
Spatial Modeling of Red Spider Mite Oligonychus
punicae (Acari: Tetranychidae) in Avocado Crop

Authors: Lara-Vázquez, Fidel, Ramírez-Dávila, José Francisco,
Figueroa-Figueroa, Dulce Karen, Tapia-Rodríguez, Atenas, and
González-Huerta, Andrés

Source: Florida Entomologist, 106(4) : 211-219

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.106.0402

The BioOne Digital Library (https://bioone.org/) provides worldwide distribution for more than 580 journals
and eBooks from BioOne’s community of over 150 nonprofit societies, research institutions, and university
presses in the biological, ecological, and environmental sciences. The BioOne Digital Library encompasses
the flagship aggregation BioOne Complete (https://bioone.org/subscribe), the BioOne Complete Archive
(https://bioone.org/archive), and the BioOne eBooks program offerings ESA eBook Collection
(https://bioone.org/esa-ebooks) and CSIRO Publishing BioSelect Collection (https://bioone.org/csiro-
ebooks).

Your use of this PDF, the BioOne Digital Library, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Digital Library content is strictly limited to personal, educational, and non-commmercial
use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher
as copyright holder.

BioOne is an innovative nonprofit that sees sustainable scholarly publishing as an inherently collaborative enterprise
connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common
goal of maximizing access to critical research.

Downloaded From: https://complete.bioone.org/journals/Florida-Entomologist on 17 Jul 2025
Terms of Use: https://complete.bioone.org/terms-of-use



1Autonomous University of the State of Mexico, Cerrillo Piedras Blancas n/n km 15. Toluca, 50200. Mexico, E-mail: fidel.lara@hotmail.com (F.L-V.),  
dk_figueroa@hotmail.com (D.K.F-F.), atenastp@gmail.com (A.T-R.), agonzalezh@uaemex.mx (A.G-H.)
2 Laboratory of Entomology Research and Technology in Precision Farming, UAEM, Cerrillo Piedras Blancas n/n km 15. Toluca, 50200. México,  
E-mail: jframirezd@uaemex.mx (J.F.R-D.).
*Corresponding author; jframirezd@uaemex.mx (J.F.R-D.)

2023 — Florida Entomologist — Volume 106, No. 4 211

Spatial modeling of red spider mite Oligonychus punicae 
(Acari: Tetranychidae) in avocado crop
Fidel Lara-Vázquez1, José Francisco Ramírez-Dávila2,*, Dulce Karen Figueroa-Figueroa1, 
Atenas Tapia-Rodríguez1, and Andrés González-Huerta1

Abstract

In recent years, there has been a rising concern in society to produce quality food in a sustainable manner. New alternatives in pest control have 
been researched to help mitigate the environmental impact. In traditional agriculture, pesticides are applied uniformly, without considering spatial 
and temporary variables, but application rates could be adjusted according to the incidence with the assistance of distribution maps; thus, contrib-
uting to improve environmental balance and production costs. Avocado (Persea americana Mill.; Lauraceae) generates huge economic benefits in 
the localities where it is grown. Red spider mite (Oligonychus punicae Hirst.; Acari: Tetranychidae) is among the main pests that attack this crop. It 
causes damage to the epidermis of the leaves in such a way that the injured areas discolor and the edges of the leaves are deformed as a result of 
the removal of the cellular content from the tissues. Therefore, the objective of the present work was the determination of the spatial pattern of this 
pest, by means of geostatistics and spatial analysis by distance indices (SADIE). The adjusted semivariograms as well as the indices show that the red 
spider mite is distributed in aggregations. The generated maps showing the infested surface will permit pest management programs to direct control 
measures to the areas with the highest incidence, resulting in a lower level of economic damage.

Key Words: mites; geostatistics; kriging; density maps; SADIE

Resumen

En los últimos años ha aumentado la preocupación de la sociedad por producir alimentos de calidad de forma sostenible. Se han investigado nuevas 
alternativas en el control de plagas para ayudar a mitigar el impacto ambiental. En la agricultura tradicional, los plaguicidas se aplican de manera 
uniforme, sin tener en cuenta variables espaciales y temporales, pero las dosis de aplicación podrían ajustarse en función de la incidencia con la ayuda 
de mapas de distribución; contribuyendo así a mejorar el equilibrio medioambiental y los costes de producción. El aguacate (Persea americana Mill.; 
Lauraceae) genera enormes beneficios económicos en las localidades donde se cultiva. La araña roja (Oligonychus punicae Hirst.; Acari: Tetranychi-
dae) es una de las principales plagas que atacan a este cultivo. Provoca daños en la epidermis de las hojas de tal forma que las zonas lesionadas se 
decoloran y los bordes de las hojas se deforman como consecuencia de la eliminación del contenido celular de los tejidos. Por ello, el objetivo del 
presente trabajo fue la determinación del patrón espacial de esta plaga, mediante geoestadística y análisis espacial por índices de distancia (SADIE). 
Los semivariogramas ajustados así como lo índice muestran que la araña roja se distribuye en agregaciones. Los mapas generados mostrando la 
superficie infestada permitirán a los programas de control de plagas dirigir las medidas de control a las zonas con mayor incidencia, lo que redundará 
en un menor nivel de daños económicos.

Palabras Clave: ácaros; geoestadística; kriging; mapas de densidad; SADIE

Avocado (Persea americana Mill.; Lauraceae) cultivar ‘Hass’ is one 
of the main fruit crops in Mexico due to its importance in national and 
international markets. Its worldwide production is estimated at 4.2 mil-
lion tons. Mexico is the most important producer with an annual aver-
age production of 1.8 million tons distributed in 205 thousand ha, with 
a yield of 10.18 ton/ha (SIAP 2019).

Avocado crops present many pests, among them: thrips (Franklini-
ella spp.; Thysanoptera: Thripidae), mites (Oligonychus punicae Hirst. 
and O. perseae Tuttle; Acari: Tetranychidae), trunk and branch borer 
(Copturus aguacatae Kissinger; Coleoptera: Curculionidae), avocado 
leafhopper (Idona minuenda Ball; Hemiptera: Cicadellidae), white-
flies (Tetraleurodes spp.; Hemiptera: Aleyrodidae), avocado leafroller 

(Amorbia cunneana Walsingham; Lepidoptera: Tortricidae), avocado 
leafminer (Gracilaria perseae Busck; Lepidoptera: Gracillariidae), and 
avocado seed borers (Conotrachelus perseae Barber and C. aguacatae 
Barber; Coleoptera: Curculionidae) (Equihua-Martínez et al. 2016).

Among the pests, the mite O. punicae, also known as the red spi-
der mite, has become important to avocado crops because it feeds on 
the foliage, by inserting its stylet into the plant tissue, causing reddish 
spots. When damage is severe, it causes the collapse of the mesophyll, 
which results in defoliation and reduction in production. The mite is 
present all year round in Mexico, but its highest incidence is in spring 
and autumn. This pest is distributed in North and South America, as 
well as in European and Asian countries (Chávez-Acosta 2020). Tradi-
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tionally, to control this pest, chemical products were utilized, however 
they have lost their efficacy due to misuse, which has resulted in the 
development of resistance (Correa-Méndez et al. 2018).

There have been numerous investigations in spatial distribution 
modelling of insects, diseases, and mites in avocado. In relation to in-
sects, Acosta-Guadarrama et al. (2017) carried out a study using geo-
statistical techniques to study spatial distribution of Thrips spp. (Thy-
sanoptera) and assessment of its control by the predator Amblyseius 
swirskii Athias-Henriot (Acari: Phytoseiidae) in avocado crops. On the 
topic of diseases, Osorio-Almanza et al. (2017) worked with spatial dis-
tribution of the potential risk of avocado wilting caused by Phytoph-
tora cinnamomi (Pythiaceae). With regards to mites, Landeros et al. 
(2003) studied the spatial distribution and population fluctuation of 
Phyllocoptruta oleivora (Ashmead) (Acari: Eriophyidae) in citrus crops 
and López- López et al. (2011) studied spatial distribution and effect of 
population densities of Tetranychus urticae Koch on feed corn yield. 
The use of techniques to model spatial distribution has proven to be 
an efficient tool to determine the spatial distribution of pests and dis-
eases allowing pest managers to locate aggregations so that targeted 
management strategies can be carried out in economically important 
crops (Rivera-Martínez et al. 2017; Lara-Díaz et al. 2020).

Spatial analysis by distance indices (SADIE) identify the spatial 
model for two-dimensional data, with an associated index of aggrega-
tion and a test for deviation from randomness based on an attraction 
algorithm, which incorporates a biological model for the dispersion of 
individuals from an origin in which each individual is assigned a dy-
namic territory. Perry et al. (1996) indicated that for data collected at 
specific locations the use of distance for regularity is well suited and 
demonstrated how to distinguish non-randomness in the form of sta-
tistical heterogeneity from spatial non-randomness. Perry et al. (1996) 
developed and extended the use of the distance index for regularity 
(Ia) for establishing the spatial structure of insect populations. In ad-
dition, he introduced 2 diagnostic diagrams to aid interpretation and 
a new index for estimating the number of cluster foci in a population, 
the Ja index.

Monitoring O. punicae populations is necessary to understand how 
mite populations are distributed in avocado crops, which would help 
elaborate control strategies (Liang et al. 2020). Therefore, the objec-
tive of the present work was to determine the spatial distribution of O. 
punicae in avocado crops using geostatistical techniques.

Materials and Methods

STUDY AREA

The study was carried out in the municipalities of Tenancingo de 
Degollado (18.9500000 °N, 99.5833333 °W) average altitude 2,031 
masl and Temascaltepec (19.0233333 °N, 100.0227778 °W) average 
altitude 1,740 masl, in eight 2-ha plots per municipality. All plots were 
subject to the same agronomic management without application of 
pesticides during the measurement period. In all plots the age of the 
trees was greater than 8 yrs and with a foliar coverage between trees 
close to 100%. In the study area there are 2 seasons of vegetative 
growth (Dec–Apr and Oct–Nov), flowering (Dec–Feb and Aug–Oct), 
harvesting (Nov–Feb and Aug–Oct), and root growth (Apr–Jul and 
Oct–Dec). Sampling was done by quadrant methodology, which con-
sisted of dividing the plot in 50 quadrants of 20 × 20 m. Twenty-five 
quadrants were randomly taken per plot where 2 trees were selected, 
each 1 of the 50 trees per plot was marked and georeferenced using a 
GPSmap60 (Garmin) to obtain its coordinates, with a margin of error 
of 2 to 3 m.

SAMPLING OF MITES

A monthly sampling was carried out from Oct 2019 to May 2020. 
The number of mites per leaf was counted with a 20× magnifica-
tion lens. Sixty leaves per tree were selected taking 5 leaves in each 
of 3 strata (lower, middle, and upper), in each cardinal point of the 
tree (north, east, west, and south) (González 2012; Ramírez Dávila & 
Figueroa Figueroa 2013; Maldonado-Zamora et al. 2017).

DATA ANALYSIS

A statistical exploration was carried out in the original data popula-
tions of O. punicae for each sampling. The asymmetry coefficient and 
the kurtosis test were used to determine the normality of the data. 
It was determined that all data had a normal distribution (Martínez-
Martínez et al. 2021).

Geostatistical Analysis

The experimental semivariogram was estimated with data ob-
tained from samples of O. punicae (Isaaks & Srivastava 1989; Pasini et 
al. 2020). The experimental semivariogram obtained was adjusted to a 
theoretical semivariogram. The theoretical models used were spheri-
cal and gaussian. Finally, nugget effect, sill, and range values were 
determined (Englund & Sparks 1988; Maldonado-Zamora et al. 2017; 
Contreras Velásquez 2020).

Validation of the theoretical model was carried out interactively, 
varying the values ‘Co’ (nugget effect), ‘C + Co’ (sill) and ‘a’ (range), un-
til the best fit was obtained. Once these values were determined, they 
were validated through the determination of cross validation statistical 
parameters such as: mean of estimation errors (MEE), mean quadratic 
error (ECM) and mean dimensionless quadratic error (ECMA) (Tapia 
Rodríguez et al. 2020).

The level of spatial dependence was calculated to determine the 
degree of relationship that the corresponding data store. This value 
is obtained by dividing the nugget effect by the sill, and the result is 
expressed as a percentage, less than 25% is high spatial dependence, 
between 26 and 75% is moderate and over 76% is low (Cambardella 
et al. 1994).

Finally, once the semivariogram models were validated, density 
maps were produced. The spatial interpolation was performed using 
the ordinary kriging method, which allows the estimation of values as-
sociated to points that were not sampled. The program Surfer 9 (Sur-
face Mapping System, Golden Software Inc., Golden, Colorado, USA) 
was used to prepare the density maps. The estimation of the infested 
surface was carried out using the density maps for each sampled date 
(Tapia Rodríguez et al. 2020).

Estimation of the spatial analysis by distance indices 
(SADIE) Ia and Ja

According to Ramírez-Dávila et al. (2012) individuals are the sam-
pling units i = 1,.... n, remaining two-dimensionally (Xi , Yi ) for each 
sampling unit, their count is contained in Ni; the aggregation index Ia 
is defined as Ia =D/Ea, where D (distance for regularity) is the minimum 
value of the distance in which the individuals could have moved from 
one sampling unit to another and Ea is the distance of the arithmetic 
mean for the regularity of the samples. Pa (probability of aggregation) 
represents the proportion of samples selected randomly with distance 
for regularity as big as, or bigger than, the observed value, D. With 
respect to Pa (probability of aggregation), the null hypothesis can be 
rejected, if Pa < 0.025 (in favor of an alternative hypothesis), or if Pa > 
0.975 (in favor of the regularity alternative) given the usual 5% prob-
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ability. The aggregation index Ja, on the other hand, is given as Ja = Fa 
/C, where Fa is the average clustering distance for random samples and 
C (distance for clustering) is the value of the distance that individuals 
must move to congregate in a unit. Random permutations of the ob-
served counts lead to a ratio called Qa (clustering probability) with a 
very small distance to the clustering, or less than the observed value, 
C. With respect to Qa (clustering probability) the null hypothesis of 
randomness can be rejected if Qa < 0.025 (in favor of the aggregation 
alternative) or if Qa > 0.975 (in favor of the regularity alternative).

Therefore, the sample is aggregated if Ia > 1, it is random if Ia = 
1 and it is regular if Ia < 1; on the other hand, if Ja > 1 the sample is 
aggregated, if Ja = 1 it is spatially random and if Ja < 1 the sample is 
regular. The values of Ja index are used to confirm the results obtained 
with the Ia index. To determine the significance with respect to the unit 
its respective probability is used (Qa) (Perry 1998). The program used 
was SADIE 1.2 (Perry et al. 1996).

Results

It was possible to carry out the modeling and mapping of the 
populations of O. punicae in the avocado plots with the results of the 
monthly sampling. It was also possible to determine the spatial be-
havior of this mite in the short term, establishing the percentage of 
infestation in each sampling per plot.

The average populations of O. punicae varied within plots and date 
of sampling; for Tenancingo municipality the lowest density was reg-
istered in Dec in plot 1 with 21.62 mites per leaf; for Temascaltepec 
municipality the lowest average density was registered in plot 5 in Nov 
with 41.02 mites per leaf. The highest densities were registered in May 
with 288.64 and 328.58 mites per leaf in plots 4 and 5 in the municipali-
ties of Tenancingo and Temascaltepec, respectively (Table 1).

The spatial distribution in commercial avocado plots presented by 
O. punicae was aggregated on all the sample dates. The experimental 
semivariograms obtained in the plots for Tenancingo municipality best 
fitted the spherical (17) and gaussian (15) models; in plot 1 in Nov and 
May they best fitted the gaussian model, the rest of the months they 
best fitted the spherical model. In the municipality of Temascaltepec, 
experimental semivariograms best fitted the spherical (22) and gauss-
ian (10) models; in plot 8, Oct, Apr and May the dataset best fitted the 
gaussian model, the rest of the months best fitted the spherical model 
(Table 1). For all fitted models the nugget effect was zero, so the sam-
pling error was considered minimal and the sampling scale for each 
locality was appropriate.

The range indicates the maximum distance to which there is a spa-
tial relationship between the data; the range values that were present-
ed for plot 1 belonging to Tenancingo were located between 22.00 m 
in Jan and 39.10 m in Dec, in this municipality the minimum range was 
12.79 m and the maximum range was 49.70 m corresponding to plot 2 
in Oct and plot 3 in Dec, respectively. For Temascaltepec municipality 
in plot 6 the range values fluctuated between 25.50 m and 43.50 m in 
Nov and Feb, respectively, for total sampling in the municipality, the 
minimum range was 13.87 m in plot 8 in Nov, and the maximum range 
was 45.00 m in plot 5 in Mar (Table 1).

The fitted models in each sample showed a high level of spatial 
dependence. The models that resulted from the spatial distribution of 
O. punicae were validated with the statistical parameters locating them 
within allowable range.

Density mapping was carried out using the geostatistical method 
known as ordinary kriging once the corresponding semivariograms 
were validated. In these maps it was observed that O. punicae was 
distributed in specific aggregations in different plot areas. Of the sam-

plings carried out in the different plots, examples are described below 
by municipality.

In the case of plot 1 of Tenancingo municipality, the surface density 
for Oct, Nov, and Dec show that aggregations were distributed in the 
central area of the plot with a tendency towards the left side, in Jan, 
Feb, and Mar, aggregations were randomly distributed on the edges of 
the plot, yet in Apr the infestation sites were located on the right side 
with a tendency towards the center; finally, in May there was only 1 
significant aggregation on the left side. It is noteworthy that in the last 
2 mo (Apr and May) the highest number of O. punicae is present due 
to the lack of rain in the study area favoring population growth (Fig. 1).

In plot 5 of Temascaltepec municipality in Oct and Nov the infesta-
tion sites were in the central area and on the left and right edges of 
the plot; with a downward trend on the left and towards the top on 
the right side, this behavior is persistent with minimal mobility. In Dec 
and Jan, the infestation sites were concentrated in the central part with 
a tendency towards the left side at the bottom and towards the right 
side at the top; yet in Feb, Mar, and Apr aggregations began to regroup. 
Infestation sites in the central part of the plot with a trend towards the 
bottom. Over the next 2 mo the aggregations were distributed almost 
uniformly in the plot, although there were some spots where a few ag-
gregations were present. Lastly, in May, aggregations were located in 
the central part of the plot (Fig. 2).

In Tenancingo municipality plot 2 presented the highest infestation 
in Apr with 98%, the plot with the lowest infestation was plot 4 in Nov 
with 83%. In Temascaltepec municipality the highest infestation per-
centage was in plot 8 in Mar with 97% and the lowest percentage was 
in Jan with 78%, as can be observed in Table 1.

In the spacial analysis by distance indices (SADIE) the highest Ia 
observed in Tenancingo municipality was registered in plot 3 in May at 
1.70. the lowest was registered in plot 2 in Nov at 1.28. For compari-
son, the highest Ja value was registered in plot 4 in Apr at 1.24 and the 
lowest at 1.05 in plot 1 in Oct.

In Temascaltepec municipality the highest Ia was registered in plot 
8 in Nov at 1.72 and the lowest in plot 5 in May at 1.30; similarly, the 
highest Ja value was registered on plot 5 in Apr at 1.24 and the low-
est in Jan in the same plot at 1.06 (Table 2). Each Ia and Ja index was 
significantly higher than 1, which indicates spatial distribution of O. 
punicae populations presented aggregative patterns (Ia index) at vari-
ous clustering aggregates (Ja index).

Discussion

The spatial pattern reflects the characteristic ecological property of 
a species therefore it is important to identify the space time dynamics 
of a pest to have a better understanding of spatial patterns of popula-
tions (Zhang et al. 2020).

From the ecological point of view living beings are organized in 
groups. These groups are made up of individuals of the same species 
in a given area. There is exchange of genetic information among these 
individuals. Oligonychus punicae can be found year-round in Mexico, 
with the highest incidence in dry and hot months of the year, regard-
ing the sampled municipalities, such conditions are present in Apr and 
May. The months when the number of O. punicae is the lowest were 
Oct, Nov, and Dec, because in these months’ temperatures are low; 
this was also observed by Márquez-Santos et al. (2020).

In the current study, the determination of the aggregated pattern 
in the spatial distribution model was completed using geostatistical 
methods. Compared with the estimation of the spatial distribution car-
ried out with classical statistics, geostatistical methods provide a more 
direct measure of spatial dependence, because they consider the bidi-
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Table 1. Parameters of the theoretical models fitted to the semivariograms of Oligonychus punicae, in the Tenancingo municipality (plots 1, 2, 3, and 4) and Temas-
caltepec municipality (plots 5, 6, 7, and 8).

P. Date Model Mean Density Min. Max. Nugget Hill Range Nugget/Hill

Spatial 
dependence 

level %

1 Oct 2016 Spherical 32.90 1 69 0 302.46 25.70 0 High 92
Nov 2016 Gaussian 24.72 0 62 0 270.00 26.64 0 High 90
Dec 2016 Spherical 21.62 0 55 0 228.15 39.10 0 High 88
Jan 2017 Spherical 24.14 4 59 0 176.00 22.00 0 High 91
Feb 2017 Spherical 52.58 27 94 0 285.80 32.56 0 High 86
Mar 2017 Spherical 64.52 38 113 0 324.17 29.60 0 High 84
Apr 2017 Spherical 98.18 47 180 0 662.20 32.56 0 High 85
May 2017 Gaussian 283.76 148 528 0 2,571.40 22.95 0 High 95

2 Oct 2016 Spherical 31.38 1 65 0 319.43 12.79 0 High 89
Nov 2016 Spherical 31.32 0 68 0 392.59 31.91 0 High 91
Dec 2016 Gaussian 38.88 4 82 0 497.28 15.59 0 High 94
Jan 2017 Spherical 39.68 4 83 0 622.50 29.40 0 High 90
Feb 2017 Gaussian 49.70 5 104 0 960.00 31.17 0 High 92
Mar 2017 Gaussian 79.44 15 133 0 1,344.76 24.00 0 High 97
Apr 2017 Gaussian 132.70 63 193 0 845.32 31.73 0 High 98
May 2017 Spherical 287.00 132 490 0 2,630.61 26.60 0 High 95

3 Oct 2016 Gaussian 28.94 1 59 0 273.98 20.61 0 High 88
Nov 2016 Gaussian 29.04 2 60 0 285.60 28.88 0 High 87
Dec 2016 Spherical 33.32 5 62 0 289.57 49.70 0 High 90
Jan 2017 Spherical 34.00 4 68 0 348.30 34.00 0 High 91
Feb 2017 Gaussian 41.66 7 79 0 508.40 26.60 0 High 86
Mar 2017 Spherical 72.52 20 117 0 653.73 33.44 0 High 93
Apr 2017 Gaussian 116.76 55 190 0 1,130.59 26.67 0 High 90
May 2017 Spherical 282.30 130 467 0 3,333.33 28.94 0 High 96

4 Oct 2016 Spherical 32.12 1 62 0 270.00 17.88 0 High 87
Nov 2016 Spherical 33.02 2 75 0 370.92 35.45 0 High 83
Dec 2016 Gaussian 36.00 1 73 0 379.16 28.79 0 High 87
Jan 2017 Gaussian 40.40 3 83 0 397.34 25.85 0 High 93
Feb 2017 Gaussian 56.58 16 104 0 489.75 24.85 0 High 95
Mar 2017 Spherical 65.50 21 113 0 570.00 35.25 0 High 94
Apr 2017 Gaussian 104.68 52 172 0 861.26 30.75 0 High 89
May 2017 Gaussian 288.64 175 520 0 2,283.31 28.69 0 High 91

5 Oct 2016 Gaussian 43.94 13 63 0 256.00 26.62 0 High 92
Nov 2016 Spherical 41.02 3 74 0 247.77 30.75 0 High 91
Dec 2016 Spherical 44.56 12 82 0 230.33 30.00 0 High 88
Jan 2017 Spherical 46.64 14 82 0 206.30 39.75 0 High 89
Feb 2017 Gaussian 57.72 18 86 0 329.89 28.50 0 High 95
Mar 2017 Spherical 67.66 17 97 0 405.00 45.00 0 High 96
Apr 2017 Spherical 143.14 79 179 0 619.47 27.99 0 High 89
May 2017 Gaussian 328.58 185 480 0 2,628.37 24.08 0 High 94

6 Oct 2016 Spherical 48.98 17 82 0 344.64 27.59 0 High 84
Nov 2016 Gaussian 45.14 9 87 0 367.50 25.50 0 High 87
Dec 2016 Spherical 47.06 14 81 0 286.99 36.49 0 High 85
Jan 2017 Spherical 54.04 17 83 0 272.89 33.00 0 High 86
Feb 2017 Spherical 59.54 16 86 0 264.66 43.50 0 High 91
Mar 2017 Spherical 76.14 37 97 0 200.82 40.50 0 High 93
Apr 2017 Spherical 104.98 55 230 0 768.48 37.50 0 High 90
May 2017 Spherical 292.28 80 539 0 3,530.96 37.48 0 High 95

7 Oct 2016 Spherical 53.64 17 85 0 410.34 20.68 0 High 81
Nov 2016 Gaussian 53.42 13 84 0 369.61 14.60 0 High 93
Dec 2016 Gaussian 58.48 22 93 0 436.71 17.52 0 High 90
Jan 2017 Spherical 61.80 23 97 0 429.49 13.90 0 High 78
Feb 2017 Gaussian 72.54 32 108 0 424.91 15.25 0 High 93
Mar 2017 Spherical 84.06 48 118 0 386.07 21.17 0 High 90
Apr 2017 Spherical 106.84 60 245 0 895.93 31.20 0 High 92
May 2017 Spherical 292.86 140 461 0 3,786.93 23.60 0 High 91

P. = plot, Mín. = minimum number of mites per tree, Max. = maximum number of mites per tree, % = infested surface.
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mensional nature of the organisms through their exact spatial location 
and it is independent of the relationship between mean and variance 
(Ramírez Dávila et al. 2013; Rivera-Martínez et al. 2017).

With geostatistics it is possible to describe the spatial continuity of 
any natural phenomenon. Furthermore, it is possible to know the way 
any continuous variable in space varies (spatial pattern) in one or sev-
eral selected scales, with a level of detail that allows the quantification 
of the spatial variance of the variable in different directions of space. 
Geostatistics uses functions to model this spatial variation, these func-
tions are used to interpolate in space the variable value in non-sam-
pled sites in addition, it makes it possible to draw up useful maps of 
the spatial distribution of an organism (Tapia Rodríguez et al. 2020).

Spatial behavior under conditions of infestation of O. punicae in 
avocado presented an aggregated pattern. This result suggests that 
handling this mite can be achieved by directing its control to specific 
points or infestation sites where aggregations are located, avoiding the 
widespread application of chemical products in avocado commercial 
plots, helping to minimize environmental deterioration and saving in-
puts by producers. This result agreed with Ramírez Dávila and Pocayo 
Camargo (2009), who worked with Jacobiasca lubica Bergenin & Za-
non (Homoptera: Cicadellidae) (known as green mosquitoes) on vine, 
they indicated that knowing the infested surface on the maps makes 
it possible to establish the expenses and economic savings regarding 
the application of insecticides, carrying out control measures directed 
to infested areas.

The fitted models have a 98% reliability, consequently, it is valid 
to deduce that more than 90% of the total variance is due to the spa-
tial dependence on the sampling scale used. In other words, over 
90% of the variation in the distribution of the population of this mite 
was explained with the spatial structure established in the semivario-
grams (Liebhold & Sharoy 1998; Rivera-Martínez et al. 2017). Esquivel 
Higuera and Jasso Gárcia (2014), in their work on the distribution of 
armyworm Mythimna unipuncta Haworth (Lepidoptera: Noctuidae) in 
corn, found nugget effect values close to zero, which points out that 
in its totality the variation of the pest distribution was explained by 
the spatial structure in the semivariograms (Ramírez Dávila et al. 2013; 
Rivera-Martínez et al. 2017)

Datasets that best fitted the gaussian model showed the spatial 
behavior expressed continuously within the avocado plots, indicating 
a continuous progress of infestation of O. punicae in neighboring trees. 
This also was observed by Quiñones-Valdez et al. (2020), in their re-
search on spatial modeling of thrips, in husk tomato, where semivario-
grams fitted the gaussian model in most of the sampled dates. Thrips 
eggs are present continuously within the plots, inferring the existence 
of several factors that influenced the spread of females to oviposit 
faster. Maldonado-Zamora et al. (2017) in their research on spatial sta-

bility and temporary distribution of thrips in avocado, point out that 
the samples that fitted the gaussian model, reflect the aggregations are 
presented continuously within the plot.

Datasets that best fitted the spherical model indicate that O. puni-
cae aggregation occurs in greater quantity in certain areas of the plot 
with respect to the rest of the points considered in the sampling. The 
aggregation clusters are random within the infestation site of the plot, 
these aggregation clusters show a rapid growth near the origin but as 
they move away they decrease as a result of the dissemination of the 
mite through the wind, which results in infestation in specific sites.

Ramírez-Dávila and Esquivel Higuera (2012), in their work on ar-
myworm (M. unipucta) in corn, point out that the spatial distribution 
of the dataset that best fitted the spherical model, show sites where 
armyworm manifests itself most. Variation in armyworm presence is 
likely due to temperature and crop phenology (Ni et al. 2003). Acos-
ta-Guadarrama et al. (2017), in their research on spatial distribution 
of thrips and its control through the predator A. swirskii in avocado, 
pointed out that the spherical model was the best fit for the dataset, 
indicating that aggregations of insects occur in certain areas of the plot 
with respect to the other points. The models that best fitted the data-
sets (spherical and gaussian), are indicative that O. punicae does not 
have an established spatial behavior, because climatic factors such as: 
temperature, humidity, exposure to sun, among others influence the 
spatial distribution of the mite; therefore the present study is of great 
interest because it details the patterns of movement and permanence 
at specific points where preventive management programs can be per-
formed at the aggregations and thereby maintain low infestation levels 
with economic savings.

The spatial dependence of O. punicae is high because the result of 
the division of the value of the nugget effect by the value of the hill was 
less than 25% for all semivariograms. The values of the nugget effect 
indicate that there is a high spatial dependency, which suggests that 
the populations of O. punicae depend on each other and their aggrega-
tion level is high (Rossi et al. 1992).

The aggregations of the O. punicae populations can be seen in the 
density maps obtained with the kriging technique. The maps allow us 
to visualize mite-free areas and areas with presence of mites. These 
maps let us deduce that O. punicae does not invade 100% of sam-
pled plots. This also was appreciated by Ramírez Dávila and Figueroa 
Figueroa (2013), who modeled the spatial distribution of the egg, 
nymph, and adult stages of Bactericera cockerelli Sulc. (Hemiptera: 
Triozidae) in potato. Ramírez Dávila and Figueroa Figueroa (2013) used 
geostatistical tools to visualize its spatial distribution through maps by 
means of kriging with which it was observed that the insect does not 
invade 100% of the surface of the plot, allowing the identification of 
infested and infestation free areas. On the other hand, Rivera-Martínez 

Table 1. (Continued) Parameters of the theoretical models fitted to the semivariograms of Oligonychus punicae, in the Tenancingo municipality (plots 1, 2, 3, and 
4) and Temascaltepec municipality (plots 5, 6, 7, and 8).

P. Date Model Mean Density Min. Max. Nugget Hill Range Nugget/Hill

Spatial 
dependence 

level %

8 Oct 2016 Gaussian 50.19 7 74 0 453.70 14.56 0 High 88
Nov 2016 Spherical 58.72 13 95 0 480.76 13.87 0 High 90
Dec 2016 Spherical 60.94 18 100 0 430.08 18.25 0 High 92
Jan 2017 Spherical 70.00 24 104 0 469.80 16.79 0 High 91
Feb 2017 Spherical 82.64 25 110 0 375.07 17.76 0 High 95
Mar 2017 Spherical 92.76 37 120 0 330.30 24.09 0 High 97
Apr 2017 Gaussian 127.20 76 225 0 959.07 23.90 0 High 86
May 2017 Gaussian 294.56 145 520 0 3,383.73 19.23 0 High 92

P. = plot, Mín. = minimum number of mites per tree, Max. = maximum number of mites per tree, % = infested surface.
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Fig. 1. Density maps of Oligonychus punicae Hirst, in avocado crop, by sampling month in plots of Tenancingo municipality (Mexico). Red to 
orange to yellow to white indicates a gradual transition from high density of O. punicae to an absence of the species.
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Fig. 2. Density maps of Oligonychus punicae Hirst, in avocado crop, by sampling month in plots of Temascaltepec municipality (Mexico). Red 
to orange to yellow to white indicates a gradual transition from high density of O. punicae to an absence of the species.
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et al. (2017) indicate that the maps generated by sampling for the spa-
tial modelling of thrips in avocado crop, allowed them to identify areas 
of infestation, finding that thrips population were distributed in 100% 
of the plot. Similar results were found by Paz and Arrieche (2017), who 
investigated geospatial distribution and population density of Thrips 
tabaci Lindeman (Thysanoptera: Thripidae) in onion production using 
geostatistics. Paz and Arrieche (2017) found that the insect was present 
throughout the study plot, although at non-significant levels (popula-
tion less than 10 individuals per plant) where no insecticide applica-
tion is required because of the very low population levels, concluding 
that there are areas where control should be applied in a targeted way 
based on the population density sampled.

With regards to the values obtained from the SADIE indices, the Ia 
index was significantly greater than 1 in the different samplings; these 
results suggest that O. punicae is distributed in aggregative patterns. 
Regarding the Ja index, similar results were obtained, it was signifi-
cantly greater than 1, which indicates that O. punicae spatial distribu-
tion is located on the entire surface concentrated in aggregations. This 
is reflected in the obtained maps corroborating the points made by the 
indices Ia and Ja (Figs. 2 and 3). Temporal stability of spatial distribution 
with SADIE has been reported in other papers such as Thomas et al. 
(2001), in which they worked with aggregation and temporal stability 
of the distribution of carabid beetles in field habitats; Esquivel Higuera 
and Jasso Gárcia (2014), with the spatial distribution and mapping of 
armyworm M. unipuncta in corn, and Maldonado-Zamora et al. (2017) 
in the distribution of thrips in avocado crop.

In a future study, the data collected regarding the stratus (lower, 
middle, and upper) will be analysed to determine whether the stratus 
factor presents differences thus becoming another factor to consider 
increasing efficiency in the management of O. punicae populations.

The present results show that it is possible to direct control mea-
surements towards specific zones of mite infestation, reducing the 
intensity of the environmental damage generated by the exclusive 
and unnecessary use of chemical products to control this phytosani-
tary problem in avocado. It is important to point out that because of 
the maps elaborated through kriging, it also is possible to use biologi-
cal control of this mite by means of natural predators such as Phyto-
seiulus persimilis Athias-Henriot, Amblyseius californicus McGregor, 
and Amblyseius swirskii. Athias-Henriot (all Acari: Phytoseiidae). The 
maps could greatly enhance the efficiency of these control agents 
because they could be released in specific areas in the known pres-
ence of the pest.

In conclusion, the spatial distribution of O. punicae in avocado 
was determined with theoretical semivariograms. The semivario-
grams showed that the spatial behavior of the mite was in clusters 
within the plots. This finding was confirmed by SADIE indices. These 
indices showed that O. punicae populations present a special clus-

Table 2. (Continued) Spacial analysis by distance indices (SADIE) in the red spi-
der mite (Oligonychus punicae Hirst) population in Tenancingo (plots 1, 2, 3, and 
4) and Temascaltepec (plots 5, 6, 7, and 8) municipalities. Values of the Ia and Ja 
indices and their respective Pa and Qa probabilities are listed.

Plot Date Ia Pa Ja Qa

8 Oct 2016 1.68 0.017s 1.18 0.172ns
Nov 2016 1.72 0.019s 1.10 0.156ns
Dec 2016 1.59 0.014s 1.13 0.257ns
Jan 2017 1.41 0.009s 1.21 0.130ns
Feb 2017 1.61 0.013s 1.11 0.249ns
Mar 2017 1.37 0.006s 1.10 0.226ns
Apr 2017 1.52 0.009s 1.15 0.143ns
May 2017 1.40 0.016s 1.19 0.182ns

ns: not significant at 5%, s: significant at 5%.

Table 2. Spacial analysis by distance indices (SADIE) in the red spider mite (Oli-
gonychus punicae Hirst) population in Tenancingo (plots 1, 2, 3, and 4) and 
Temascaltepec (plots 5, 6, 7, and 8) municipalities. Values of the Ia and Ja indi-
ces and their respective Pa and Qa probabilities are listed.

Plot Date Ia Pa Ja Qa

1 Oct 2016 1.34 0.005s 1.05 0.133ns
Nov 2016 1.47 0.010s 1.10 0.178ns
Dec 2016 1.65 0.014s 1.19 0.165ns
Jan 2017 1.50 0.007s 1.06 0.209ns
Feb 2017 1.36 0.006s 1.14 0.226ns
Mar 2017 1.51 0.012s 1.15 0.249ns
Apr 2017 1.29 0.011s 1.23 0.131ns
May 2017 1.42 0.010s 1.20 0.262ns

2 Oct 2016 1.30 0.005s 1.10 0.275ns
Nov 2016 1.28 0.014s 1.11 0.135ns
Dec 2016 1.69 0.017s 1.09 0.280ns
Jan 2017 1.36 0.009s 1.18 0.169ns
Feb 2017 1.59 0.014s 1.17 0.238ns
Mar 2017 1.33 0.011s 1.20 0.203ns
Apr 2017 1.40 0.013s 1.08 0.153ns
May 2017 1.29 0.010s 1.16 0.266ns

3 Oct 2016 1.56 0.016s 1.15 0.222ns
Nov 2016 1.63 0.007s 1.23 0.241ns
Dec 2016 1.48 0.015s 1.12 0.138ns
Jan 2017 1.32 0.011s 1.11 0.271ns
Feb 2017 1.49 0.018s 1.13 0.284ns
Mar 2017 1.67 0.008s 1.10 0.257ns
Apr 2017 1.38 0.013s 1.09 0.156ns
May 2017 1.70 0.015s 1.20 0.246ns

4 Oct 2016 1.30 0.011s 1.21 0.142ns
Nov 2016 1.55 0.005s 1.14 0.218ns
Dec 2016 1.43 0.019s 1.13 0.204ns
Jan 2017 1.64 0.008s 1.22 0.233ns
Feb 2017 1.52 0.010s 1.19 0.188ns
Mar 2017 1.41 0.013s 1.16 0.213ns
Apr 2017 1.59 0.009s 1.24 0.147ns
May 2017 1.60 0.012s 1.18 0.159ns

5 Oct 2016 1.32 0.011s 1.09 0.158ns
Nov 2016 1.43 0.18s 1.13 0.134ns
Dec 2016 1.62 0.010s 1.17 0.175ns
Jan 2017 1.53 0.013s 1.06 0.167ns
Feb 2017 1.49 0.014s 1.12 0.142ns
Mar 2017 1.66 0.012s 1.08 0.208ns
Apr 2017 1.57 0.007s 1.24 0.149ns
May 2017 1.30 0.013s 1.19 0.229ns

6 Oct 2016 1.44 0.017s 1.15 0.289ns
Nov 2016 1.69 0.015s 1.11 0.191ns
Dec 2016 1.47 0.007s 1.22 0.242ns
Jan 2017 1.45 0.012s 1.20 0.139ns
Feb 2017 1.64 0.018s 1.16 0.251ns
Mar 2017 1.34 0.011s 1.08 0.235ns
Apr 2017 1.71 0.010s 1.14 0.132ns
May 2017 1.50 0.015s 1.18 0.263ns

7 Oct 2016 1.65 0.010s 1.12 0.153ns
Nov 2016 1.39 0.014s 1.11 0.180ns
Dec 2016 1.51 0.016s 1.14 0.144ns
Jan 2017 1.54 0.008s 1.09 0.196ns
Feb 2017 1.46 0.008s 1.07 0.164ns
Mar 2017 1.70 0.013s 1.23 0.214ns
Apr 2017 1.65 0.011s 1.16 0.135ns
May 2017 1.48 0.010s 1.20 0.237ns

ns: not significant at 5%, s: significant at 5%.
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tered pattern distributed in several aggregation points. All these 
findings can be visualized on the density maps generated through 
kriging. These maps can be used by growers, field technicians and 
government officials to generate timely, relevant, efficient, and pre-
cise management programs for O. punicae in avocado, because they 
are a useful tool to direct prevention and control measurements to-
wards specific infested zones, to reduce and maintain populations of 
O punicae under densities causing serious economic damage thus, 
optimizing economical resources and reducing environmental impact 
due to the use of agrochemicals.
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