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ABSTRACT
We used conventional and finite mixture removal models with and without time-varying covariates to evaluate
availability given presence for 152 bird species using data from point counts in boreal North America. We found that
the choice of model had an impact on the estimability of unknown model parameters and affected the bias and
variance of corrected counts. Finite mixture models provided better fit than conventional removal models and better
adjusted for count duration. However, reliably estimating parameters and minimizing variance using mixture models
required at least 200–1,000 detections. Mixture models with time-varying proportions of infrequent singers were best
supported across species, indicating that accounting for date- and time-related heterogeneity is important when
combining data across studies over large spatial scales, multiple sampling time frames, or variable survey protocols.
Our flexible and continuous time-removal modeling framework can be used to account for such heterogeneity
through the incorporation of easily obtainable covariates, such as methods, date, time, and location. Accounting for
availability bias in bird surveys allows for better integration of disparate studies at large spatial scales and better
adjustment of local, regional, and continental population size estimates.

Keywords: boreal birds, population size, abundance, detectability, bias–variance tradeoff

Évaluation des modèles d’élimination du temps pour estimer la disponibilité des oiseaux boréaux lors
des inventaires par points d’écoute : exigences relatives à la taille de l’échantillon et complexité du
modèle

RÉSUMÉ
Nous avons évalué des modèles conventionnels et de retrait des mélanges finis avec et sans covariables variant dans le
temps pour 152 espèces d’oiseaux, en utilisant des données provenant de points d’écoute en Amérique du Nord
boréale. Nous avons trouvé que le choix des modèles avait un impact sur l’estimabilité des paramètres inconnus du
modèle et qu’il affectait le biais et la variance dans les décomptes corrigés. Les modèles de mélanges finis offraient un
meilleur ajustement que les modèles de retrait conventionnels et ils étaient mieux ajustés pour tenir compte de la
durée du décompte. Toutefois, l’estimation fiable des paramètres et la minimisation de la variance pour les modèles de
mélanges demandaient au moins 200–1000 détections. Les modèles de mélanges avec des proportions variant dans le
temps des chanteurs non fréquents s’appliquaient le mieux pour toutes les espèces, ce qui indique que le fait de tenir
compte de l’hétérogénéité reliée à la date et au temps est important lorsque l’on combine des données provenant de
plusieurs études sur de grandes échelles spatiales, des périodes d’échantillonnage multiples ou des protocoles
d’inventaire variables. Notre cadre de modélisation flexible et éliminant continuellement le temps peut être utilisé
pour tenir compte d’une telle hétérogénéité en incorporant des covariables facilement disponibles, telles que les
méthodes, la date, le temps et l’emplacement. La prise en compte du biais de disponibilité dans les inventaires
d’oiseaux permet de mieux intégrer les études disparates à des échelles spatiales plus larges et un meilleur ajustement
des estimations de population à l’échelle locale, régionale et continentale.

Mots-clés : oiseaux boréaux, taille de la population, abondance, détectabilité, compromis biais-variance
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INTRODUCTION

It has long been recognized that nearly all avian field

surveys underestimate abundances (Leopold 1933, Ken-

deigh 1944), unless the estimates are adjusted for the

proportion of birds present but undetected at the times

and locations surveyed (Hayne 1949, Anderson and

Pospahala 1970). Such adjustments require an estimate

of the probability of detecting birds present during surveys

(detectability). Detectability is the product of the proba-

bility that birds make themselves available for detection by

emitting detectable cues (availability) and the probability

that the available birds will be perceived by a bird surveyor

(perceptibility; Diefenbach et al. 2007).

All abundance estimators developed to account for

imperfect detectability impose conditions on survey

design, requiring either some form of replication, for

example, of visits or observers, or ancillary data collection,

for example, records of distance or time for each

observation (Nichols et al. 2009, Matsuoka et al. 2014,

but see Sólymos and Lele 2016). The added costs and
expertise necessary to collect these ancillary data have

prevented most of the standardized continental surveys,

such as the North American Breeding Bird Survey (BBS),

from adopting these methods (O’Connor et al. 2000).

Some researchers (e.g., Thogmartin et al. 2006, 2010,

Matsuoka et al. 2012, Twedt 2015) contend that this limits

the rigor of spatial models of avian abundance and

population size at large geographic scales, reducing the

utility of these models for setting and evaluating progress

toward meeting population objectives (e.g., Partners in

Flight; Rosenberg and Blancher 2005). Unstandardized

counts may also lead to improper inferences about the

influence of covariates, thus potentially biasing the

identification of suitable habitats for sensitive species

(Sólymos et al. 2013).

Detection probabilities are strongly influenced by

environmental conditions, bird behaviors, and survey

protocols (Johnson 2008, Matsuoka et al. 2014), and are

expected to show greater variation between studies

collating datasets than within individual studies. For point

count surveys, duration varies greatly among studies

(Barker et al. 2015), but rarely changes within studies. As

more and more large-scale studies rely on compiled point

count data from disparate local studies (e.g., Bart 2005,

Kelling et al. 2009, Dickinson et al. 2010, Hampton et al.

2013), standardization becomes critical because count

duration greatly affects observations. The number of

individual birds counted over a 10-min period is roughly

60% higher than during a 3-min period (Farnsworth et al.

2002, Etterson et al. 2009, Matsuoka et al. 2014), and both

durations are routinely used for avian surveys.

The time-removal model (Moran 1951, Zippin 1956,

1958) was originally developed for estimating wildlife and

fish abundances from capture–mark–recapture studies

(Seber 1982). It was later reformulated for avian surveys

with the goal of improving estimates of bird abundance,

population size, and population trend by accounting for

the availability bias inherent in point count data (Farns-

worth et al. 2002, Sólymos et al. 2013). The model has now

been widely applied to point count studies because the

required ancillary data, that is, tallies of the first detections

of individual birds in sequential time intervals, are easy to

collect (Johnson 2008, Matsuoka et al. 2014). The removal

model applied to point count surveys estimates the

probability that a bird is available for detection as a

function of the average number of detectable cues that an

individual bird gives per min (singing rate), and the known

count duration (Seber 1982, Barker and Sauer 1995,

Alldredge et al. 2007a, Sólymos et al. 2013). However,

the removal model has not been rigorously assessed to

determine whether availability bias varies with duration,

and whether fitting more complex parameterizations of

the removal model can minimize such bias.

Singing rates of birds vary with time of day, time of

year, breeding status, and stage of the nesting cycle

(Wilson and Bart 1985, Rosenberg and Blancher 2005,

Stacier et al. 2006). Thus, removal model estimates of
availability may be improved by accounting for variation

in singing rates using covariates for time of day and day

of year (Reidy et al. 2011, Sólymos et al. 2013, Amundson

et al. 2014). The removal model can also accommodate

behavioral heterogeneity in singing by subdividing the

sampled population of a species at a given point into a

finite mixture of birds with low and high singing rates,

which requires the additional estimation of the propor-

tion of birds in the sampled population with low singing

rates (Farnsworth et al. 2002, Alldredge et al. 2007a,

2007b, Reidy et al. 2011).

A key concern when fitting removal models of

increasing complexity is the tradeoff between bias and

variance, and the moderating role of sample size in this

tradeoff. Several studies have recommended finite mixture

models over conventional removal models to reduce bias

in abundance estimates (Farnsworth et al. 2002, Etterson et

al. 2009, Reidy et al. 2011), but these studies analyzed large

sample sizes to support the more complex models. In

contrast, efforts to fit finite mixture models to smaller

datasets have resulted in models with unidentified

parameters or point estimates of availability that were

similar, but far less precise, than those from the

conventional removal model (Amundson et al. 2014).

The ability to fit more complex removal models that both

reduce bias and minimize variance in estimates of

availability may be, in part, a function of the number of

detections, but the sample size requirements and bias–

variance tradeoffs have not been systematically assessed for

removal models.
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We formulated and evaluated a continuous time-

removal model for avian point counts by estimating the

availability probabilities of 152 terrestrial bird species

using a large database of point count surveys conducted

across boreal and hemiboreal regions of North America

(Figure 1, Appendix Tables 2 and 3; Cumming et al. 2010,

Barker et al. 2015). We compared different parameteriza-

tions of removal models to determine the relationships

among model complexity, bias, variance, sample size, and

duration. To address general estimation of availability, we

fit all models to 152 species that met minimum sampling

requirements, but varied widely in singing rates and

sample sizes of detections. To address protocol variability,

we compared the reliability of the different model classes

for adjusting the raw survey counts for variation in count

duration. We also examined what factors influenced bias

and variance in the adjustments. Finally, we compared our

removal model adjustments of availability to those applied

to BBS data across North America (Blancher et al. 2013) to

evaluate the extent to which removal models may improve

continental estimates of landbird population sizes. We

finish by summarizing our recommendations for selecting

among the various removal model types given study design

and data characteristics.

METHODS

Point Count Data

The Boreal Avian Modelling Project (BAM) was initiated

to facilitate the conservation of boreal birds. As part of

these efforts, BAM has collated data from georeferenced

point count surveys conducted in boreal, hemiboreal, and

FIGURE 1. Locations of point count surveys from 1991 to 2014 compiled across boreal and hemiboreal regions (according to Brandt
2009) of North America by the Boreal Avian Modelling Project (BAM). We analyzed the point counts for which surveyors recorded
when each bird was first detected relative to multiple time intervals (colored dots). Gray dots represent point counts with a single
time interval. Numbers of point count surveys (n) in each of 11 different combinations of the count duration (min) and the number
and length of the time intervals are given in the legend. The inset shows an expanded view of a region in northeastern Alberta,
Canada, where many projects with different counting methodologies overlapped.
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sub-Arctic biomes by independent inventory, monitoring,

and research studies (Cumming et al. 2010, Barker et al.

2015). The BAM database (version 5) contains 250,822 off-

road point count surveys conducted at 145,289 point count

locations by 131 separate studies between 1991 and 2014.

Of these surveys, 3% were 3 min, 60% were 5 min, and

37% were 10 min in total point count duration. We

applied removal models to a subset of 89,304 off-road

point counts at 25,754 locations conducted by 71 projects

in boreal and hemiboreal regions (hereafter, ‘boreal’) in

which observers recorded when they first detected each

bird relative to �2 time intervals (hereafter referred to as

the ‘full dataset’; Figure 1). We excluded roadside surveys

because of possible differences in singing behavior between

birds breeding along roadsides vs. in off-road areas

(Kociolek et al. 2011). The number of time intervals varied

from 2 to 10, and there were 11 distinct combinations of

count duration and the number and length of the time

intervals (Figure 1). We restricted our analyses to

detections of vocalizing gallinaceous gamebirds, shore-

birds, woodpeckers, and songbirds, which included species

that are diurnally active and are first detected primarily by

their auditory displays during breeding surveys. We

analyzed species detected aurally during a minimum of

75 point count surveys in the full dataset (median¼ 1,240

point count surveys, maximum ¼ 31,334). We present

results for the 152 species for which we could successfully

estimate the constant singing rate parameter of the

conventional removal model (Appendix Tables 2 and 3).

Count duration varied from 3 min to 20 min, but we

omitted time intervals beyond 10 min to minimize the

inclusion of movements by birds during counts, which

could violate the closed population assumption of the

removal model. For example, individuals that move toward

the observer are more likely to be detected than ones that

move away, and would inflate counts (Glennie et al. 2015).

Point count radii in our dataset were at least 50 m, with

100-m radius (24%) and unlimited distance (72%) counts

making up the majority. The removal model captures

availability, while perceptibility is often estimated via

distance sampling (Diefenbach et al. 2007). The condi-

tional model formulation uses the cumulative counts over

the time intervals relative to the total count, which makes
the estimation of availability independent of the observer

and distance-related perceptibility component and of the

true underlying population abundance. By conditioning on

the total counts, the abundance and other nuisance

variables (such as perceptibility) are canceled out of the

model likelihood (Sólymos et al. 2013).

As a result of this conditional modeling approach, we

treated within- and between-year repeat visits to the same

locations as independent observations. We checked that

our assumption of conditional independence was valid,

and we found neither systematic bias in our parameter

estimates nor shrinking of standard errors as a result of

treating data from revisits as independent (Appendix

Figure 6). Using data from within- and between-year

revisits to the same locations allowed us to better estimate

date- and time-related patterns in our dataset, because

revisits increased our sampling coverage of different dates

and times, and therefore strengthened our inference

regarding longitudinal variation. The diurnal and seasonal

timing of the point counts varied widely, so we standard-

ized the timing of each point count relative to local sunrise

and spring, respectively, using the National Oceanic and

Atmospheric Administration’s Sunrise/Sunset Calculator

(https://www.esrl.noaa.gov/gmd/grad/solcalc/sunrise.html,

Meeus 1999), implemented in the R package maptools

(Bivand and Lewin-Koh 2016). We quantified the ordinal

day of each point count, and also a standardized version of

the ordinal day of each point count relative to the 30-yr

average of the local start of the growing season (McKenney

et al. 2006). Temporal covariates were standardized by

TABLE 1. Relative support for different model classes and
candidate models of temporal covariate effects to explain the
probability of availability during point count surveys of
terrestrial landbird species in northern North America. We fit
each of the models to 147 species and summarized relative
support for each model as the number of species for which the
model had the lowest Akaike’s information criterion corrected
for small sample sizes (AICc). Model classes included: M0¼ time-
invariant conventional; Mf¼ time-invariant finite mixture; M0

u¼
conventional with time-varying rate parameter; Mf

u ¼ finite
mixture with time-varying rate parameter; and Mf

c ¼ finite
mixture with time-varying proportion of infrequent singers. The
total is the sum of model types M0

u, Mf
u, and Mf

c by covariate
model ID; frequencies for winter resident species are also shown
(frequency for migrant species ¼ Total � Residents).

Model ID and
covariate effects b M0

u Mf
u Mf

c Total Residents

0: Null (time-invariant:
M0 and Mf)

1 0 0 1 0

1: DY 1 6 2 9 2
2: SR 1 5 4 10 2
3: DY þ DY2 2 3 4 9 0
4: SR þ SR2 0 7 17 24 4
5: DY þ SR 0 5 3 8 1
6: DY þ DY2 þ SR 2 0 1 3 0
7: DY þ SR þ SR2 2 2 19 23 3
8: DY þ DY2 þ SR þ SR2 1 1 4 6 1
9: LS 0 3 3 6 0
10: LS þ LS2 0 2 10 12 4
11: LS þ SR 1 0 6 7 0
12: LS þ LS2 þ SR 0 1 4 5 0
13: LS þ SR þ SR2 1 3 18 22 6
14: LS þ LS2 þ SR þ SR2 0 0 2 2 0
Total 12 38 97 147 23

b Covariate effects included linear or quadratic effects of time
since sunrise (SR), ordinal day of the year (DY), and the ordinal
day relative to local spring (LS).
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dividing the observed values by the maximum possible

values: time since local sunrise (SR; mean¼ 2.2 hr, range¼
�5.7 to 12.5 hr, maximum possible¼ 24 hr); ordinal day of

year (DY; mean ¼ 166, range ¼ 128 to 200, maximum

possible ¼ 365); and days since local spring (LS; mean ¼
48.5, range ¼�8 to 94, maximum possible ¼ 365).

Continuous Time-removal Models
Time-removal models are based on a removal experiment

wherein animals are trapped and thereby removed from

the closed population of animals being sampled (Zippin

1958). When applying removal models to avian point

count surveys, the counts of singing birds (Yij, . . ., YiJ)

within a given point count i (i¼ 1, . . ., n) are tallied relative

to when each bird is first detected in multiple and

consecutive time intervals, with the survey start time ti0
¼ 0, the end times of the time intervals tij (j ¼ 1, 2, . . ., J),

and the total count duration of the survey tiJ. Each

individual bird is counted once, so that individuals are

‘mentally removed’ from a closed population of undetected

birds by the surveyor. In the continuous time-removal
model (hereafter, ‘removal model’), singing events by

individual birds are assumed to follow a Poisson process.

We can use the rate parameter of the Poisson process (u)
to estimate the singing rates of birds during a point count

(Alldredge et al. 2007a).

In the conventional removal model (M0), all individuals

of a single species at a given location and time are assumed

to be homogeneous in their singing rates. The time to first

detection follows the exponential distribution f(tij) ¼ u
exp(�tij u), and the cumulative density function of times to

first detection in time interval (0, tiJ) gives us the

probability that a bird sings at least once during the point

count as p(tiJ) ¼ 1 � exp(�tiJ u) (Barker and Sauer 1995,

Alldredge et al. 2007a, 2007b, Sólymos et al. 2013).

Although the term ‘detection’ implies both the percepti-

bility and detectability processes, the perceptibility com-

ponent is not part of our models due to the conditional

likelihood approach. The perceptibility component should

be addressed in a distance sampling framework indepen-

dent of the removal models (Handel et al. 2009, Sólymos et

al. 2013).

In the continuous time formulation of the finite mixture

(or 2-point mixture) removal model, the cumulative

density function during a point count is given by p(tiJ) ¼
(1� c) 1þ c [1� exp(�tiJ u)]¼ 1� c exp(�tiJ u), where u is

the singing rate for the group of infrequently singing birds,

and c is the proportion of birds during the point count that

are infrequent singers (see Jewell 1982 for a discussion of

mixtures of exponential distributions). The remaining

proportions (1� c; the intercept of the cumulative density

function) of the frequent singers are assumed to be

detected instantaneously at the start of the first time

interval (Alldredge et al. 2007b). In the simplest form of

the finite mixture model, the proportion and singing rate

of birds that sing infrequently is homogeneous across all

times and locations (model Mf ).

The singing rate in the conventional removal model (ui)

may also vary with respect to survey-specific covariates.

We hereafter refer to these models collectively as time-

varying conventional removal models (M0
u). Previously,

researchers have applied covariate effects to the parameter

ui of the finite mixture model, assuming that the

parameter c is constant irrespective of time and location

(i.e. only the infrequent singer group changes its singing

behavior; Farnsworth et al. 2002, Aldredge et al. 2007a,

Etterson et al. 2009, Reidy et al. 2011). An alternative

parameterization is for ci rather than u to be the time-

varying parameter, allowing individuals to switch between

the frequent and infrequent singer group depending on

covariates. We defined 2 time-varying finite mixture model

classes: (1) Mf
u, with covariate dependent rate parameter

p(tiJ)¼ 1� c exp(�tiJ ui); and (2) Mf
c, with the proportion

of infrequent singers dependent on covariates: p(tiJ)¼ 1�
ci exp(�tiJ u).

In all 3 classes of time-varying models (M0
u, Mf

u, and

Mf
c), we modeled covariate effects as linear or quadratic

effects of time since local sunrise (SR), ordinal day of year

(DY), and days since local spring (LS) in 14 different

candidate models (Table 1). We estimated model param-

eters using the conditional maximum-likelihood proce-

dure described by Sólymos et al. (2013) and implemented
in the R package detect (R Core Team 2017, Sólymos et al.

2018). This included using the cmulti function, with type

argument ‘rem’ for conventional (M0, M0
u) models and

type argument ‘fmix’ and ‘mix’ for the 2 mixture model

types (Mf
u and Mf

c, respectively; both options give

identical results for Mf ). Covariate effects for ui were

modeled using the logarithmic link function to ensure that

ui . 0, whereas covariate effects for ci were modeled using

the logistic link function to ensure that ci was in the

interval (0, 1).

Sample Size Requirements for Removal Models
We first examined the minimum sample size required to

reliably estimate the parameters of the time-invariant M0

and Mf models. We stratified the full point count dataset

by project, and then estimated the model parameters for

3,002 combinations of the 65 projects and 152 species

that had a minimum of 2 nonzero total counts (hereafter

referred to as the ‘project-level dataset’). We classified an

estimation as a success if the Nelder-Mead optimization

algorithm for the conditional maximum-likelihood esti-

mator (MLE) was able to converge on a point estimate of

u for M0 or on a joint estimate of (u, c) for Mf, and if the

algorithm could estimate the corresponding variances,

Var[log(u)] for M0, and jointly Var[log(u)] and Var[lo-

git(c)] for Mf. We fit logistic regression models separately
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to the outcomes of estimates and variances for M0 and

Mf models to predict the probability of successfully

estimating the model parameters as a function of log

number of point counts with nonzero totals for the

species in a given project, and calibrated the fitted

models to predict the minimum number of nonzero

counts required to have a 90% probability of successfully

estimating removal model parameters and variances. The

number of nonzero counts was highly correlated with the

mean count (Spearman’s r ¼ 0.82, P , 0.001) in the full

dataset; therefore, we did not separately assess relation-

ships with mean counts.

Adjusting Point Counts for Variation in Count
Duration
We used a subset of the full dataset for 133 species from

38,540 point count surveys with 0–3, 3–5, and 5–10 min

intervals (hereafter referred to as the ‘validation dataset’)

to assess the bias and variance based on the time-invariant

models (M0 and Mf; estimates based on the validation

data) when predicting the number of birds counted in the

full 10-min point count, using the data from the 0–3 min

and 0–5 min portions of the same point counts as inputs.

The expected total number of individuals of a species

counted across point counts of duration t can be written

as E[Yt] ¼ N pt, where pt is the estimated availability

probability for duration t from the removal model (M0 or

Mf ), and N is the unobserved total number of individuals

of that species present across the point counts. It follows

that N ¼ E[Y3]/p3 ¼ E[Y5]/p5 ¼ E[Y10]/p10 for intervals of
the same point count, in which case N is assumed to be

constant due to the closed population. We computed the

bias of the removal model when adjusting the 3-min and

5-min point counts to a 10-min standard, respectively, as

(RY3/p3) / (RY10/p10) and (RY5/p5) / (RY10/p10), with a

value of 1 resulting when the adjustment was unbiased

(hereafter referred to as the ‘corrected relative count’). For

each species, we fit M0 or Mf models and drew B¼ 1,000

replications from the asymptotic distribution of the

parameter estimates to represent uncertainty, and we

calculated bias (mean signed difference from the expected

value of 1) and variance (mean squared deviation of the

corrected relative counts from their sample mean across

the B replications) based on corrected relative counts

from the B replicates. We graphically displayed the

distribution of bias and variance across species as a

function of sample size, count duration (3 or 5 min), and

model type (M0 or Mf ). Bias and variance are presented as

proportions of the 10-min corrected count. We used the

median and 5% and 95% quantiles to represent the

distribution of bias and the 5–95% interval to represent

the distribution of variance of the species whose sample

sizes were equal to or greater than the sample size selected

for comparison.

Relative Support for Models and Plotting Time-
varying Effects
For each of the 152 species, we fit 44 candidate models that

included the time-invariant (M0 and Mf ) and time-varying

models with temporal covariate effects (M0
u, Mf

u, and Mf
c;

14 models for each) based on the full dataset (Table 1,

Appendix Table 3). Although our dataset was composed of

many point counts, the sample size for conditional

likelihood estimation is defined by the number of point

counts with .0 total counts. As a result, sample sizes

varied considerably across species. Therefore, we com-

pared the relative support for each model within a species

using Akaike’s information criterion corrected for small

sample sizes (AICc). We assessed model support across

species by counting the number of species for which each

model was best-supported (smallest AICc value). We only

compared models for the 147 species for which all model

parameters were estimated. We compiled information on

each species’ migratory strategy (winter resident vs.

migrant) from Poole (2012), and used a chi-square test

to see whether migratory strategy affected how often

ordinal day (DY) and days since local spring (LS) were

selected in the best-fitting models (Appendix Table 3).

We examined temporal patterns in availability proba-

bilities across the species for which the best-fitting removal

model included temporal covariates (SR, DY, or LS; Table

1, Appendix Table 3). We did so by predicting availability

probabilities based on a 3-min point count duration for
each species as a function of the observed covariate values

from the full dataset (response curves).We conditioned the

predictions on the mean of the other covariates. We

overlaid the response curves of all species that shared the

covariate effect, and described the general patterns in

availability probabilities across species using a 2-dimen-

sional kernel density estimate with a bivariate normal

kernel (Wand and Jones 1995) using the R package

KernSmooth (Wand 2015). We identified the contour for

the 75% bivariate quantile to identify the highest density

region, that is, where most of the species’ response curves

overlapped. We also identified 5%, 25%, 50%, 75%, and

95% contours based on the cumulative density conditional

on the covariate values, that is, percentage of the species

with the same or higher availability given the date and

time. We show average responses for all 3 time-varying

model classes (M0
u, Mf

u, and Mf
c).

Removal Models vs. PIF Approach to Adjusting for
Incomplete Availability
We compared adjustments for incomplete availability of

individual species based on removal models with those

used in the Partners in Flight (PIF) Population Estimates

Database (Blancher et al. 2013) to determine how PIF

estimates of continental population sizes might be

improved by using removal model–based estimates of
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availability. PIF uses a time adjustment (here referred to as

Tadj; Blancher et al. 2013) to account for diurnal variation

in availability, which is calculated as the ratio of the

maximum count estimated from a polynomial regression

to the mean count based on 50 stops in the BBS data

(Rosenberg and Blancher 2005, Blancher et al. 2013), and

assumes that the probability of availability¼ 1 at the time

of the maximum count.

We defined our species adjustment factor as the

reciprocal of average availability (Uinv ¼ 1 / pavg). We

calculated the correlation between Tadj and Uinv and

compared the distributions across 129 species for which

PIF adjustments were available (Blancher et al. 2013;

Appendix Table 3). We also assessed how maximum

availabilities (pmax) compared with the PIF assumption of

the maximum being 1. We calculated average (pavg) and

maximum (pmax) availability probabilities by using the

best-supported model for each species (Table 1, Appendix

Table 3) for predicting the probability of availability for

each point count in the entire BAM dataset (Figure 1)

given the covariate values, and then calculating the average

and maximum of the predicted values for each individual

species. We set count duration to be 3 min, to be

consistent with the BBS methodology that Tadj was based

on.

RESULTS

Sample Size Requirements for Time-invariant
Removal Models
We were able to estimate the singing rate parameter (u)
for all 152 species using the conventional removal model

(M0) fit to the full dataset from the boreal study area

(Appendix Table 2). The mean probability of availability

increased from 0.51 6 0.15 SD for 3-min point count

duration to 0.68 6 0.15 SD for 5-min and 0.88 6 0.12 SD

for 10-min count duration (Figure 2). A logistic regression

model (b0¼�1.16 6 0.10 SE, blog(# nonzero counts)¼ 0.92 6

0.04 SE) predicted that a species needed to be detected

during 45 6 6 SE point counts for the M0 model to have a

90% probability of successfully converging on a project-

specific estimate of u. Sample size requirements for

Var[log(u)] were identical to that of the point estimates.

We jointly estimated the parameters for the Mf models

(u, c) for 147 species using the full dataset. Mean

probabilities of availability based on the Mf models across

the 147 species were 9–16% lower than for the M0

models, and increased from 0.46 6 0.17 SD for 3-min, to

0.56 6 0.17 SD for 5-min, to 0.74 6 0.17 SD for 10-min

count duration (Figure 2). A logistic regression model (b0

¼�1.16 6 0.09 SE, blog(# nonzero counts) ¼ 0.66 6 0.03 SE)

predicted that a species needed to be detected during 158

6 24 SE point counts for the Mf model to have a 90%
probability of successfully converging on project-level

estimates of u and c. The sample size requirement for a

90% probability of successfully estimating the associated

variance was substantially larger, 963 6 177 SE (b0¼�1.93
6 0.09 SE, blog(# nonzero counts)¼ 0.60 6 0.03). The number

of nonzero counts for the 5 species for which we were

unable to estimateMf model parameters varied between 88

and 419 (Appendix Table 2).

Adjusting Point Counts for Variation in Count
Duration
The bias when correcting 3- and 5-min duration counts to

10-min counts was affected by count duration. A 5-min

count duration decreased median bias and tightened the

90% quantile range of bias closer to 0 (no bias) across

species for both the M0 and Mf models, when compared

with the distribution of 3-min based biases. The median

bias with respect to 10-min counts for the M0 model was

0.05 for 3-min and �0.03 for 5-min counts, and did not

improve further with increasing sample size (Figure 3).
Although the 90% quantile range for M0 models

shortened with increasing sample size, it stayed centered

around the biased median. Median bias with respect to 10-

min counts for the Mf model was small (absolute value

,0.01) regardless of sample size; the 90% quantile range

shortened with sample size. The high end of the 90%
quantile range was close to 0 (no bias), whereas the lower

limit spread wider into the negative direction, changing

from�0.27 at a sample size of 20 to�0.12 at a sample size

of 200 (Figure 3).

Variance was also greatly affected by count duration.

Increasing the count duration from 3 to 5 min resulted in

reducing the 90% limit for the Mf models from 0.06 to

0.03. Variance of the corrected relative counts under the

M0 model was ,0.01 irrespective of duration and sample

size, but nevertheless showing similar relative patterns.

The 90% limit for variance of corrected relative counts

under the Mf models decreased to 0.03 and 0.01 with 200

nonzero counts for the 3- and 5-min counts, respectively

(Figure 3).

Probability of availability and corrected relative counts

based on the time-invariant removal models (M0 and Mf )

varied among species with different sample sizes (Figure

4). The Rusty Blackbird (Euphagus carolinus), with 254

nonzero counts, showed high uncertainty in both proba-

bilities and corrected relative counts, but bias with respect

to 10-min counts was small for both models because the

finite mixture model intercept (probability at time 0, 1� c)

was close to 0 (c ¼ 0.96 6 0.18 SE), and thus the singing

rates were similar (M0: u¼ 0.16 6 0.00 SE; Mf: u¼ 0.14 6

0.05 SE). The high uncertainty for the Mf model was a

result of imprecise c estimates and high (0.6) correlation

between c and u (high rate with low intercept (1� c), and

vice versa). The Western Wood-Pewee (Contopus sordidu-

lus) had 493 nonzero counts in the validation set, and, as a
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result, its Mf estimates, especially c, were more precise,

with low correlation (u¼ 0.11 6 0.05 SE, c¼ 0.73 6 0.03

SE, correlation¼ 0.15). As the intercept (1� c) was higher,

the singing rates differed more between models (M0: u ¼
0.27 6 0.00 SE). This resulted in larger differences

between the 2 models in corrected relative counts, with

Mf being unbiased, although uncertainties (ranges of

confidence intervals) were comparable. The Connecticut

Warbler (Oporornis agilis) had 1,162 nonzero counts, and

had the most precise parameter estimates of the 3 example

species and the highest intercept (M0: u¼ 0.40 6 0.00 SE;

Mf: u¼ 0.17 6 0.04 SE, c¼ 0.54 6 0.03 SE, correlation¼
0.56), resulting in low bias and variance compared with the

other 2 species.

Relative Support for Models and Plotting Time-
varying Effects
We fit 44 conventional and finite mixture removal models

to 147 species detected during at least 75 point counts in

the full dataset (fitting finite mixture models was

unsuccessful for 5 species; Appendix Tables 2 and 3).

Finite mixture models were best-supported for 92% of the

147 species (Mf
u best-supported for 26%, Mf

c best-

supported for 66%; Table 1). The only species for which

the time-invariant (M0) model was best-supported based

on AICc was the Yellow-billed Cuckoo (Coccyzus ameri-

canus; n¼ 196). The best-supported models included time

since local sunrise (SR) for 75%, ordinal day (DY) for 39%,

and days since local spring (LS) for 37% of the species.

Best models included both time since sunrise and either

ordinal day or days since spring for 52% of the species

(Table 1).

Availability probabilities generally declined across the

observed ranges of times since sunrise, and were

consistently high between 0 and 4 hr after sunrise.

Responses were more variable before and after this 4-hr

period. Species’ responses to time since sunrise were

predominantly nonlinear (77 species with a quadratic and

33 with a linear relationship). Availability declined slowly

with respect to date, and was highest across species

between ordinal days 155 and 175 and 30–60 days after

local spring. Species’ responses to dates were predomi-

nantly linear for both ordinal day (40 species with a linear

relationship and 18 with a quadratic relationship) and days

since spring (35 species with a linear and 19 with a

quadratic relationship). The temporal patterns of predicted

availabilities across all species were very similar between

the different classes of time-varying removal models (M0
u,

Mf
u, and Mf

c; Figure 5).

The selection frequency for ordinal day (DY) was higher

for migratory species (41%, 51 out of 124) than for winter

residents (30%, 7 out of 23), but the difference was not

significant (v2¼0.54, P¼0.47). The selection frequency for

days since local spring (LS) was somewhat lower for

migrants (35%, 44 out of 124) than for resident species

(43%, 10 out of 23), also with a nonsignificant (v2¼0.93, P

¼ 0.34) difference (Table 1).

Removal Models vs. PIF Approach to Adjusting for
Incomplete Availability
Across 129 species of landbird, the PIF adjustment factor

(Tadj) for BBS counts had median value of 1.27 and ranged

from 1.03 to 25.88. The mean of the average availability

(pavg) across these species was 0.43 6 0.17 SD; the mean of

FIGURE 2. Estimates of availability probabilities for landbird species in northern North America from conventional (M0, 152 species)
and finite mixture (Mf, 147 species) removal models relative to point count duration (min). Dotted vertical lines indicate common
point count durations (3, 5, and 10 min).
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The Condor: Ornithological Applications 120:765–786, Q 2018 American Ornithological Society

Downloaded From: https://complete.bioone.org/journals/The-Condor on 20 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



the maximum availability (pmax) was 0.66 6 0.23 SD. Our

inverse availability based adjustment factor (Uinv) derived

from fitted removal models was 1.7 times higher than Tadj
(Uinv median ¼ 2.57, range ¼ 1.25–89.69); Uinv and Tadj
were not correlated (Spearman’s r ¼ 0.005, P ¼ 0.95).

Average availability was very low, and, as a result, Uinv was

very high for the Eastern Bluebird (n ¼ 99, Uinv ¼
6,788,866.26) and Rusty Blackbird (n ¼ 420, Uinv ¼
10,022.05) based on their best-supported finite mixture

models (Appendix Tables 2 and 3). We show these results

to demonstrate the problems that arise when numbers of

detections are too small for the mixture model. These 2

species were excluded from the comparisons.

DISCUSSION

Conventional vs. Finite Mixture Models
We evaluated alternate formulations of the time-removal

model (a conventional removal model and a finite mixture

removal model), with and without covariates, for 152 bird

species, using a compilation of point count data spanning

northern North America. We found that predicted

FIGURE 3. Sample size effects on (A) bias and (B) variance in removal model predictions of the number of individuals of a species
counted during a 10-min point count when using the counts of individuals from 3-min (gray) and 5-min (black) point counts. Data
from 133 landbird species with varying numbers of nonzero counts (horizontal axis) were used. The distributions represented by
each box are from species whose sample size was equal to or greater than the sample size noted on the horizontal axis. Model types
(conventional [M0] and finite mixture [Mf]) are shown side by side; boxes show the 90% quantile range, and lines (for bias) represent
the median.
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FIGURE 4. Availability probabilities (left) estimated from time-invariant conventional (M0) and finite mixture (Mf) removal models for
3 example species, the Rusty Blackbird (Euphagus carolinus; RUBL), Western Wood-Pewee (Contopus sordidulus; WEWP), and
Connecticut Warbler (Oporornis agilis; CONW), with 95% confidence intervals (gray shading). Corrected relative counts (right) were
calculated as the corrected count divided by the 10-min-based corrected count. Ratio ¼ 1 indicates unbiasedness; continuous
vertical lines are 95% confidence intervals. Dotted vertical lines indicate common point count durations (3 and 5 min).
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availability probabilities under conventional and finite

mixture models were very similar in their ranges of

probability values and shapes of their response curves to

predictor variables. However, finite mixture models were

supported for 92% of species with sufficient nonzero

counts, in accordance with previous studies that found that

mixture models provided better fit (Farnsworth et al. 2002,

Etterson et al. 2009, Reidy et al. 2011). By incorporating

variation in singing behavior within a survey event, the

finite mixture model relaxes the homogeneous singing rate

FIGURE 5. Availability probabilities estimated from 3 classes of time-varying removal models—(A) M0
u (conventional with time-

varying rate parameter), (B) Mf
u (finite mixture with time-varying rate parameter), and (C) Mf

c (finite mixture with time-varying
proportion of infrequent singers)—with covariate effects of hour since local sunrise, ordinal day, and day relative to local spring
overlaid for all terrestrial landbird species in northern North America for which the respective variable was part of the best-fit model
(see Table 1; other variables were conditioned at their means). Availability probabilities were based on 3-min point count duration.
Darker colors in the 2-dimensional kernel density plots indicate regions in which time-varying response curves of multiple species
overlap; the continuous contour line indicates the highest density region (75% quantile of the bivariate density). Dashed contours
indicate cumulative proportions of species with availability probabilities less than or equal to the value in the contour label
conditional on the value of the focal covariate on the horizontal axis.
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assumption of the conventional removal models, thus

reducing bias when using availability probabilities to adjust

survey counts for detectability.

Count duration had a profound effect on average

counts. In our data, the first 3-min and first 5-min counts

contained, on average, 59% and 73% of the full 10-min

counts from the same surveys. Both conventional and

finite mixture models reduced this bias considerably. Finite

mixture models adjusted the shorter-duration counts with

low bias (,1%), whereas conventional models tended to

underpredict counts by 5% for 3-min counts and

overpredict counts by 3% for 5-min counts when

compared with the 10-min counts from the same surveys.

The corrected counts using the conventional models were

characterized by much smaller variances (,1%) than

those from finite mixture models (,6%). However, the

variance of finite mixture model–based corrected counts

reached acceptable levels for species with at least 200

nonzero counts, the sample size for which bias reduction

was greatest.

We evaluated the number of nonzero counts needed to

reliably estimate the parameters of the removal models,

and found that conventional models required a minimum

of 50 nonzero counts, whereas finite mixture models

required at least 160 nonzero counts. This corroborates

the substantial reduction in variance of the adjusted counts

both within and among species at 200 nonzero counts. The

low precision of the finite mixture model parameters can
considerably inflate the variance of corrected relative

counts at low sample sizes (Figures 3 and 4), and at least

1,000 nonzero counts were required to reliably estimate

the variance–covariance matrix for finite mixture models.

Because the number of nonzero counts was correlated

with mean counts (relative abundances) of the study

species, it follows that less abundant species will require

larger samples for reasonable removal model estimates.

The 1,000 nonzero counts per species required for

mixture models (Amundson et al. 2014) is somewhat

greater than what is required by other models of detection

probability, such as distance sampling (Buckland et al.

2001:240). However, when sample sizes were sufficient, the

mixture models were nearly unbiased for most species

when adjusting point counts for protocol variation.

Because associated variances were often high, even with

much larger sample sizes, we recommend that researchers

compare results from conventional and finite mixture

models, preferring finite mixture models when the

estimates and their variances are not outlying values.

Otherwise, the benefits of potential bias reduction might

be obscured, especially at low detection rates.

Implications for Survey Design and Modeling
Counts of longer duration increased the numbers of

detections and were therefore effective for reducing bias

and variance in the estimates of availability and corrected

relative counts. We found that increasing the count

duration from 3 to 5 min reduced the range of variation

in bias (with respect to 10-min counts) across species, and

reduced variance by at least 50% for most species, using

both conventional and finite mixture models. Thus, when

designing field surveys, lengthening the count duration to

5 or 10 min is an important consideration to increase the

accuracy and precision of population estimates by

sampling design (Barker et al. 1993, Ralph et al. 1995,

Matsuoka et al. 2014). We recognize that shorter count

durations (3 min) are favored for logistical reasons, but the

choice of count duration must be based on a careful

consideration of the tradeoff between survey costs and

study objectives.

Longer count durations increase the chances that

individuals may move in or out of the surveyed area or

will be double counted, which violates assumptions of the

removal model and most other models of detectability

applied to point counts. Double counting was found to

comprise 0.9–3.4% of detections during experimental

point counts (Simons et al. 2009), and may also have been

low in our study. We excluded count intervals beyond 10

min to minimize the effect of movement-related biases on
our estimates. Although longer-duration counts might

have been inflated compared with counts in nested

subintervals, this would not have changed our conclusions

in terms of relative bias among different models.

We found that, among the 135 species for which finite

mixture models were found to fit better than conventional

models, for 72% there was more support for the models

with a time-varying proportion of infrequent singers, when

compared with the models with time-varying singing rates.

This indicates that our proposed mechanism of individuals

switching membership between the groups of frequent and

infrequent singers is more realistic than the alternative of

fixed proportions as used by previous studies (Farnsworth

et al. 2002, Aldredge et al. 2007a, Etterson et al. 2009,

Reidy et al. 2011). The overall patterns regarding responses

of singing rates to dates and times were very similar,

regardless of support across the model classes. The periods

when we found detectability to be high (0–4 hr after

sunrise and June 4–24 [ordinal day 155–175]; see Results)

agreed well with long-standing protocol recommendations

(Ralph et al. 1995). Conducting point counts during these

times of day and year will make surveys much more

efficient for accumulating detections and will thereby

improve the resulting accuracy and precision of abundance

estimates.

Besides these general guidelines, local and regional

context and study goals should also shape survey timing.

Although sunrise time already reflects geographic differ-

ences, weather and resulting local spring date can vary

considerably across years, thus influencing the timing of
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migration for nonresidents, and the timing of high vocal

activity for most species. Regional differences can also

introduce heterogeneity into bird availability through

geographic advancement of breeding through the growing

season. We captured this breeding progression with the

days since spring variable (vs. ordinal days). The fact that

the 2 predictors related to time of year were supported by

different species suggests differences among species’

plasticity of response to interannual variations in weather

conditions. We found no significant differences between

winter resident and migratory species with respect to

selection frequencies of time-of-year covariates. This

indicates that, although ordinal day and multidecadal

averages (our days since spring variable) are important

predictors of availability, time-of-year covariates are

inadequate for establishing linkages between breeding

phenology and weather events for migratory species (Both

and Visser 2001, Both et al. 2010). Estimating year-specific

effects with respect to days since spring vs. ordinal day

might be indicative of changes in breeding phenology with

a changing climate, which will be important to account for

in programs monitoring long-term changes in bird

population sizes. Accounting for year-to-year variation in

covariates is important given the large interannual

variation in spring green-up (15–20 days in the boreal

region; Delbart et al. 2006) and the strong indications of

advancing phenology in boreal and hemiboreal regions

with climate change (Linkosalo et al. 2009, Beaubien and

Hamann 2011).

Conclusions
Our study demonstrates the importance of accounting for

temporal heterogeneity in bird availability when analyzing

avian point count data. This is especially true when

combining data across studies with different locations,

sampling timeframes, or protocols. Location influences the

expected time of the breeding season, and the timing of

surveys relative to the local breeding season affects

availability, for example, through time-varying behaviors.

It is difficult to retrospectively control for these sources of

heterogeneity introduced by sampling design, and assum-

ing constant availability in space and time is unrealistic,

especially when analyzing heterogeneous and/or spatially

extensive datasets. Thus, a model-based approach to

analysis is required. We argue that the continuous time-

removal modeling framework outlined in this manuscript

is sufficient. Easily obtainable covariates, such as the ones

used in this study, can help to better correct availability

bias of counts.

Comparing our average availability-based corrections

with the time adjustment factors developed by Partners in

Flight (PIF; Rosenberg and Blancher 2005, Blancher et al.

2013), we found our removal model–based adjustment

factors to be 1.6 times higher. This was largely due to the

PIF assumption of 100% availability during the times of

day with the maximum counts, whereas our maximum

availability estimates for a 3-min point count averaged

66%. As a result, PIF population size estimates are most

likely to be underestimates for most species. This

availability-related underestimation is relatively small

compared with the 5-fold difference in population sizes

when adjusting point counts for perceptibility probability

using distance sampling versus PIF’s expert-derived ad-

justment for maximum detection distances (Matsuoka et

al. 2012). Similarly, both field tests (Confer et al. 2008) and

sensitivity analyses (Thogmartin 2010) have indicated that

PIF population size estimates are more strongly influenced

by the choice of adjustment for perceptibility (maximum

detection distance) than availability (time adjustment). We

feel that availability probabilities from removal models

could replace PIF’s time adjustment (Rosenberg and

Blancher 2005, Blancher et al. 2013) to modestly improve

population size estimates, particularly if covariates were

included in the removal models to account for date- and

time-related heterogeneity in singing rates (Thogmartin et

al. 2006). We did not find a correlation between correction

factors based on removal models and PIF’s time adjust-

ments, even after adjusting for maximum availability. This

is most likely due to geographic differences (mostly

nonboreal vs. boreal regions, respectively) and the on- vs.

off-road nature of the BBS and BAM datasets, which are

complexities to be tackled by future studies.

The probability of availability, given the presence of an

individual, can be efficiently estimated by conventional or

finite mixture type removal models, with or without

covariates for bird behavior. In this paper, we have outlined

a flexible and continuous-time parameterization of these

model types implemented in R package detect (Sólymos et

al. 2018). We have extended removal model methodology
to flexibly model time-varying finite mixture models using

covariates for either the singing rate (u) or the proportion
of infrequent singers (c) parameter. We found that the

choice of model had an impact on the estimability of

unknown model parameters, and that this choice also

affected the bias and variance of the corrected relative

counts. In general, a conventional removal model is

recommended for smaller sample sizes. Model selection

approaches can be used to compare support for different

parameterizations, but only at much higher sample sizes

(.200 nonzero counts, but preferably .1,000). Lengthen-

ing the count duration from 3 min to 5 or 10 min

increased sample sizes of detections and improved the

accuracy and precision of removal model estimates. Well-

informed survey design combined with various forms of

removal sampling are useful for accounting for availability

bias in point counts, thereby improving population size

estimates and allowing for better integration of disparate

studies at large spatial scales.
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APPENDIX FIGURE 6. Comparing estimates of removal model parameters based on data containing revisits vs. data without revisits
(within or between years) to the same point count location. Sample sizes were kept constant (1,000 or the unique locations with
detections, whichever was smallest); time-invariant conventional (M0) and finite mixture (Mf) removal model parameters (first row)
and their standard errors (second row) were estimated 200 times for each of 106 species using resampling without replacement.
Dots correspond to the medians of the 200 replicates. The continuous line corresponds to the fitted linear model, and the dashed
line indicates the expected 1:1 relationship. The fitted lines are close to the 1:1 relationship, indicating that using data from revisits
did not bias our parameter estimates and had no effect on the standard errors of the estimates; therefore, our conditional
independence assumption holds for our dataset, and our inferences and sample size recommendations based on revisit data are
unaffected.
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APPENDIX TABLE 2. Common and scientific names of the species used in this study evaluating the probability of availability during
point count surveys of terrestrial landbird species in northern North America, with number of nonzero counts (n) from the full
dataset of point count surveys, along with parameter estimates of availability (u: singing rate; c: proportion of infrequent singers)
from time-invariant models (conventional: M0; finite mixture: Mf).

Common name Scientific name n

M0
Mf

u u c

Ruffed Grouse Bonasa umbellus 2,730 0.2740 0.2307 0.8863
Willow Ptarmigan Lagopus lagopus 181 0.0571 0.0570 1.0000
Wild Turkey Meleagris gallopavo 180 0.2228 0.1300 0.8264
Mourning Dove Zenaida macroura 1,235 0.2339 0.0744 0.7871
Yellow-billed Cuckoo Coccyzus americanus 196 0.1547 0.1547 1.0000
Black-billed Cuckoo Coccyzus erythropthalmus 412 0.1256 0.0320 0.9364
Ruby-throated Hummingbird Archilochus colubris 289 0.0595 0.0173 0.9846
Killdeer Charadrius vociferus 758 0.2154 0.0923 0.7964
Upland Sandpiper Bartramia longicauda 364 0.1635 0.0425 0.8867
Long-billed Curlew Numenius americanus 439 0.2897 0.0989 0.6703
Marbled Godwit Limosa fedoa 705 0.2625 0.1348 0.7389
Rock Sandpiper Calidris ptilocnemis 141 0.2329 0.1438 0.8775
Wilson’s Snipe Gallinago delicata 5,358 0.2807 0.1246 0.7181
Spotted Sandpiper Actitis macularius 498 0.1765 0.1140 0.8861
Solitary Sandpiper Tringa solitaria 556 0.0994 0.0739 0.9689
Lesser Yellowlegs Tringa flavipes 914 0.1652 0.1652 1.0000
Willet Tringa semipalmata 738 0.2339 0.1274 0.7887
Greater Yellowlegs Tringa melanoleuca 922 0.2558 0.1128 0.7544
Belted Kingfisher Megaceryle alcyon 132 0.0663 N/A N/A
Red-bellied Woodpecker Melanerpes carolinus 419 0.1149 N/A N/A
Yellow-bellied Sapsucker Sphyrapicus varius 9,655 0.1547 0.0939 0.9036
Downy Woodpecker Picoides pubescens 1,201 0.1085 0.0202 0.9591
Hairy Woodpecker Picoides villosus 2,063 0.1332 0.0711 0.9190
American Three-toed Woodpecker Picoides dorsalis 421 0.1569 0.1354 0.9544
Black-backed Woodpecker Picoides arcticus 384 0.1970 0.1514 0.9028
Northern Flicker Colaptes auratus 3,502 0.1217 0.0702 0.9334
Pileated Woodpecker Dryocopus pileatus 2,386 0.1222 0.0535 0.9281
Olive-sided Flycatcher Contopus cooperi 1,495 0.2807 0.1937 0.7949
Western Wood-Pewee Contopus sordidulus 913 0.3061 0.1429 0.6788
Eastern Wood-Pewee Contopus virens 5,181 0.3059 0.1421 0.6879
Yellow-bellied Flycatcher Empidonax flaviventris 4,652 0.2721 0.1468 0.7481
Alder Flycatcher Empidonax alnorum 7,226 0.3205 0.2127 0.7415
Least Flycatcher Empidonax minimus 9,394 0.4174 0.1809 0.5275
Hammond’s Flycatcher Empidonax hammondii 416 0.2809 0.2809 1.0000
Eastern Phoebe Sayornis phoebe 250 0.1859 0.0401 0.8722
Great Crested Flycatcher Myiarchus crinitus 1,944 0.1678 0.0669 0.8760
Eastern Kingbird Tyrannus tyrannus 427 0.2436 0.1523 0.8126
Yellow-throated Vireo Vireo flavifrons 988 0.1995 0.0848 0.8338
Blue-headed Vireo Vireo solitarius 3,846 0.2200 0.0935 0.7980
Philadelphia Vireo Vireo philadelphicus 643 0.3471 0.1891 0.6552
Warbling Vireo Vireo gilvus 2,427 0.3330 0.1130 0.6031
Red-eyed Vireo Vireo olivaceus 30,338 0.3767 0.1755 0.5901
Gray Jay Perisoreus canadensis 8,443 0.1519 0.0953 0.9090
Blue Jay Cyanocitta cristata 10,494 0.1567 0.0959 0.9055
Black-billed Magpie Pica hudsonia 1,227 0.2313 0.1247 0.7944
American Crow Corvus brachyrhynchos 8,314 0.2572 0.1315 0.7611
Common Raven Corvus corax 6,150 0.1935 0.1127 0.8557
Horned Lark Eremophila alpestris 1,959 0.4921 0.1600 0.3909
Tree Swallow Tachycineta bicolor 1,060 0.2271 0.0650 0.8019
Bank Swallow Riparia riparia 146 0.2073 0.1374 0.8536
Cliff Swallow Petrochelidon pyrrhonota 88 0.2265 N/A N/A
Barn Swallow Hirundo rustica 224 0.1259 0.0594 0.9215
Black-capped Chickadee Poecile atricapillus 7,405 0.1697 0.1162 0.9044
Boreal Chickadee Poecile hudsonicus 2,078 0.1389 0.1128 0.9530
Red-breasted Nuthatch Sitta canadensis 8,103 0.1600 0.0774 0.8854
White-breasted Nuthatch Sitta carolinensis 1,735 0.1496 0.0250 0.9280
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APPENDIX TABLE 2. Continued.

Common name Scientific name n

M0
Mf

u u c

Brown Creeper Certhia americana 2,930 0.1803 0.1098 0.8795
House Wren Troglodytes aedon 2,180 0.4176 0.1387 0.5134
Winter Wren Troglodytes hiemalis 9,450 0.3478 0.1653 0.6240
Sedge Wren Cistothorus platensis 254 0.2858 0.1137 0.7312
Marsh Wren Cistothorus palustris 126 0.3757 0.0320 0.7333
Blue-gray Gnatcatcher Polioptila caerulea 534 0.2718 0.0514 0.7574
Golden-crowned Kinglet Regulus satrapa 3,987 0.2007 0.1266 0.8570
Ruby-crowned Kinglet Regulus calendula 11,782 0.2862 0.1724 0.7468
Arctic Warbler Phylloscopus borealis 139 0.2256 0.1144 0.7932
Eastern Bluebird Sialia sialis 99 0.0707 0.0144 0.9825
Townsend’s Solitaire Myadestes townsendi 92 0.1234 0.1234 1.0000
Veery Catharus fuscescens 10,332 0.2652 0.1489 0.7679
Gray-cheeked Thrush Catharus minimus 489 0.2145 0.1409 0.8440
Swainson’s Thrush Catharus ustulatus 19,357 0.3266 0.1761 0.6594
Hermit Thrush Catharus guttatus 17,623 0.3228 0.1656 0.6724
Wood Thrush Hylocichla mustelina 1,235 0.3051 0.1380 0.6861
American Robin Turdus migratorius 16,001 0.2332 0.1447 0.8219
Varied Thrush Ixoreus naevius 2,313 0.2517 0.2516 1.0000
Gray Catbird Dumetella carolinensis 819 0.2126 0.0925 0.8136
Brown Thrasher Toxostoma rufum 407 0.2839 0.1285 0.7128
European Starling Sturnus vulgaris 251 0.3268 0.0983 0.6104
Bohemian Waxwing Bombycilla garrulus 116 0.0554 0.0554 1.0000
Cedar Waxwing Bombycilla cedrorum 2,335 0.1143 0.0441 0.9373
House Sparrow Passer domesticus 227 0.4480 0.1069 0.4336
American Pipit Anthus rubescens 336 0.1885 0.0495 0.8554
Sprague’s Pipit Anthus spragueii 1,074 0.5236 0.1259 0.3526
Evening Grosbeak Coccothraustes vespertinus 627 0.1205 0.0531 0.9295
Pine Grosbeak Pinicola enucleator 213 0.0990 N/A N/A
Purple Finch Haemorhous purpureus 1,122 0.1104 0.0656 0.9465
Red Crossbill Loxia curvirostra 133 0.2605 0.1037 0.7269
White-winged Crossbill Loxia leucoptera 1,961 0.1287 0.1056 0.9594
Pine Siskin Spinus pinus 2,973 0.1738 0.0306 0.8934
American Goldfinch Spinus tristis 1,876 0.1136 0.0759 0.9494
Lapland Longspur Calcarius lapponicus 210 0.3021 0.1707 0.7759
Chestnut-collared Longspur Calcarius ornatus 535 0.5270 0.1728 0.3469
McCown’s Longspur Rhynchophanes mccownii 192 0.3554 0.0803 0.5752
Eastern Towhee Pipilo erythrophthalmus 836 0.2705 0.0835 0.7299
American Tree Sparrow Spizelloides arborea 1,059 0.2394 0.2394 1.0000
Chipping Sparrow Spizella passerina 15,060 0.2816 0.1142 0.7003
Clay-colored Sparrow Spizella pallida 4,469 0.4619 0.1492 0.4463
Field Sparrow Spizella pusilla 187 0.1825 0.1001 0.8681
Vesper Sparrow Pooecetes gramineus 3,128 0.5324 0.1608 0.3649
Savannah Sparrow Passerculus sandwichensis 5,048 0.4665 0.1737 0.4490
Grasshopper Sparrow Ammodramus savannarum 149 0.5503 0.2108 0.3472
Baird’s Sparrow Ammodramus bairdii 651 0.5525 0.2202 0.3531
LeConte’s Sparrow Ammodramus leconteii 1,312 0.5880 0.1555 0.4611
Nelson’s Sparrow Ammodramus nelsoni 109 0.2599 0.1252 0.7533
Fox Sparrow Passerella iliaca 2,243 0.2118 0.1795 0.9207
Song Sparrow Melospiza melodia 3,961 0.2912 0.1643 0.7355
Lincoln’s Sparrow Melospiza lincolnii 5,930 0.3054 0.1585 0.7016
Swamp Sparrow Melospiza georgiana 2,677 0.2512 0.0973 0.7605
White-throated Sparrow Zonotrichia albicollis 28,598 0.3012 0.1417 0.6852
White-crowned Sparrow Zonotrichia leucophrys 2,752 0.2656 0.2628 0.9917
Golden-crowned Sparrow Zonotrichia atricapilla 299 0.2010 0.2010 1.0000
Dark-eyed Junco Junco hyemalis 10,061 0.2222 0.1983 0.9404
Yellow-headed Blackbird Xanthocephalus xanthocephalus 444 0.4409 0.2277 0.5533
Western Meadowlark Sturnella neglecta 2,663 0.6920 0.1980 0.2181
Baltimore Oriole Icterus galbula 572 0.2227 0.0322 0.8473
Red-winged Blackbird Agelaius phoeniceus 4,060 0.3943 0.1549 0.5374
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APPENDIX TABLE 2. Continued.

Common name Scientific name n

M0
Mf

u u c

Brown-headed Cowbird Molothrus ater 3,694 0.2042 0.0960 0.8223
Rusty Blackbird Euphagus carolinus 420 0.1569 0.0777 0.8956
Brewer’s Blackbird Euphagus cyanocephalus 346 0.2822 N/A N/A
Common Grackle Quiscalus quiscula 153 0.2247 0.1217 0.8037
Ovenbird Seiurus aurocapilla 34,929 0.3870 0.1797 0.5774
Northern Waterthrush Parkesia noveboracensis 2,890 0.2517 0.1307 0.7644
Golden-winged Warbler Vermivora chrysoptera 933 0.2143 0.0680 0.8144
Blue-winged Warbler Vermivora cyanoptera 154 0.2341 0.0361 0.8174
Black-and-white Warbler Mniotilta varia 7,578 0.2439 0.1114 0.7702
Tennessee Warbler Oreothlypis peregrina 15,533 0.4508 0.1311 0.4354
Orange-crowned Warbler Oreothlypis celata 3,081 0.2048 0.2048 1.0000
Nashville Warbler Oreothlypis ruficapilla 14,703 0.3345 0.1531 0.6494
Connecticut Warbler Oporornis agilis 1,677 0.4305 0.2018 0.5186
Mourning Warbler Geothlypis philadelphia 6,558 0.2999 0.1536 0.7048
Common Yellowthroat Geothlypis trichas 7,698 0.3092 0.1588 0.6961
American Redstart Setophaga ruticilla 7,266 0.3108 0.1432 0.6719
Cape May Warbler Setophaga tigrina 1,905 0.2760 0.1020 0.7063
Northern Parula Setophaga americana 3,095 0.2363 0.0936 0.7782
Magnolia Warbler Setophaga magnolia 9,264 0.2796 0.1291 0.6952
Bay-breasted Warbler Setophaga castanea 2,561 0.2935 0.0688 0.6728
Blackburnian Warbler Setophaga fusca 5,530 0.2694 0.1376 0.7494
Yellow Warbler Setophaga petechia 3,678 0.3289 0.1985 0.6977
Chestnut-sided Warbler Setophaga pensylvanica 10,324 0.2968 0.1583 0.7196
Blackpoll Warbler Setophaga striata 658 0.2628 0.0936 0.7093
Black-throated Blue Warbler Setophaga caerulescens 1,125 0.2432 0.0916 0.7273
Palm Warbler Setophaga palmarum 3,193 0.3360 0.1074 0.6114
Pine Warbler Setophaga pinus 2,226 0.2386 0.1252 0.7923
Yellow-rumped Warbler Setophaga coronata 24,714 0.2871 0.1506 0.7170
Townsend’s Warbler Setophaga townsendi 545 0.1235 0.1235 1.0000
Black-throated Green Warbler Setophaga virens 8,422 0.2873 0.1400 0.7149
Canada Warbler Cardellina canadensis 3,851 0.3001 0.1542 0.7009
Wilson’s Warbler Cardellina pusilla 2,127 0.2541 0.2065 0.8799
Scarlet Tanager Piranga olivacea 3,276 0.1924 0.0881 0.8430
Western Tanager Piranga ludoviciana 3,238 0.2895 0.1331 0.6775
Northern Cardinal Cardinalis cardinalis 691 0.2976 0.0786 0.6895
Rose-breasted Grosbeak Pheucticus ludovicianus 9,770 0.2555 0.1249 0.7578
Indigo Bunting Passerina cyanea 1,217 0.2399 0.1140 0.7812
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APPENDIX TABLE 3. Migratory status and best-supported models for probability of availability during point count surveys of
terrestrial landbird species in northern North America, based on comparing the 3 classes of time-varying removal models (see Table
1 for model IDs). The column ‘Best’ considers all 3 classes (model ID is ,class. ,model ID.) and time adjustment values (PIF’s
[Partners in Flight] time adjustment: Tadj; and inverse availability based measures: Uinv). Migratory status: WR¼winter resident; SD¼
short-distance migrant; LD¼ long-distance migrant. Model classes: M0

u¼ conventional with time-varying rate parameter; Mf
u¼ finite

mixture with time-varying rate parameter; and Mf
c ¼ finite mixture with time-varying proportion of infrequent singers.

Common name Migratory status Best M0
u Best Mf

u Best Mf
c Best: All Tadj Uinv

Ruffed Grouse WR 6 13 7 Mf
c 7 N/A 1.89

Willow Ptarmigan WR 8 7 0 Mf
u 7 1.27 89.69

Wild Turkey SD 7 13 13 Mf
c 13 1.27 3.20

Mourning Dove SD 11 11 11 Mf
c 11 1.06 2.57

Yellow-billed Cuckoo LD 0 0 0 M0 0 1.27 2.69
Black-billed Cuckoo LD 0 1 0 Mf

u 1 1.16 5.45
Ruby-throated Hummingbird LD 10 3 0 Mf

u 3 1.27 39.43
Killdeer SD 10 3 10 Mf

c 10 N/A 2.59
Upland Sandpiper LD 1 10 1 Mf

c 1 N/A 6.62
Long-billed Curlew SD 11 11 11 Mf

c 11 N/A 2.23
Marbled Godwit SD 13 13 4 Mf

u 13 N/A 2.93
Rock Sandpiper SD 9 9 9 Mf

c 9 N/A 1.28
Wilson’s Snipe LD 6 2 6 Mf

c 6 N/A 2.10
Spotted Sandpiper LD 3 0 4 Mf

c 4 N/A 3.20
Solitary Sandpiper LD 4 13 4 Mf

c 4 N/A 10.57
Lesser Yellowlegs SD 7 7 0 M0

u 7 N/A 2.57
Willet LD 10 9 4 Mf

u 9 N/A 2.40
Greater Yellowlegs SD 6 7 3 Mf

u 7 N/A 8.89
Belted Kingfisher SD 0 N/A N/A N/A 1.27 5.55
Red-bellied Woodpecker WR 1 N/A N/A N/A 2.25 3.43
Yellow-bellied Sapsucker SD 6 6 7 Mf

c 7 N/A 3.24
Downy Woodpecker WR 4 13 4 Mf

u 13 11.62 27.08
Hairy Woodpecker WR 0 1 0 Mf

u 1 1.21 4.19
American Three-toed Woodpecker WR 9 9 13 Mf

c 13 1.14 2.72
Black-backed Woodpecker WR 10 10 10 Mf

u 10 2.54 2.67
Northern Flicker SD 1 7 7 Mf

c 7 1.45 4.05
Pileated Woodpecker WR 6 5 12 Mf

u 5 1.06 5.12
Olive-sided Flycatcher LD 10 4 13 Mf

c 13 1.13 1.83
Western Wood-Pewee LD 2 5 0 Mf

u 5 1.27 2.16
Eastern Wood-Pewee LD 12 12 12 Mf

c 12 1.92 1.88
Yellow-bellied Flycatcher LD 6 7 3 Mf

c 3 N/A 1.97
Alder Flycatcher LD 8 8 7 Mf

c 7 25.88 1.71
Least Flycatcher LD 13 13 13 Mf

c 13 1.61 1.49
Hammond’s Flycatcher LD 3 3 0 M0

u 3 1.60 1.93
Eastern Phoebe SD 2 2 2 Mf

c 2 1.19 4.66
Great Crested Flycatcher LD 1 1 1 Mf

c 1 1.34 3.58
Eastern Kingbird LD 4 12 13 Mf

c 13 1.19 1.64
Yellow-throated Vireo LD 3 1 9 Mf

c 9 1.27 3.15
Blue-headed Vireo SD 7 5 7 Mf

c 7 1.27 2.52
Philadelphia Vireo LD 12 2 2 Mf

u 2 1.27 1.65
Warbling Vireo LD 3 10 3 Mf

c 3 1.27 1.82
Red-eyed Vireo LD 11 7 11 Mf

c 11 1.27 1.55
Gray Jay WR 1 14 7 Mf

c 7 1.27 3.47
Blue Jay WR 13 4 13 Mf

c 13 1.42 3.36
Black-billed Magpie WR 4 9 4 Mf

c 4 1.40 2.86
American Crow SD 11 7 11 Mf

c 11 1.07 2.09
Common Raven WR 13 13 4 Mf

c 4 1.42 2.78
Horned Lark SD 13 3 7 Mf

c 7 1.37 1.70
Tree Swallow LD 13 5 4 Mf

c 4 N/A 2.93
Bank Swallow LD 2 10 10 Mf

c 10 1.47 2.41
Cliff Swallow LD 7 N/A N/A N/A 25.88 2.03
Barn Swallow LD 3 0 3 M0

u 3 1.91 3.30
Black-capped Chickadee WR 9 11 13 Mf

c 13 1.60 3.00
Boreal Chickadee WR 14 4 4 Mf

c 4 1.24 3.83
Red-breasted Nuthatch WR 2 13 13 Mf

c 13 1.48 3.49
White-breasted Nuthatch WR 12 12 10 Mf

c 10 1.27 8.38
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APPENDIX TABLE 3. Continued.

Common name Migratory status Best M0
u Best Mf

u Best Mf
c Best: All Tadj Uinv

Brown Creeper WR 3 1 10 Mf
c 10 1.13 2.76

House Wren LD 8 13 13 Mf
c 13 1.52 1.65

Winter Wren SD 12 11 12 Mf
c 12 1.51 1.62

Sedge Wren SD 12 9 10 Mf
c 10 1.27 1.89

Marsh Wren SD 6 2 2 Mf
u 2 1.13 2.21

Blue-gray Gnatcatcher SD 2 4 2 Mf
u 4 1.14 2.48

Golden-crowned Kinglet SD 7 1 13 Mf
c 13 1.36 2.59

Ruby-crowned Kinglet SD 6 8 3 Mf
c 3 1.27 1.94

Arctic Warbler WR 0 4 0 Mf
u 4 1.34 6.05

Eastern Bluebird SD 7 1 7 Mf
c 7 1.10 6,788,866.26

Townsend’s Solitaire SD 2 2 0 M0
u 2 1.27 1.50

Veery LD 5 11 5 Mf
c 5 1.27 2.00

Gray-cheeked Thrush LD 0 1 0 Mf
u 1 1.15 2.63

Swainson’s Thrush LD 14 13 14 Mf
c 14 N/A 1.70

Hermit Thrush SD 13 4 4 Mf
c 4 1.06 1.79

Wood Thrush LD 7 4 7 Mf
u 4 1.27 1.56

American Robin SD 7 7 8 Mf
c 8 1.19 2.27

Varied Thrush SD 7 7 0 M0
u 7 1.89 1.92

Gray Catbird SD 7 5 4 Mf
u 5 1.14 2.62

Brown Thrasher SD 3 0 3 Mf
c 3 1.88 2.46

European Starling SD 7 7 7 Mf
c 7 1.23 2.11

Bohemian Waxwing WR 1 1 0 M0
u 1 2.47 5.98

Cedar Waxwing SD 10 3 2 Mf
u 3 1.33 5.61

House Sparrow WR 12 0 2 Mf
c 2 1.67 1.36

American Pipit LD 3 10 0 Mf
u 10 1.19 1.56

Sprague’s Pipit SD 12 1 1 Mf
u 1 1.27 1.41

Evening Grosbeak WR 13 13 4 M0
u 13 1.19 3.37

Pine Grosbeak WR 9 N/A N/A N/A 1.16 3.89
Purple Finch SD 7 4 7 Mf

c 7 1.14 3.79
Red Crossbill WR 12 10 10 Mf

c 10 1.29 2.23
White-winged Crossbill WR 8 7 8 Mf

c 8 1.75 7.43
Pine Siskin SD 14 12 4 Mf

c 4 1.10 5.46
American Goldfinch SD 1 1 0 Mf

u 1 1.71 3.97
Lapland Longspur SD 13 13 4 Mf

u 13 1.57 3.37
Chestnut-collared Longspur SD 11 2 7 Mf

u 2 1.12 1.36
McCown’s Longspur SD 11 5 5 Mf

u 5 1.15 3.35
Eastern Towhee SD 10 2 9 Mf

c 9 1.32 2.26
American Tree Sparrow SD 11 11 0 M0

u 11 1.27 2.18
Chipping Sparrow SD 13 4 11 Mf

c 11 1.68 2.08
Clay-colored Sparrow LD 13 7 13 Mf

c 13 1.21 1.59
Field Sparrow SD 4 0 4 Mf

c 4 1.77 3.94
Vesper Sparrow SD 6 5 5 Mf

c 5 N/A 1.47
Savannah Sparrow SD 14 7 13 Mf

c 13 N/A 1.38
Grasshopper Sparrow SD 4 4 4 Mf

u 4 1.13 1.70
Baird’s Sparrow SD 4 4 4 Mf

c 4 3.36 1.48
LeConte’s Sparrow SD 14 10 10 Mf

c 10 1.33 1.38
Nelson’s Sparrow LD 2 2 2 Mf

u 2 1.45 2.57
Fox Sparrow SD 8 7 7 M0

u 8 2.46 2.41
Song Sparrow SD 2 5 2 Mf

u 5 N/A 1.84
Lincoln’s Sparrow SD 7 7 7 Mf

c 7 2.10 1.97
Swamp Sparrow SD 6 11 12 Mf

c 12 1.27 2.23
White-throated Sparrow SD 14 14 14 Mf

c 14 1.18 1.87
White-crowned Sparrow SD 12 12 4 Mf

c 4 1.27 1.73
Golden-crowned Sparrow SD 6 3 0 M0

u 6 19.50 6.51
Dark-eyed Junco SD 13 13 13 Mf

c 13 1.27 2.15
Yellow-headed Blackbird LD 1 3 10 Mf

u 3 1.50 1.34
Western Meadowlark SD 12 4 4 Mf

c 4 1.27 1.25
Baltimore Oriole LD 0 9 4 Mf

u 9 1.03 3.45
Red-winged Blackbird SD 13 7 13 Mf

c 13 N/A 1.75
Brown-headed Cowbird SD 13 13 13 Mf

c 13 1.16 2.83
Rusty Blackbird SD 3 4 7 Mf

u 4 N/A 10,022.05
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APPENDIX TABLE 3. Continued.

Common name Migratory status Best M0
u Best Mf

u Best Mf
c Best: All Tadj Uinv

Brewer’s Blackbird SD 12 N/A N/A N/A 1.71 1.75
Common Grackle SD 3 1 3 Mf

u 1 1.17 2.72
Ovenbird LD 7 7 7 Mf

c 7 1.12 1.50
Northern Waterthrush LD 7 8 7 Mf

c 7 1.21 2.32
Golden-winged Warbler LD 4 0 4 Mf

c 4 1.53 3.50
Blue-winged Warbler LD 3 2 0 Mf

u 2 1.41 6.05
Black-and-white Warbler LD 7 13 13 Mf

c 13 1.27 2.18
Tennessee Warbler LD 6 7 7 Mf

c 7 1.27 1.49
Orange-crowned Warbler SD 6 8 0 Mf

u 8 1.83 1.85
Nashville Warbler LD 7 9 8 Mf

c 8 1.58 1.77
Connecticut Warbler LD 10 10 10 Mf

c 10 1.15 1.41
Mourning Warbler LD 6 12 11 Mf

u 12 1.14 1.82
Common Yellowthroat SD 4 2 4 Mf

c 4 1.18 1.78
American Redstart LD 13 10 7 Mf

c 7 1.27 1.82
Cape May Warbler LD 6 2 11 Mf

c 11 1.09 2.23
Northern Parula LD 3 4 5 Mf

u 4 1.07 2.66
Magnolia Warbler LD 5 5 5 Mf

c 5 1.51 1.96
Bay-breasted Warbler LD 5 2 2 Mf

c 2 1.72 2.31
Blackburnian Warbler LD 12 2 10 Mf

c 10 1.42 2.02
Yellow Warbler LD 7 7 8 Mf

c 8 10.00 1.88
Chestnut-sided Warbler LD 4 4 4 Mf

c 4 1.15 1.88
Blackpoll Warbler LD 7 13 7 Mf

c 7 1.27 2.50
Black-throated Blue Warbler LD 0 9 10 Mf

u 9 1.17 2.47
Palm Warbler LD 7 13 13 Mf

c 13 1.74 1.90
Pine Warbler SD 4 4 4 Mf

u 4 2.32 1.92
Yellow-rumped Warbler SD 7 7 7 Mf

c 7 1.66 1.97
Townsend’s Warbler LD 6 14 0 M0

u 6 N/A 2.22
Black-throated Green Warbler LD 5 7 7 Mf

c 7 1.14 1.87
Canada Warbler LD 7 2 7 Mf

c 7 1.29 1.77
Wilson’s Warbler LD 13 13 13 Mf

c 13 1.27 1.92
Scarlet Tanager LD 4 0 4 Mf

c 4 20.00 2.40
Western Tanager LD 5 2 12 Mf

c 12 1.27 1.99
Northern Cardinal WR 2 2 2 Mf

c 2 1.60 2.24
Rose-breasted Grosbeak LD 14 13 10 Mf

c 10 1.27 2.10
Indigo Bunting LD 4 5 4 Mf

c 4 1.53 1.86
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