortega-Andrade et al., 2015); Spea (Neal et
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al., 2018); Tropidurus (Domingos et al., 2017); Tympanocryptis
(Chaplin et al., 2019); Uperoleia (Clulow et al., 2016). At least
in herpetological studies, most evolutionary lineages discov-
ered are partially or completely spatially isolated, suggesting
that frequently used coalescent-based methods do not find
random geographic structure across a species’ range. Demys-
tifying the link between species delimitation and the
processes of speciation using coalescent techniques in part
provides some rationale for the decision that authors make
when choosing to formally name or not name a taxon. At a
minimum, coalescent methods can provide the date of origin
and degree of gene flow sustained through time for taxa of
interest as part of species delimitations and descriptions.
However, there are many other avenues of research impor-
tant for extending our understanding of speciation and
delimitation.

We continue our discussion by examining methodologies
to address processes of speciation that are often not
examined by typical coalescent techniques alone. These
often represent exciting new and rapidly developing meth-
ods using genomic data to understand how lineages diverge
and examine genetic variation in the context of hybrid zones
and clines, genic speciation, differential introgression of loci,
and recombination landscapes.

REPRODUCTIVE ISOLATION AND HYBRID ZONES

The degree of reproductive isolation necessary for lineages to
remain distinct is complex and may not rely on estimates of
migration per generation. This is somewhat counterintuitive
in that lineages must first be discovered to determine if and
how much gene flow occurs between them but would not be
discoverable if gene flow was extensive enough to erase the
signal and presence of those lineages. Therefore, if distinct
evolutionary lineages have been discovered, then gene flow
has not been extensive enough to extinguish their presence.
It is clear that species may form and remain distinct even in
the presence of gene flow (Mayr, 1963; Van Valen, 1976;
Coyne and Orr, 2004; Nosil, 2008, 2012; Feder et al., 2012;
Harrison and Larson, 2014; Ravinet et al., 2017). This has
been extensively documented across a diversity of reptiles
and amphibians (e.g., Bufo, Wooten et al., 2019; Ctenophorus,
Litoria, Melville et al., 2017; Crocodylus, Hekkala et al., 2015;
Graptemys, Godwin et al., 2014; Liolaemus, Olave et al., 2011;
Natrix, Kindler et al., 2017; Plethodon, Chatfield et al., 2010;
Salamandrina, Canestrelli et al., 2015; Terrapene, Cureton et
al., 2011; Thamnophis, Kapfer et al., 2013; Triturus, Arntzen,
2018; also see reviews on gene flow between species in
amphibians and reptiles in Nadachowska, 2010 and Wollen-
berg Valero et al., 2019). Hybridization between well-defined
species is even found across all major clades of lizards
(Jančúchová-Lásková et al., 2015). As might be expected
given widespread hybridization, the variation in how genes
introgress between taxa indicates that a hard criterion of
complete reproductive isolation without qualification is too
restrictive for setting species limits. Importantly, many
species remain distinct despite secondary contact (Acker-
mann and Bishop, 2010; Payseur and Rieseberg, 2016; Kumar
et al., 2017; Dong et al., 2020). Many of these organisms may
have reached an evolutionary endpoint referred to as partial
reproductive isolation, where species remain distinct and yet
are still in genetic contact long after forming (Servedio and
Hermisson, 2020). For example, many hybrid zones likely

formed during the Pleistocene, and for many squamates
interaction between species would have continued for
.30,000 generations (Hewitt, 2011).

Isolation with secondary contact can also produce species
where Dobzhansky-Muller incompatibilities occur. Here
genetic drift or selection in isolation forms numerous unique
alleles between lineages, and, upon secondary contact,
epistatic interaction among these different alleles in hybrid-
izing individuals are selected against (Dobzhansky, 1937;
Muller, 1942). This model of genomic divergence can happen
rapidly, via the ‘‘snowball effect,’’ as negative interactions
among loci in hybrids increases exponentially relative to the
number of unique alleles evolving during isolation (Orr,
1995; Orr and Turelli, 2001). Processes of divergence
producing unique areas in the genome adapted to particular
environments or having negative epistatic interactions with
other genes in hybridization point to the difficulty delimit-
ing species when relying only on timing of lineage separation
and whether gene flow occurs. The expectation is that
eventually with stronger selection against hybrids due to the
maintenance of genomic islands of divergence, increasing
linkage disequilibrium, and drift, many markers should show
divergence between species. A sober approach to species
delimitation therefore embraces hybridization to better
understand how species are interacting ecologically and
how genomes respond to admixture.

In most stable hybrid zones, it is expected that selection
against hybrids occurs thus reinforcing reproductive isolation
(Howard, 1993; Garner et al., 2018). At the other extreme,
new species may be formed as a result of hybridization (e.g.,
Pelophylax, Dubey et al., 2019; Vipera, Zinenko et al., 2016);
these hybrid species may be unable to reproduce with their
parental taxa (as seen in some teiid lizards; Reeder et al.,
2002) and can significantly increase species diversity for a
group (e.g., plethodontid salamanders; Patton et al., 2020).
Additionally, adaptive introgression of beneficial alleles may
help the receiver better adapt to local environments (Abbott
et al., 2013; Bierne et al., 2013; Ma et al., 2019), reducing the
possibility of extinction. It is clear that contemporary and
ancient hybridization among many organisms is detectable
among even commonly studied species (Edwards et al., 2016;
Mallet et al., 2016; Figueiró et al., 2017; Kumar et al., 2017;
Mason et al., 2019). For instance, using phylogenomic
methods that account for reticulating hybridization, Bur-
brink and Gehara (2018) inferred that the ancestor of the
Mexican kingsnake species group (Lampropeltis mexicana, L.
webbi, and L. ruthveni) formed via ancient hybridization
between ancestors of a clade of milksnakes (L. abnorma, L.
micropholis, and L. polyzona) and a clade of other tri-colored
Lampropeltis (including L. pyromelana, L. zonata, and L.
alterna) in the late Miocene. The area of this ancient
hybridization in the southwestern United States and north-
ern Mexico is known for repeated secondary contact and
hybridization among squamates in the Chihuahuan and
Sonoran Deserts, including other snakes (Myers et al., 2019b)
and lizards (Crotaphytus; McGuire et al., 2007). These studies
highlight that diversification and origins of contemporary
squamate communities likely include hybridization over
long periods of time.

Studying hybrid zones is particularly useful for under-
standing degrees of reproductive isolation, but these
investigations are not typically included in most delimita-
tion studies likely due to difficulty obtaining adequate
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samples and lack of a priori knowledge on the location of
areas of contact. Hybrid zones between species may form
when there is selection against hybrids (tension zones),
when there is selection for hybrids (bounded superiority), or
when there are ecological gradients resulting in reduced
fitness for parental species in the environment of the other
species (Barton and Hewitt, 1985; Barton and Gale, 1993).
Selection can also be endogenous (genomic) or exogenous
(environmental). Paradoxically, while hybrid zones indicate
reproduction between species, their presence simultaneous-
ly demonstrates that some level of isolation had occurred.
Introgression of loci into the parental taxa outside of the
hybrid zone will vary given recombination and selection on
the function of those genes (Feder et al., 2012; Wolf and
Ellegren, 2017). In contrast, a neutral hybrid zone is defined
by having no selection against hybrids, and free introgres-
sion of alleles among parental types. In a neutral hybrid
zone, the two species should collapse into a single species
due to hybrid swamping (Barton and Hewitt, 1981; Wolf et
al., 2001). Making matters more complex, it is likely some of
these different types of hybrid zones or areas with no
hybridization are occurring in different parts of the ranges
where species contact, or are changing through time.

Hybrid zones can be modeled to understand the timing of
their formation, the spread of hybrids, the degree of selection
on hybrids, and gene flow and reproductive isolation (Endler,
1977; Barton, 1979; Avise, 2000b; Nachman and Payseur,
2012; Gompert et al., 2017). For species delimitation,
hybridization between lineages in the context of the gray
zone should be qualified with respect to the width of hybrid
zones relative to parental species ranges, degree of the gene
flow between the taxa, and which alleles are introgressing.
The width of the hybrid zone (tension zone) can be predicted
by dispersal rate and selection against hybrids or genetic
distance (Barton and Gale, 1993); in reptiles, random
dispersal and genetic distances are important predictors of
the size of hybrid zones (McEntee et al., 2020). Still, the
genomics of speciation and secondary contact are complex,
and heterogeneous genomic divergence is not easily gener-
alizable over the environmental landscape. Researchers are
typically moving away from a strict interpretation of the
biological species concept where reproductive isolation
affects the whole genome as a cohesive unit to one where
selection and reproductive isolation occur at individual or
coadapted genes, the so-called genic view of speciation (Wu,
2001).

Variation in how alleles introgress is extensive given
selection, pleiotropy, and the coupling of adaptive genes
(Nosil et al., 2009; Nosil and Schluter, 2011; Payseur and
Rieseberg, 2016; Gompert et al., 2017; Schmickl et al., 2017;
Campbell et al., 2018; Jiggins, 2019). These processes of
divergence and gene flow may not occur at a constant rate
during speciation. Loci involved in adaptation and repro-
ductive isolation experience little gene flow between
species, which may be in contrast to the remainder of the
genome where gene flow may remain high (Coyne and Orr,
2004). In these cases, the selected loci plus linked genomic
regions that are not broken up by recombination will form
islands of divergence between young species (Nadeau et al.,
2012; Wolf and Ellegren, 2017). The presence of these
genomic islands suggests that populations may be in the
‘‘act of speciation’’ and therefore provide opportunities to
understand how lineages diverge and maintain indepen-

dent identities. In populations that are diverging with
ongoing gene flow, genomic islands will be generated at
loci related to divergent ecologies or genomic incompati-
bilities (Hejase et al., 2020).

Understanding how genomic islands originate, their
function, and even if they exist in particular study
organisms is still an area of continuing exploration even
among well-studied species. Genomic islands of divergence
may have arisen rapidly as a result of selective sweeps or
background selection unrelated to reproductive isolation
(Noor and Bennett, 2009; Cruickshank and Hahn, 2014;
Duranton et al., 2018). Endogenous selection against
hybrids at particular genomic island loci may also have
formed in allopatry due to Dobzhansky-Muller incompati-
bilities and not be adapted to particular environments
(Bierne et al., 2011). Identification of loci involved in
reproductive isolation may be further complicated by
variation in recombination rates across genomes. This
variation can lead to spurious identification of genomic
islands in low recombination regions even when under
neutrality. Typical genomic scans do not account for
variation in recombination rate, which, even under neu-
trality, can generate heterogeneous estimates of selection
using typical measures such as Fst (Booker et al., 2020).
Therefore, researchers are urged to consider the recombina-
tion landscape when looking for islands of genomic
divergence containing loci that influence reproductive
isolation.

Where genomic islands have been credibly identified,
these loci then can be associated with pre- and postzygotic
isolation and/or ecological and morphological differences
via ecological speciation (Nosil et al., 2009; Marques et al.,
2016; Mérot et al., 2017; Wolf and Ellegren, 2017).
Additionally, these alleles or co-adapted genes may change
rapidly along clines and lead to complete reproductive
isolation (Mallet, 2008; Stankowski et al., 2017, 2019;
Souissi et al., 2018). For many organisms, the presence of
genomic islands of divergence where alleles are not
traversing clines might suggest that reproductive isolation
is not likely to be reversed. This could serve as a minimum
criterion for defining a species and would be consistent
with the genetic cluster view of speciation, where repro-
ductive isolation was a cause but not a criterion for
delimiting species. Under this particular view, species
should be considered distinct when reduced recombinants
and heterozygotes in loci are found where parental forms
overlap (Mallet, 1995, 2020). However, we know of no
studies in herpetology where such diverging loci were
found first and then species delimited second. But, we
underscore that species divergence can occur due to a small
number of select genes, as in the case of hooded and carrion
crows, where just a few loci control prezygotic isolation and
also permit the phenotypes of each species to remain
distinct despite gene flow among all other loci (Knief et al.,
2019).

Genomic islands of divergence also hold promise for
identifying key loci and associated traits that function to
reproductively isolate species. Traditional species delimita-
tion methods typically measure or score external anatomy or
reproductive call data to often indirectly infer the effects of
isolation via drift or selection. These methods have, of
course, been useful for centuries but may fail to account for
all of the morphological or physiological differences between
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lineages. It is possible now to determine which traits are
involved in reproductive isolation by examining significant
differences between taxa across their genomes and then
relate those differing alleles to morphology (Han et al., 2017).
For example, an intriguing recent study (Rautsaw et al., 2020)
looked at genomic divergence between the Florida water-
snakes Nerodia clarkii, occurring in high-salinity environ-
ments, and N. fasciata, in freshwater environments. They
demonstrated that despite recurring historical and contem-
porary gene flow between these taxa, several key loci were
responsible for ecological divergence in these environments.
Scanning the genome for selection, the authors identified 31
loci of interest using the annotated genome from the related
Thamnophis elegans. With gene ontology (GO) enrichment, a
bioinformatics initiative to classify genes and gene products
across taxa, the authors identified a network of related terms
underscoring ten genes involved with osmoregulation. These
functional dissimilarities correlate to the primary differences
in habitat salinity between N. clarkii and N. fasciata. It would
be difficult to determine that these particular differences are
occurring between these taxa using external morphological
data alone. One of the most pressing needs now is having
more fully annotated genomes representative of most
families and subfamilies of reptiles and amphibians. This
would lead to a better understanding of the primary axis of
trait diversification in the gray zone.

Once taxa are established, dissecting how and when
contemporary and historical landscapes isolated populations
and facilitated speciation through time is achievable.
Biologically relevant information, including ecology, physi-
cal barriers, gene flow, historical climate, landscape resis-
tance, and geographic space can be used to predict the causes
of species formation when using techniques such as
redundancy analyses, conductance surface techniques, gen-
eralized dissimilarity modeling, and machine learning ap-
proaches (Ferrier et al., 2007; Zhang, 2010; Diniz-Filho et al.,
2013; Burbrink and Gehara, 2018; Burbrink et al., 2021;
Peterman and Pope, 2021). Such methods allow us to
understand how predictor variables (e.g., environment,
physical barriers) influence resulting population and species
structure. For example, Myers et al. (2017a, 2019b) examined
divergence in a community of 13 species of snakes at the
division between the Chihuahuan and Sonoran Deserts (the
Cochise Filter Barrier) using subgenomic data combined with
geographic distances and environmental heterogeneity. This
research found that no single unifying process generated
lineages among species of snakes within the genera Crotalus,
Hypsiglena, Lampropeltis, Masticophis, Pituophis, Rhinocheilus,
Salvadora, Sonora, Thamnophis, and Trimorphodon. Myers et al.
(2017a, 2019b) concluded that both isolation by distance
and environment throughout the Pleistocene and Pliocene
produced these deep lineages. In another recent example,
Burbrink et al. (2021) examined the origins of the Eastern
Ratsnakes (Pantherophis obsoletus complex) by integrating
genomic data with models of diversification to include
current and historical environmental data and analyses of
hybrid zones. Paralleling the conclusions from Burbrink et al.
(2000) but using genome-scale data with both coalescent and
neural network methods, Burbrink et al. (2021) again found a
strong role for the Mississippi River as a genetic barrier for
these ratsnakes, along with evidence that sharp ecological
transitions helped structure the four taxa throughout the
Pleistocene.

CONTROVERSIAL SPECIES DELIMITATIONS IN
HERPETOLOGY

Recently, Hillis (2019, 2020) and Chambers and Hillis (2020)
have written three papers discussing species delimitation that
fall short of considering modern theory and application.
These papers primarily target delimitations in North Amer-
ican snakes, though as demonstrated here, many other
researchers use the same methods in herpetology for taxa
found in Central and South America, Asia, Europe, Australia,
and Africa. These authors contend that species delimitations
from multiple herpetological studies were unfounded be-
cause they represent arbitrary slices of clines or conjecture
that hybrid zones are too wide for species to be valid.
However, they ignore that hybridization across the tree of life
is common, these species diverged during the Pleistocene or
even earlier and have maintained independent evolutionary
trajectories, and incomplete gene (lineage) sorting is one
expectation of the speciation process (Wiley, 1978; Knowles
and Carstens, 2007b; de Queiroz, 2007; Payseur and Riese-
berg, 2016; Gompert et al., 2017; Barth et al., 2020; Moran et
al., 2021).

Describing his proposal of sensible nomenclatural practice,
Hillis (2019) provides a decision tree to determine when to
change taxonomy (Hillis, 2019: fig. 1). Oddly, this proposal
uses criteria that may be applied to species delimitation but
simultaneously attempts to specify when to revise names
above the species level (see text for example regarding the
genus Rana). We point out that this decision tree makes a
number of hidden and false assumptions and cannot
accurately reflect the way species should be delimited. The
first stage on hypothesis formation suggests grouping
individuals into potential lineages; unless known ahead of
time, this stage tests the existence of lineages and subse-
quently the assignment of individuals into lineages. The
second stage that guides the remaining taxonomic treat-
ments rests entirely on the unqualified criterion that species
should be sufficiently reproductively isolated to be consid-
ered independently evolving. The crux of this proposal relies
only on the application of the biological species concept. The
word ‘‘sufficiently’’ also suggests that determining reproduc-
tive isolation is subjective, and, as we have reviewed here,
reproductive isolation without some qualification is not
useful. Furthermore, whether reproductive isolation occurs
has never been tested on most described and named reptile
and amphibian species.

Passing the second stage, the reader is directed to the right
if the lineages fail to show sufficient reproductive isolation
and rather represent geographic variation. It is unclear how
geographic variation (no reproductive isolation) and distinct
species (reproductive isolation) are mutually exclusive given
that distinct species also can be geographically variable.
Proceeding down the right-hand path, Hillis then asks if the
geographically variable lineages have an available name(s).
This is more complex than it appears as it must mean that
these lineages represent subspecies, but there is no mention
of the word or concept in the paper. Without considering
that these are subspecies, then of course the organism that is
composed of multiple lineages that are not reproductively
isolated has an already applied name (the organism that you
started the process with). Unfortunately, even if they are to
be considered subspecies, it would not be clear if they
represent entities with distinct evolutionary histories that
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happen to also be incompletely reproductively isolated or
just geographic variants (‘‘handles of convenience’’). The
latter is not a unit of evolution and therefore should not
receive a name. If the geographically variable lineage does
not have a name, then this leads to a box that says to fix the
taxonomic problem with the least disruption to the current
taxonomy. This is unhelpful because the user has to fix the
taxonomy according to the proper nomenclatural rules
regardless of the level of disruption, or change their results
(or the interpretation of those results). Turning to the left side
of the decision tree where we have reproductive isolation, we
are correctly instructed to determine valid names and follow
the pertinent nomenclatural rules. If there are no available
names, we are again instructed to not be disruptive to the
current taxonomy, though how we should do that outside of
the specific nomenclatural rules or altering the perception of
our results is not explained. If there are available names, then
we are questioned if the groups are monophyletic or if the
species are valid. It is unclear at this taxonomic level how
monophyly is being approached, perhaps reciprocal mono-
phyly, and a positive conclusion has already established that
we have valid species. If yes, then we are instructed to ‘‘then
leave the nomenclature the #@%& alone!’’ but there was no
step for applying the valid names. It is uncertain from this
decision tree just who has the final authority to decide when
‘‘taxonomy is fixed’’ and if multiple iterations of the decision
tree are permitted given new data or analyses. If not, this
approach hampers species discovery and provides no help for
understanding just what data, methods, or philosophy aid
with contemporary species delimitations. Moreover, it is
difficult to comprehend what philosophy and methods are
approved given that Hillis recently co-authored a paper on
the phylogeography of Eurycea using the MSC to delimit
species, but without directly assessing degree of reproductive
isolation or gene flow (Devitt et al., 2019).

Recently, Chambers and Hillis (2020) posited that species
delimited in the American milksnakes (Lampropeltis triangu-
lum complex; Ruane et al., 2014) ‘‘represent arbitrary slices of
continuous geographic clines.’’ Although Chambers and
Hillis (2020) initially acknowledged that loci may not be
monophyletic for recently diverged species, they subsequent-
ly used the expectation that nuclear loci should be
monophyletic as an argument to refute the Ruane et al.
(2014) delimitations that re-elevated previously described
milksnake species. Their point is made despite widespread
research showing that reciprocal monophyly among gene
trees will not be the case for most taxa due to incomplete
gene sorting, particularly given recent speciation times and
large population sizes (Maddison and Knowles, 2006;
Knowles and Carstens, 2007b). Rather than test whether
the probability that the 11 nuclear gene trees for the
milksnakes were consistent with the expectations of mono-
phyly and species limits given coalescent predictions that
account for sorting and migration, Chambers and Hillis
(2020) concluded several proposed species delimitations were
unfounded. However, neither monophyletic gene trees nor
the ambiguous criterion of ‘‘consistent nuclear divergence’’
are true for their own proposed milksnake taxon of ‘‘L.
triangulum,’’ which is also paraphyletic in the supplemental
gene trees (fig. S2 of Chambers and Hillis, 2020). Chambers
and Hillis (2020) also attempted to use BPP to demonstrate
that the support for two milksnake taxa (L. triangulum and L.
gentilis) from Ruane et al. (2014) was not indicative of species

divergence. To do so, they randomly sliced the ranges of the
North American milksnakes, combined samples into groups
within the slices (see fig. 2b in Chambers and Hillis, 2020)
and found these new groupings could be delimited with high
support, thus concluding that the delimitations in Ruane et
al. (2014) were faulty. Based on the sampling scheme used for
the random slices, IBD could result in similarly well-
supported delimitations (Chambers and Hillis, 2020: fig.
2b), but Chambers and Hillis (2020) used no other data or
methods to examine IBD, ILS, or migration to better
understand actual processes (e.g., see Burbrink et al., 2021)
nor were the marginal likelihoods of the arbitrary-slice
models compared to the original model of Ruane et al.
(2014) to further validate their own results. Despite stating
that ‘‘new species designations, especially of well-studied
groups, are best made after careful consideration of all
sources of relevant evidence,’’ Chambers and Hillis (2020)
ignored other available works and datasets, which include
morphological as well as additional genetic data (e.g., the
original descriptions of the species; Ruane, 2015; Ruane et al.,
2015b). When conducting species delimitation or revising
taxonomy based on previously collected data, we would
advocate researchers gather and assess a preponderance of
evidence. At least for the milksnakes, this would include
obtaining new genetic (preferably genomic) data, integrating
spatial and environmental information, and using appropri-
ate methods to delimit species reflective of processes of
divergence.

In the case of the species delimitations for North American
copperheads (Agkistrodon contortrix complex) from Burbrink
and Guiher (2015), Hillis (2020) took issue with the presence
of a hybrid zone between proposed species. His criticisms
were based on the assumption that the hybrid zone was
neutral, which would indicate hybrid swamping of separate
lineages and result in the eventual collapse of detectable
species. While stating that there were historical lineages with
hybrid zones, he also believes contrary to this that species
delimitation is based on arbitrary slices of a continuous
range. The lineages exist and are discoverable regardless of
whether a hybrid zone exists. Hillis fails to provide any
evidence that there is no selection against hybrids or that
introgression was occurring. Burbrink and Guiher (2015)
demonstrated that A. contortrix and A. laticinctus diverged in
the late Pliocene or early Pleistocene, were consistent with
previous morphological treatment of the two groups (Gloyd
and Conant, 1990), and thus considered them two species
despite documenting areas of hybridization (Burbrink and
Guiher, 2015). These snakes hybridize at the intersection of
two primary ecoregions in the United States, the eastern
temperate forests and the Great Plains (Omernik, 1987;
Bailey, 1995). This division between the Great Plains and
forested regions of the Eastern Nearctic has been recognized
as an ecological barrier for other reptile and amphibian taxa
(Costa et al., 2008) and serves as a full or partial boundary for
~80 species occurring in the Eastern Nearctic and ~40
species primarily occurring throughout the Great Plains (see
distributions from Powell et al., 2016). If these hybrid zones
are neutral and ancient, then the expectation here is that
these distinct and old lineages should be swamped (and thus
eliminated) via hybridization given rates of life-time dispers-
al. We can conservatively predict the spread of the copper-
head hybrid zone under neutrality by using the equation:
w ¼ 2:51r

ffiffiffiffi

T
p

(Barton and Gale, 1993; Bailey et al., 2015).
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Here, given the constant (2.51), root mean squared (RMS) of
lifetime dispersal from natal site (r) and generations since the
formation of the hybrid zone (T), we can estimate width (w)
of the hybrid zone under neutrality. This equation can be
rearranged to solve for T to predict how many generations it
would take given lifetime dispersal distances for copperheads
to form a growing neutral hybrid zone that would cover the
entire width of both parental species ranges, here ~2,300 km
(Gloyd and Conant, 1990; Burbrink and Guiher, 2015). For
copperheads, r ¼ 4 km (though dispersal distances in the
southern parts of their range where they are not constrained
to hibernacula may be greater over a lifetime, Fitch, 1960;
Smith et al., 2009; G. Schuett and C. Smith, pers. comm.) and
a generation time of three years (Gloyd and Conant, 1990),
the current hybrid zone in copperheads at ~400 km can be
achieved in 1,588 generations (4,764 years). These hybrid
zones are likely older than this given stability and placement
of these ecoregions during the Holocene. Moreover, if these
taxa have been in contact since formation (0.96–2.5 My,
Burbrink and Guiher, 2015), and new analyses suggest they
have been (Gehara et al., 2020, bioRxiv: 2020.12.04.410670),
then hybrid swarming would overtake the range of both taxa
in 52,480 generations (15,7440 years), thus eliminating our
ability to detect these as distinct lineages. At longer dispersal
distances (8 km over a lifetime), extinction of the indepen-
dent species via hybridization can occur in as little as 6,900
years. It is likely that these taxa and others with ancient
hybrid zones have remained in a state of partial reproductive
isolation as a stable evolutionary endpoint (Servedio and
Hermisson, 2020); these species occur in different geographic
areas with unique ecologies and have remained distinct in
the face of hybridization since their time of origin. In this
case, the contemporary hybrid zone would not suggest that
two lineages are in the act of fusing. Of course, we
recommend that future studies test all of these hypotheses
and examine the width and nature of this hybrid zone with
genomic data and adequate samples throughout the con-
necting ranges.

For the copperheads, Hillis (2020) suggested that these
lineages are distinct and detectable, yet because they form a
hybrid zone, they should be treated as subspecies. We argue
that there is no need to use subspecies here or elsewhere
given that it is unclear what this rank represents biologically.
While arbitrary thresholds have been applied in some
organisms, specific criteria that separate subspecies from
species based on degree of gene flow or dynamics of hybrid
zones have never been established for this taxonomic rank.
Furthermore, as we have discussed above, it is difficult
enough to determine when a population becomes a species,
sliding another rank in between these terms would result in
less clarity. It is also uncertain how downstream applications
should use this rank relative to species. For example, should
subspecies, which could represent diverging lineages (pro-
tracted speciation) be enumerated along with species to
investigate processes of diversification, ecological evolution,
or community assembly? Finally, the term is subjective; it has
not historically been used consistently or meaningfully with
respect to taxonomy (Wilson and Brown, 1953; Burbrink et
al., 2000). In some cases, they are considered evolutionary
lineages (or incipient species) still connected reproductively
with other such lineages. In that case, they are only different
from species by degree of reproductive isolation but not by
the primary formation of discoverable historical lineages (see

de Queiroz, 2020). In other cases, they are considered
‘‘handles of convenience’’ or arbitrary range slices from
continuously variable morphological data and should not
warrant a name.

Moreover, there are many taxa with the applied species
rank that also have hybrid zones, e.g., Hyperolius (Bell and
Irian, 2019), Pseudacris (Lemmon et al., 2007), Podarcis
(Pinho et al., 2009), Sternotherus (Scott et al., 2019),
Tympanocryptis (Melville et al., 2019), though the nature of
reproductive isolation is likely specific to each species group.
Rather, it is clearer to describe two species, explain when they
originated, define where the location of a hybrid zone is,
quantify how much gene flow occurs, and investigate the
nature of the introgressing loci. We do not need special
classes for those taxa that have no or arbitrarily small hybrid
zones (‘‘species’’) and those that have larger hybrid zones
(‘‘subspecies’’). The size of a hybrid zone will vary between
taxa and is likely related to lifetime dispersal, ecology, degree
of selection against hyrbids, and the genomic architecture of
the species studied.

Many herpetological systematists are now using genome-
scale data and computational modeling to address questions
about species divergence (Morando et al., 2020; Reyes-
Velasco et al., 2020; Streicher et al., 2020) but also
understand that data sources and methods progress over
time. So, it is pointless to criticize authors for using what data
and methods were available to them at the time, whether
those be long-deceased authors such as Blanchard, Cochran,
Cope, Dickerson, and Dunn, or more recent authors. For
example, 30 years ago Hillis described a new species of
Synophis (Hillis, 1990) from only two specimens, one heavily
damaged. While one could criticize this initial taxonomic
decision, given that Hillis did not account for morphological
variation within the genus, incorrectly scored material from
the type specimens, and could not reliably define the
distribution of the new species, it would be pointless to do
so until additional new data were analyzed to refute or
support the hypothesis (see Torres-Carvajal et al., 2015, for a
more modern treatment of this genus).

Ignoring that there is both a historical and financial
framework for science conducted at any point in time, Hillis
(2020) suggested that numerous studies that have delimited
species using mtDNA are likely incorrect, e.g., the Lamp-
ropeltis getula complex (Pyron and Burbrink, 2009a). Of
course, we recognize that some delimitations may be
incorrect and that using a single locus to infer history can
be problematic, especially for studying detailed processes of
divergence (Toews and Brelsford, 2012; Spinks et al., 2014).
However, given their small effective population sizes, low
recombination, and high rates of substitution, mtDNA genes
have been extremely useful for identifying likely candidates
that represent cryptic species (Moritz et al., 1987; Funk and
Omland, 2003; Piganeau et al., 2004; Rubinoff and Holland,
2005; Zink and Barrowclough, 2008; Edwards and Bensch,
2009; Allio et al., 2017). However, many of these studies also
examine other sources of data as well to delimit species. For
example, the studies on kingsnakes did not solely use mtDNA
to determine species, but included ecological niche informa-
tion and geography, and considered previous works on
morphology (Pyron and Burbrink, 2009a, 2009b). Hillis
(2020) trivializes these studies by ignoring both the depth
of mtDNA divergence among these taxa (the Late Miocene)
and any corroborating evidence from ecology, morphology,
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and biogeography. For these studies and others, results
represent genetic breaks shared across multiple organisms
(Riddle and Hafner, 2006; Soltis et al., 2006), including for
reptiles and amphibians at some of the most prominent
geographic boundaries in North America: Peninsular Florida
connection to the US, Appalachian Mountains, Apalachicola
River and related river systems, the Mississippi River,
intersection between the Eastern Nearctic forests and the
Great Plains, the Cochise Filter Barrier, and the Rocky
Mountains (Walker and Avise, 1998; Burbrink et al., 2000,
2008; Leaché and Reeder, 2002; Clark et al., 2003; Jaeger et
al., 2005; Lemmon et al., 2007; Gamble et al., 2008; Pyron
and Burbrink, 2009a; Brandley et al., 2010; Makowsky et al.,
2010; Rissler and Smith, 2010; Burbrink and Guiher, 2015;
McKelvy and Burbrink, 2017; Myers et al., 2017a, 2017b).
Ignoring such ancient divergences at known and shared
biogeographic barriers discounts the historical magnitude of
landscape effects on structuring deep lineages among
distantly related taxa.

Using mtDNA as the sole marker to delimit species can of
course result in error and is impossible to adequately assess
gene flow alone. However, there are many studies that have
used this marker successfully to initially determine that
biogeographic structure within a group exists and warrants
further investigation. For example, Zozaya et al. (2019)
confirmed the identity of mtDNA lineages of Bynoe’s Gecko
(Heteronotia binoei complex) using pheromone data, which
corresponded with earlier phylogeographic studies on these
lizards (Fujita et al., 2010; Moritz et al., 2016). In this more
recent study, the authors also examined the morphology and
pheromonal signatures for each of the mtDNA lineages. The
geckos from the ten mtDNA lineages were phenotypically
similar yet variable within a lineage; however, the phero-
mone composition of each of the mtDNA lineages was
substantially different. This suggests that chemical commu-
nication in these geckos is an important prezygotic isolating
mechanism. The work of Zozaya et al. (2019) indicates that
hard-to-observe traits, such as pheromones, may be the key
features that differentiate seemingly cryptic taxa and that
mtDNA remains a useful tool for screening candidate taxa.

There is also increasing evidence that inferred species
boundaries from deep mtDNA divergences may be correct in
many cases, given mitochondrial-nuclear incompatibilities.
The 13 mtDNA protein-gene subunits interact with ~70
nuclear subunits to generate functional proteins in the
electron transport chain (Lloyd and McGeehand, 2013).
Rapid evolution of mtDNA within lineages therefore requires
compensatory changes within the nuclear counterparts for
these genes which produces tightly coupled gene complexes.
Hybridization between deep lineages, therefore, disassembles
these complexes and can reduce fitness (Dowling et al., 2008;
Burton and Barreto, 2012; Ballard and Pichaud, 2014). These
mtDNA divergences between species may produce cytonu-
clear (nuclear-mitochondrial) incompatibilities in hybrids
with respect to the parental species, and between species in
general, thus reinforcing reproductive isolation (Ma et al.,
2016; Jhuang et al., 2017; Lamelza and Ailion, 2017;
Telschow et al., 2019), which has been recently explored in
amphibians and reptiles (Gibeaux et al., 2018; Haenel and
Del Gaizo Moore, 2018; Prokić et al., 2018; Firneno et al.,
2020). For example, cytonuclear discordance in hybrids
between lineages of Ambystoma macrodactylum result in
poorer feeding performance (Lee-Yaw et al., 2014). On the

other hand, introgression across species boundaries may
substitute resident mitochondria suffering from a heavy
mutational load (Sloan et al., 2017). There are multiple
examples in reptiles and amphibians where mitochondria
have introgressed between clearly distinct species such as in
Ambystoma (Denton et al., 2014), Crotaphytus (McGuire et al.,
2007), Lampropeltis (Bryson et al., 2007; Ruane et al., 2014;
Burbrink and Gehara, 2018), Rana (Plotner et al., 2008), and
sea turtles (Vilaça et al., 2012). Here mtDNA alone would fail
to detect unique species or would provide distorted limits of
ranges.

For some of these previous studies that relied on mtDNA,
along with morphological or ecological data, many of the
same delimitations or geographic lineages are supported by
contemporary approaches. For example, using genomic data
and accounting for IBD, Myers et al. (2019b) recently found
the same two distinct lineages within the Lampropeltis getula
complex previously delimited using mtDNA (Pyron and
Burbrink, 2009a, 2009b). Similarly, using ~4,300 loci, Myers
et al. (2020) found the same three cornsnakes (Pantherophis
emoryi, P. guttatus, and P. slowinskii) previously delimited
using only mtDNA (Burbrink, 2002) and with an additional
deep divergence within P. guttatus. Barrow et al. (2018) found
when using AHE markers that spatial clusters and some
species trees were similar to mtDNA geographic structure
within the species of frogs Hyla cinerea, H. squirella, and
Lithobates sphenocephalus in the Southeastern US. In general,
mtDNA delimitations are more likely to be correct when
genetic distances are large and divergence times are old. Large
mtDNA differences between groups cannot be simply
disregarded given the importance for those mitochondrial
proteins to interact with complementary nuclear subunits to
efficiently generate ATP (adenosine triphosphate). We do not
advocate that researchers rely entirely on single-locus data
given that the possibility of producing many thousands of
independent loci is available. However, rather than suggest-
ing that most previous taxonomic research using mtDNA or
even limited numbers of nuclear loci are incorrect, we prefer
to remain neutral until new studies suggest otherwise.
Ideally, researchers will include genomic data in revisionary
work and integrate other data sources to help guide
taxonomic revisions.

CONCLUSIONS

Species delimitations using any method under any concept
are hypotheses (de Queiroz, 2005). While other researchers
working in downstream fields that use species as a unit of
study prefer stable taxonomies and properly identified
species, we cannot lose sight that all delimitations exist in
the realm of testable science, and therefore complete stability
is unrealistic (Crother, 2009). Development of methods to
better address IBD and reduce incorrect species delimitations
will be useful if they can be seamlessly integrated with
methods that identify geographic groupings and examine
the nature of genetic introgression. Species delimitation does
not rely on a cookbook approach where one follows a set of
directions to make a conclusion about species status that will
remain immutable. A rigid formula for delimiting taxa may
immediately be on the lagging edge of science in the face of
new data types and analyses. Instead, we agree with other
authors (Rannala and Yang, 2020) that species delimitation
should comprise an evidence-based approach that properly
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examines genetic structure integrated with additional data
types to better understand timing of origin, gene flow, and
degrees of introgression. Of course, not all data types are
required to delimit every species, and the current cost of
generating genomic data is unfortunately too expensive for
many researchers. Ideally though, scientists should use all
available evidence to determine whether the species in
question are best represented by current taxonomy. New
methodologies and technologies are showing us that old
ideas of speciation without allowing for gene flow are often
in error. Speciation with gene flow provides exciting avenues
of research for understanding a more complex view of the
evolution of species not constrained by unrealistic notions of
what species should be. By embracing these contemporary
data and methods, researchers can fully recognize the
complexity of species boundaries, realize a more accurate
tree of life, and properly aid other fields and educational
sources about biologically meaningful taxonomic units.
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