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Forests in the Himalayan
region are crucial for
maintaining the region’s
ecological balance,
conserving biodiversity, and
supporting the livelihoods of
local people. However,
because of limited

accessibility and an adverse climate, scientific studies on how
forest functions in this region depend on ecological drivers are
rare. We used a handheld mobile laser scanner to assess the
forest structural complexity (FSC) in the Annapurna Conservation
Area of Nepal and related this to its potential drivers, including
forest disturbances. Based on stratified sampling, we selected 69
plots across a gradient of elevations and precipitations. Other
factors that might influence FSC were obtained from forest
inventory data, climatic databases, the Google Earth platform,
and digital elevation models. Using simple linear regression and

multiple regression analysis, we tested for the dependency of
FSC, measured using the box dimension (Db), on influential
predictor variables. Overall, explanatory variables strongly
influenced FSC (adjusted R2 5 0.60, P , 0.001), with Db

being affected by the number of trees, the maximum height of
the forests, species diversity, north-facing aspect, soil pH, and
forest disturbance. Surprisingly, climatic variables,
precipitation, and temperature did not show any effect on
FSC. The LiDAR-based approach to FSC used in our study
enabled rapid assessment in hard-to-access regions. It can be
used to inform effective management and conservation, for
example, in monitoring development over time or for
benchmarking.

Keywords: Himalayan forests; LiDAR; handheld mobile laser
scanning; box dimension; tree architecture.
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Introduction

Mountain landscapes are unique and diverse, boasting
remarkable natural and cultural diversity. Mountain regions
sustain a quarter of the world’s terrestrial biodiversity
(Rahbek et al 2019). The highest mountains on Earth are
found in the Himalayas (Miehe et al 2015), an
underexplored and particularly vulnerable geographical
area. This results from the harsh weather conditions,
treacherous terrain, limited accessibility, climate change,
and habitat degradation (Schmeller et al 2022).

The forests in this region play a crucial role in
maintaining ecological, economic, and sociocultural
stability (Dasgupta and Shakya 2023). Many local inhabitants
rely heavily on forests for their livelihoods and for
environmental benefits. Unfortunately, climate change and
its associated risks, such as glacial lake outburst floods, land
degradation, deforestation, and uncontrolled wildfires, are
threatening the forests in this area (Wiltshire 2014;
Chaudhary et al 2016; Wang et al 2019). This, in turn, affects
their productivity, the biodiversity they host, and other
ecosystem functions they provide (Kattel 2022). Therefore,
it is crucial to obtain evidence-based knowledge on the
driving forces for the development of these forests
(Shahgedanova et al 2021). In this context, studying forest
structure and its drivers is particularly helpful in

understanding ecosystem functioning and managing forests
accordingly. These drivers can be useful in developing a
holistic approach to managing socioecological systems,
assessing the vulnerability of climate change impacts, and
implementing adaptation strategies through sustainable
resource management and biodiversity conservation
(Ehbrecht et al 2021; Verma et al 2021).

Forest structural complexity (FSC) is relatively
straightforward to measure. It relates to forest carrying
capacity (Walter et al 2021), habitat quality (Braunisch et al
2019), productivity (Ma et al 2022), adaptative capacity and
resilience (Seidel and Ammer 2023), and forest vitality
(Heidenreich and Seidel 2022). Therefore, information on
FSC, as a proxy for these ecosystem functions and services,
can be useful in making management and conservation
decisions, especially in largely understudied systems like
Himalayan forests.

The objective and holistic measurement of FSC, defined
as all-dimensional, architectural, and distributional patterns
of plant individuals and their organs in a given space at a
given time (Seidel et al 2020), is possible using LiDAR (light
detection and ranging) technology, known as laser scanning.
It has proved particularly useful in capturing forest
structures comprehensively, efficiently, and in great detail
(Ehbrecht et al 2017; Atkins et al 2018; Stiers et al 2018;
Heidenreich and Seidel 2022; Neudam et al 2022).
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To understand the factors that determine FSC, earlier
studies investigated the effects of management (eg Seidel
et al 2016; Stiers et al 2018; Asbeck and Frey 2021; Willim
et al 2022), anthropogenic activities (Verma et al 2021),
seasonality (Neudam et al 2022), diversity (Juchheim et al
2019), climate (Ehbrecht et al 2017), tree attributes
(Barbeito et al 2017; Atkins et al 2018; Qi et al 2022), and
edaphic properties (Ali et al 2019). Other research has
explored the relationship between FSC and climatic
conditions on a global scale (Ehbrecht et al 2021). However,
there is a lack of understanding regarding these patterns in
mountainous areas. Further studies are needed to
understand the influence of these and other potentially
important factors on FSC in mountain ecosystems.

Our study focused on determining the drivers
contributing to FSC in the Himalayan region. We
hypothesized that FSC in this region is naturally largely
reliant on forest factors, such as the forest type (eg
coniferous or deciduous), and on additional environmental
factors, such as climatic and topographical factors and
human disturbances.

Material and methods

Study area
We conducted research in the Annapurna Conservation
Area (ACA), which is located between 2881305900N to
2981905200N and 8382804500E to 8482800400E. It is Nepal’s
largest protected area, spanning 7629 km2, and includes the
Annapurna Himalayan range, with the highest peak
reaching 8091 masl. The southern region of the Himalayas
in this area is windward, resulting in high precipitation,
whereas the northern part is on the leeward side and has
lower precipitation. As a result of this natural gradient,
most forests are situated in the southern part, with only few
forests in the northern foothills range.

A stratified sampling approach was chosen to cover
dominant forest types across precipitation and elevational
gradients, ensuring spatial coverage of the major forests of
the area. This was done by dividing the whole study area
into the leeward side and windward side of the Annapurna
Himal. We consulted the ACA project office and reviewed
Nepal’s forest resource assessment report to identify the
ACA forest types. The fieldwork was conducted by 2
researchers and ACA project field staff between September
and December 2021. The design used was originally
developed to validate biomass data from the Global
Ecosystem Dynamics Investigation (GEDI), a spaceborne
LiDAR mission that creates detailed 3D maps of forests to
measure their structure and biomass worldwide (Dubayah
et al 2022). We used 69 circular plots with a diameter of 25
m (Figure 1), which were based on GEDI’s footprint
coordinates taken at least 300 m apart from each plot.

Laser scanning
We used a handheld mobile laser scanner (HMLS; ZEB-
Horizon/GeoSLAM Ltd, Nottingham, United Kingdom) to
obtain detailed 3D maps of the forest plots. This device,
equipped with 16 time-of-flight laser sensors, captured the
surrounding area in 3D within a distance of 100 m while
being carried through the forest. The scanner’s laser
wavelength is 903 nm, and it captures up to 300,000 points

per second (GeoSLAM Ltd). We started scanning from the
plots’ centers and moved toward their boundary, and then
we continued scanning around the boundary line before
crisscrossing the area and ending back at the center. The
number and extent of the crisscrossing walks depended on
the overall density of the vegetation on the plots, with dense
plots requiring more crisscrosses for full capture. Although
it is difficult to estimate the degree of completeness and the
overall homogeneity of a point cloud from HMLS, there is
some evidence that the procedure produces point clouds
that are sufficiently dense and comprehensive to reliably
calculate FSC (Neudam et al 2022; Mathes et al 2023).

Point cloud processing
Raw data were converted into text format files, along with
each trajectory file (scanning path line) using GeoSLAM
Hub version 6.1 software (GeoSLAM Ltd). Then, the text
files were imported into LiDAR360 version 5.0 software
(GreenValley International, California, USA) for
postprocessing. We used the software’s forestry module to
remove outliers in the point cloud data caused by either
high-flying objects, such as birds, or low-level error, such as
the multipath effect of a laser pulse during scanning. After
this, a ground normalization process was conducted using
the point cloud’s elevation data (z value) to remove the
topographical relief effect on the point cloud. To do this,
point clouds must be classified into ground and nonground
points. We organized ground point classification based on
the software’s plot terrain and parameter default values.
Plots were subjectively assigned into 4 categories according
to terrain conditions—flat, gentle, steep, and hilly—to
improve the final normalization via the ground points.

To ensure smooth and uniform point clouds, we applied
a point subsampling technique with minimum spacing of
0.01 m and a noise filter with a 0.1-m radius. Despite
scanning a 25-m plot diameter on the ground, most plots
featured sloped terrain (up to 428 inclination measured
using an Abney level), necessitating the use of a slope-
adjusted area. To account for this, we applied a slope
correction factor using the plot radius multiplied by the
cosine of the slope angle (Kleinn et al 2002). Next, we
clipped the point clouds based on the corresponding
adjusted diameter (horizontal distance) for each plot. The
clipped point clouds were then converted into xyz files and
exported for computing plot-level FSC. Finally, we
calculated the box dimension (Db) as a measure of FSC using
Mathematica software (Wolfram Research, Champaign, IL,
USA), as described in Seidel (2018); Seidel, Ehbrecht,
Annigh€ofer, et al (2019); and Neudam et al (2022). We chose
to use Db because it is a holistic measure of FSC (Mandelbrot
1982) that considers all elements in a scanned scene and
integrates them into a single number (the Db value), thereby
using the full potential of the laser technology. In short, to
determine Db, the forest point cloud is virtually enclosed
in boxes of different sizes and the change in the number
of boxes needed to enclose all points and the size of these
boxes are contrasted. Db is then defined as the slope of the
regression line between the logarithm of the number of
boxes on the y axis and the logarithm of the size of the box
(relative to the initial size) on the x axis (inverted x axis). We
began with the largest box equal to the minimum bounding
box of the scanned plot and stopped at the smallest box size,
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FIGURE 1 Study area with the boundary of ACA and forest area (shaded area; Potapov et al 2021), including the research plots (black circles). The blank nonforest

region consists of bare rock, snow, glaciers, rangelands, and landscapes without vegetation. The dashed lines on the map indicate contour lines in metric units and

meters above sea level.
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which was never smaller than 20 3 20 3 20 cm, ensuring
that we did not sample empty space between laser points
because of occlusion. This is conservative but proved to be
sufficient in earlier studies to discover spatial differences on
small scales (eg Neudam et al 2022) while largely
compensating for the occlusion effect (Mathes et al 2023).

Explanatory variables
Forest factors: In each plot, we counted all tree stems with a
diameter greater than 10 cm and identified their respective
species. When we had difficulty identifying certain species,
we took pictures of their leaves, flowers, and fruits and
sought the assistance of a botanist to ensure accurate forest
species identification. We classified all plots into 3 distinct
plant functional types: evergreen broadleaf tree (EBT),
deciduous broadleaf tree (DBT), and evergreen needleleaf
tree (ENT). This was done based on the dominant species
from visual assessment. The maximum height (MH) of the
forests at the 98th percentile (meaning 98% of all laser hits
were recorded below this height) was calculated from the
point clouds (z values) using an algorithm written in
Mathematica software.

Soil and topographical factors:We used a Garmin GPSMap 62s
device (Garmin Ltd, USA) to measure the plot center’s
elevation above sea level. To determine the topographical
aspect of the plots, we relied on an available digital
elevation model (NASA JPL 2013). The slope of the plot’s
ground was measured using an Abney level (Sokkia No.
8047-4, Japan) from the bottom to the upslope side. The
average soil pH value was obtained from SoilGrid maps,
which use a 250-m spatial grid and include data from 6 soil
profiles at varying depths between 0 and 200 cm (Poggio
et al 2021). We were aware that these data might be coarse
in spatial resolution but considered them beneficial to test
for their explanatory power.

Climatic factors:We obtained climate data from the CHELSA
version 2.1 database at a grid-cell resolution of 0.00838 from
1981 to 2010 (Karger et al 2017). The data include
accumulated annual precipitation (in millimeters per year)
and mean annual temperature (MAT) of the air (in degrees
Celsius).

Disturbance factors:During fieldwork, we identified both
human-induced and natural disturbances in plots. These
included timber and firewood harvesting, land use change,
forest fires, cattle grazing, landslides, and flooding during
the monsoon season. Because it was not possible to fully
reconstruct the land use and disturbance history of the
plots, we had to coarsely classify disturbance levels in the
field based on visible criteria, such as the extent of firewood
and timber collection, livestock grazing, and evidence of
forest fire. We categorized each plot as either undisturbed,
moderately disturbed, or highly disturbed. In addition, we
used Google satellite imagery (Google Earth Pro 7.3.6.9345,
64 bits) and QGIS (version 3.22.7-Biaowie _za) to locate the
plot and nearby human settlements. Here, a human
settlement was considered a house or residential
infrastructure (gardens, etc, but not roads) as visually
identified in the imagery. We measured the shortest
distance along pathways and roads to obtain a more
quantitative measure of disturbance likelihood. We assumed

forests located near human settlements within accessible
distance were more likely to be affected by human activities.

Statistical analysis
All statistical analyses were conducted in the R
programming software (R Core Team 2023). We used 2
statistical approaches to determine which factors affect FSC
(Db) at the plot level, to separate models for all explaining
variables, and for multiple regression.

First, we conducted simple linear regressions for
continuous predictors and Kruskal–Wallis rank sum tests
for categorical predictors, followed by Dunn tests for post
hoc analysis. This helped us identify general patterns of Db

across gradients and forest categories. Data inspection
showed a clear hump-shaped pattern for the relationship of
Db with MH. Therefore, in this case, a 3-degree polynomial
regression model was fitted. Nonparametric Kruskal–Wallis
and Dunn tests were conducted to compare differences of
Db between levels of categorical predictors in the ggpubr
(version 0.6.0) and ggplot2 (version 3.4.3) packages in R
(Kassambara 2023).

Second, we used multiple linear regression with a model
selection process to find a combination of predictor
variables that explained FSC well. Before fitting the
multiple linear regression, we assessed the Pearson
correlation coefficient r of all pairs of continuous variables.
To avoid multicollinearity issues in the model selection
process, we only included a set of predictors where no
correlations with r , �0.6 or r . 0.6 were present. This
approach ensured that predictors in the models were
independent, reducing multicollinearity issues. We used the
function dredge() from theMuMIn package (version 1.47.5)
with default settings for automated model selection based
on the Akaike information criterion corrected for small
sample sizes. Moreover, we checked the spatial
autocorrelation among the residuals of the fitted model
using the ape package (version 5.7.1).

Overall, the best-fit model was selected with the
continuous predictor variables of elevation, northness of
aspect, soil pH, number of trees, tree species diversity, MH,
mean annual precipitation, MAT, and distance from the
nearest settlement. Variables, such as the number of trees
and settlement distance, were log-transformed for both
simple and multiple linear regressions, because they were
highly right-skewed when visibly assessing their distribution.

Results

Plot-level characteristics
Based on our fieldwork observations, we gathered data from
forests of 3 disturbance categories: undisturbed (46 plots),
moderately disturbed (17 plots), and highly disturbed (6
plots). Based on 1677 trees of 53 species, among which Alnus
nepalensis D. don., Pinus wallichiana A.B. Jacks., Daphniphyllum
himalense (Benth.) M€ull. Arg., Rhododendron spp, and Abies
pindrow Royle were most dominant, we categorized the
forests as consisting of 3 main plant functional types: EBT
(29 plots), DBT (16 plots), and ENT (24 plots). We observed
plot-level FSC in terms of the value of Db, which ranged
from a minimum of 1.8 to a maximum of 2.6 (Appendix S1,
Supplemental material, https://doi.org/10.1659/mrd.2024.00009.
S1). Db can only range from 1 (corresponding to a single tree
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without branches) to a theoretical maximum of 3 (a solid
cube filled entirely with plant material).

Drivers of Db regression analysis
We discovered that several factors influence FSC (Db;
Table 1). The number of trees, settlement distance,
northness of aspect, and Shannon index value for tree
species diversity showed a significant positive relationship
with Db. The MH and soil pH values had a significant
negative effect on Db. We found that precipitation,
elevation, and MAT did not have a significant relationship
with Db (Figure 2).

We also found that the overall level of forest disturbance
had a significant impact on FSC (v2 5 10.91, P, 0.01).
Undisturbed plots had a significantly higher Db than both
moderately disturbed (P, 0.05) and highly disturbed (P ,
0.05) plots when comparing each level of disturbance
(Figure 3A). Correspondingly, we observed a noteworthy
effect of plant functional type on Db (v

2 5 7.92, P , 0.05).
EBT showed higher Db than both ENT (P, 0.05) and DBT
(P, 0.05; Figure 3B).

Correlation among predictor variables
We observed a high correlation between some explanatory
variables, such as elevation, MAT, and soil pH, as well as
between precipitation and soil pH (Figure 4). Furthermore,
we realized that the distance of the nearest settlement from
a plot showed significant correlation with tree numbers
within the plot. Therefore, the final model was fitted with
tree numbers, MH, species diversity, northness of aspect,
and soil pH variables.

Fitted model for Db

In our analysis, all measured factors were also employed as
predictor variables to explain FSC. It revealed that variables,
namely, the number of trees, species diversity, and MH,
significantly influenced FSC (Table 1). Although northness
of aspect and soil pH were found to collectively explain the
variation in FSC, we discovered that the settlement distance
variable did not fit this model well.

The fitted model demonstrated a significant association
with Db, as shown by an adjusted R2 value of 0.60 (P, 0.001,

residual SE 5 0.08). Furthermore, we conducted a Moran I
test on residuals of the model, revealing no significant
evidence of spatial autocorrelation (P, 0.05).

The following explanatory variables were used to define
FSC, Db, modeled using Equation 1:

Db 5 2:62þ 0:2log10nTrees� 0:13MH � 0:45MH2 þ 0:01MH3

þ 0:04sDiversityþ 0:05northness� 0:09soilpH (1)

where Db represents FSC; log10nTrees corresponds to the
logarithm (base 10) of the number of trees present in the
plot; sDiversity represents the Shannon index, which
quantifies the diversity of tree species; northness represents
the aspect of the forest location; and soilpH denotes the
acidity or alkalinity value of the forest soil.

Equation 1 showed that Db representing FSC is positively
influenced by the number of trees, tree species diversity,
and northness of aspect. In contrast, it is negatively
influenced by MH and soil pH. The fitted equation also
showed that MH had a nonlinear effect on Db, with a cubic
term that captures the curvature of the relationship. The
equation also showed that the number of trees has a
logarithmic effect on Db, which means that the marginal
increase in FSC decreases as the number of trees increases.
Climatic and elevational variables had no discernible impact
on the model.

Discussion

Our approach to FSC, namely, Db from laser scanning, has
previously been applied to different forest types and proved
useful across scales and biomes from tree level (eg Seidel
2018; Saarinen et al 2020; Arseniou et al 2021; Dorji et al
2021; Heidenreich and Seidel 2022; Mathes et al 2023) to
stand level (Seidel et al 2020; Camarretta et al 2021; Neudam
et al 2022). Within a biome, there is evidence for increased
Db with an increasing degree of maturity in the forest
structure, with the highest values in old-growth forests. This
was shown in earlier studies in both temperate forests (eg
Stiers et al 2020) and tropical forests (Camarretta et al
2021). According to our research, the distance of a forest
from the nearest settlement, as a quantitative measure of
disturbance likelihood, is also a significant factor for FSC

TABLE 1 Linear regression coefficients for each explanatory variable of Db.

Explanatory variable Coefficient (b) SE P R2

Elevation �7.83 2.86 0.780 0.01

Shannon diversity index 0.06 0.03 0.042* 0.06

Number of trees (log) 0.35 0.05 ,0.001* 0.42

Northness 0.07 0.02 0.003* 0.12

Precipitation 0 0 0.269 0.02

MH (polynomial) — 0.11 ,0.001* 0.45

Settlement distance (log) 0.13 0.04 0.001* 0.14

Soil pH �0.10 0.04 0.027* 0.07

MAT 0 0 0.848 0.01

* P , 0.05.
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(Figure 2G) of Himalayan forests (Måren et al 2015; Verma
et al 2021). When a forest is located near a settlement, it
often experiences higher levels of human activity, such as
livestock grazing, fires, logging, or collection of forest
products (Tietema et al 1991; Shackleton et al 1994). This
can lead to structural changes and, if the forest was previously
in pristine condition, almost always to a reduction in FSC
(Seidel and Ammer 2023). In contrast, in some specific cases,

less frequent forest fires have altered monospecific stands (eg
Pinus spp and Rhododendron spp) toward species-rich forests,
which may alter FSC (Bargali et al 2022). However, the case of
the Himalayan forests studied here supports the argument
that disturbance has a negative effect on FSC (Figure 3A;
settlement distance in Table 1).

Our results from the Annapurna region further revealed
a significantly higher complexity of forests dominated by

FIGURE 2 Scatterplots showing the individual relationships between continuous explanatory variables and FSC. Linear regression analysis was employed to model

the relationship between FSC, represented by Db, and (A) elevation (in meters), (B) Shannon index value for tree species diversity, (C) number of trees (log),

(D) northness of aspect, (E) precipitation (in millimeters per year), (G) distance of the nearest settlement from the plot, (H) soil pH, and (I) MAT (in degrees

Celsius). (F) Polynomial regression (3-degree) model fitted for Db from MH (in meters). The shaded portion in each plot represents the predictions, along with their

95% confidence intervals, derived from the linear model.
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EBT compared with ENT and DBT species (Figure 3B). Despite
the known positive effect of leaves on FSC of individual trees
(Arseniou et al 2021) and entire forests (Neudam et al 2022), we
argue that the observed differences in our study are linked to
overall differences in tree architecture of the different
dominating species. Leaf effects were reported to be on the
order of 0.04 units of Db for beech forests (Neudam et al 2022).
The differences among forest types observed in our study are
larger and cannot be explained by the potential effects of leaf
shedding that we observed in some plots. However, the DBT

species mainly occurred in lower-elevation belts, where forests
were managed as monoculture (eg Alnus spp and Pinus spp) with
the presence of high levels of human activity. We argue that this
management and human disturbance are likely the major
drivers of the lower FSC in these forests. The forests dominated
by EBT species (eg Rhododendron spp and Quercus spp) were least
disturbed and of greater species diversity (mean Shannon
index: EBT5 0.89, DBT5 0.27, ENT5 0.42; Appendix S1,
Supplemental material, https://doi.org/10.1659/mrd.2024.00009.S1),
with plenty of undergrowth seedlings and saplings.

FIGURE 3 Box plots illustrating the Db value for (A) 3 levels of forest disturbance (UD, undisturbed; MD, moderately disturbed; and HD, highly disturbed), and (B) 3

forest types (EBT, ENT, and DBT). Differences between pairs of groups were tested for significance with the Kruskal–Wallis test, followed by the Dunn test for

pairwise comparisons; *P , 0.05, **P , 0.01.

FIGURE 4 Correlogram showing Pearson’s correlation coefficient of each pair of explanatory variables and FSC represented by plot-level Db. Elevation denotes the

topographical elevation (in meters above sea level), northness values range from þ1 (exactly north) to �1 (exactly south), precipitation represents accumulated

annual precipitation (in millimeters per year), and sDistance represents the distance between each plot and the nearest settlement.
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The observed positive relationship between tree species
diversity and FSC (Figure 2B) confirms earlier findings
(Ehbrecht et al 2017; Juchheim et al 2019). A forest with a
greater variety of tree species supports a more diverse range
of tree shapes, sizes, morphologies, and occupied niches (Liu
et al 2018). This, in turn, increases the likelihood of the
formation of a denser and more complex forest with
multiple layers, as opposed to a forest dominated by a single
species (Ashton and Ducey 1997).

The positive effect of the number of trees on the plot-
level FSC observed here (Figure 2C) confirms earlier findings
(eg Spies and Franklin 1991). Lower numbers of trees often
indicate highly disturbed sites or forests that are
characterized by only a few large dominant trees. Such
forests hardly ever possess the vertical layering required for
high FSC (cf Seidel and Ammer 2023). Upon examining the
relationships between predictor variables, such as number of
trees and settlement distance from the forest, we found that
only the number of trees significantly affected FSC (Equation
1). This is because settlement distance is a measure of
disturbance within the forest, and forests near settlements
tend to experience greater anthropogenic pressure, resulting
in a lower number of trees (Verma et al 2021).

The existence of taller trees in a forest, here
approximated by MH, was expected to be positively related
to FSC, according to earlier findings (Seidel, Ehbrecht,
Annigh€ofer, et al 2019). Tall trees tend to possess a greater
individual tree structural complexity than small trees, which
should positively affect stand-level FSC (Seidel, Ehbrecht,
Dorji, et al 2019). However, our study revealed a nonlinear
correlation between the MH of the stand and its FSC
(Figure 2F). FSC increased with MH approaching 15 m,
stagnated until 20 m, and then quickly dropped with MH
increasing further. We argue that this pattern can be
explained by large dominant overstory trees hampering
understory growth. In mountain regions in particular, this
affects FSC in the understory negatively and creates forests
with little structural complexity because of limited light
availability and allelopathic effects (Royo and Carson 2006;
Dormann et al 2020; Schickhoff et al 2023).

Our study revealed a significant inverse relationship
between Himalayan FSC and soil pH levels (Figure 2H).
Specifically, as soil pH increases, FSC decreases in this region.
Furthermore, soil alkalinity tended to rise with an increase in
elevational range (Figure 4) but only under specific
conditions in which the parent material, weathering
processes, vegetation, and climate remain similar (Zhang et al
2019). In our study area, characterized by geologically distinct
substrates such as gneiss and migmatite, where fluvial
calcareous parent soils are more frequent with elevation, an
increase in soil alkalinity is logical (NARC nd). The lower air
temperature and higher soil alkalinity found at higher
elevations result in reduced organic carbon content and
reduced availability of essential nutrients (eg nitrogen and
potassium) in the soil, which in turn lead to a reduction in
FSC with increasing elevation (Måren et al 2015; M€uller et al
2017). However, our findings do not demonstrate any impact
of elevation and temperature on FSC. We argue that this is
likely because the forests analyzed in this study ranged from
1200 to 3800 m in elevation, with 85% of the forests below
3200 m in elevation (Appendix S1, Supplemental material,
https://doi.org/10.1659/mrd.2024.00009.S1). The tree line

elevation in the Himalayan region typically ranges from 3200
to 4900 m and can extend even higher in some areas (Pratap
Singh et al 2019). Therefore, the forest plots we examined are
all situated within an elevational range that still supports
growth. Moreover, the average surface air temperature in the
Himalayan region has doubled since 1951, compared with the
preceding period, indicating a significant warming trend
(Sabin et al 2020). In our study region, MAT ranges from 2.35
to 17.758C (Appendix S1, Supplemental material, https://doi.org/
10.1659/mrd.2024.00009.S1), which can be sufficient for
forest growth. Several studies suggest that the warming trend
in the Himalayan region is reducing temperature limitations
on forest growth and is associated with an increase in plant
species diversity (Telwala et al 2013; Shi et al 2020; Gaire et al
2023). Given that the temperature in this region falls within a
range conducive to forest growth, it is possible that both
temperature and elevation variables may not exert a
significant influence on FSC (Figure 2A, I; Pandey et al 2016).

However, our findings indicate that forests on the
northern slope of the Annapurna range are more structurally
complex than those on the southern slope (Figure 2D). This is
likely because of the higher moisture levels in the soil on the
northern slope than those on the southern slope, which
receives more direct sunlight, resulting in drier soil. Although
forests in warmer temperatures tend to grow well with
adequate moisture, the southern slope of the Himalayas has
steep terrain that drains precipitation and allows direct
sunlight to dry out the soil, leading to a lack of moisture
(Srivastava et al 2010). As a result, the northern slope is able
to support a more complex vegetation structure, as observed
in our data. Overall, it seems that in mountain forests, aspect
is more relevant than actual precipitation amounts
(Carpenter and Zomer 1996). Accordingly, although previous
studies identified precipitation as a major predictor for FSC
on the global scale (Ehbrecht et al 2021), we could not
support such a finding based on our data (Figure 2E).
However, we argue that this was simply because the forests
studied here all received sufficient precipitation, with a
minimummean annual precipitation close to 1000 mm
(Appendix S1, Supplemental material, https://doi.org/10.1659/
mrd.2024.00009.S1). Therefore, it appears that precipitation
was not a limiting factor at any of our plots. At the same
time, the local topographical conditions, such as aspect, are
crucial factors affecting the actual amount of water available
to plants and hence FSC. Aspect has been reported as a
factor that determines forest communities in mountain
forests, with positive and negative effects possible (Fontaine
et al 2007; Heiri et al 2009).

Given the importance of FSC, particularly for maximizing
the adaptive capacity of the ecosystem (Seidel and Ammer
2023), it is strongly recommended that the findings presented
here be incorporated into the preparation and monitoring of
management and protection plans for forests in the area.
This means management should target the creation or, where
already present, the conservation of complex forest
structures. These can be found in forests comprising large
numbers of trees of different species. In the present study,
such forests were of intermediate height (MH of �20 m) and
mostly found at greater distances from settlements on sites
with low pH that faced north. It appears that complex forests
can potentially be found anywhere in the investigated range

MountainResearch

Mountain Research and Development https://doi.org/10.1659/mrd.2024.00009R8

Downloaded From: https://complete.bioone.org/journals/Mountain-Research-and-Development on 03 May 2025
Terms of Use: https://complete.bioone.org/terms-of-use

https://doi.org/10.1659/mrd.2024.00009.S1
https://doi.org/10.1659/mrd.2024.00009.S1
https://doi.org/10.1659/mrd.2024.00009.S1
https://doi.org/10.1659/mrd.2024.00009.S1
https://doi.org/10.1659/mrd.2024.00009.S1


without clear effects of precipitation, temperature, or
elevation in general.

Conclusion

Our study on forests of the Annapurna Himalayan region
found that the number of trees, MH, species diversity,
northness aspect, soil pH, and forest disturbance are critical
factors that influence FSC. Contrary to previous findings,
climatic factors like precipitation and temperature did not
affect FSC in the area, likely because of they exceeded the
necessary minima required for forest growth. This
underscores the uniqueness of the Himalayan forest
environment and highlights the need for region-specific
conservation and management strategies. In light of our
findings, we conclude that efforts to preserve or reestablish
FSC in forests of the Himalayas should adopt a mixed
species, multistoried forest management approach. By
prioritizing these key factors, we can better safeguard the
ecological integrity and biodiversity of this remarkable
mountain ecosystem. Ultimately, this research can serve as a
foundation for sustainable forest management practices by
using Db as a tool to monitor FSC over time or for
benchmarking certain levels of FSC.

ACKNOWLEDGMENTS

We thank the Department of National Parks and Wildlife Conservation and the
Annapurna Conservation Area Project of Nepal for granting us a permit (no. 402/
2021) to conduct research within the ACA. We thank the Annapurna Conservation
Unit and district authorities, along with the Institute of Forestry, Pokhara, students,
for their valuable assistance during our fieldwork. We acknowledge support by the
Open Access Publication Funds of the G€ottingen University.

REFERENCES

Ali A, Lin S-L, He J-K, Kong F-M, Yu J-H, Jiang H-S. 2019. Climate and soils
determine aboveground biomass indirectly via species diversity and stand
structural complexity in tropical forests. Forest Ecology and Management
432:823–831. https://doi.org/10.1016/j.foreco.2018.10.024.
Arseniou G, MacFarlane DW, Seidel D. 2021. Measuring the contribution of
leaves to the structural complexity of urban tree crowns with terrestrial laser
scanning. Remote Sensing 13(14):2773. https://doi.org/10.3390/rs13142773.
Asbeck T, Frey J. 2021. Weak relationships of continuous forest management
intensity and remotely sensed stand structural complexity in temperate mountain
forests. European Journal of Forest Research 140(3):721–731. https://doi.org/
10.1007/s10342-021-01361-4.
Ashton PMS, Ducey M. 1997. The development of mixed species plantations as
successional analogues to natural forests. In: Northeastern Forest Nursery
Association, editor. National Proceedings, Forest and Conservation Nursery
Associations. Portland, OR: US Department of Agriculture, Forest Service, Pacific
Northwest Research Station, pp 113–126.
Atkins JW, Bohrer G, Fahey RT, Hardiman BS, Morin TH, Stovall AEL, Zimmerman
N, Gough CM. 2018. Quantifying vegetation and canopy structural complexity
from terrestrial LiDAR data using the forestr r package.Methods in Ecology and
Evolution 9(10):2057–2066. https://doi.org/10.1111/2041-210X.13061.
Barbeito I, Dassot M, Bayer D, Collet C, Dr€ossler L, L€of M, del Rio M, Ruiz-
Peinado R, Forrester DI, Bravo-Oviedo A, et al. 2017. Terrestrial laser scanning
reveals differences in crown structure of Fagus sylvatica in mixed vs. pure
European forests. Forest Ecology and Management 405:381–390. https://doi.
org/10.1016/j.foreco.2017.09.043.
Bargali H, Calderon LPP, Sundriyal R, Bhatt D. 2022. Impact of forest fire
frequency on floristic diversity in the forests of Uttarakhand, western Himalaya.
Trees, Forests and People 9:100300. https://doi.org/10.1016/j.tfp.2022.100300.
Braunisch V, Roder S, Coppes J, Froidevaux JSP, Arlettaz R, Bollmann K. 2019.
Structural complexity in managed and strictly protected mountain forests:
Effects on the habitat suitability for indicator bird species. Forest Ecology and
Management 448:139–149. https://doi.org/10.1016/j.foreco.2019.06.007.
Camarretta N, Ehbrecht M, Seidel D, Wenzel A, Zuhdi M, Merk MS, Schlund M,
Erasmi S, Knohl A. 2021. Using airborne laser scanning to characterize land-use
systems in a tropical landscape based on vegetation structural metrics. Remote
Sensing 13(23):4794. https://doi.org/10.3390/rs13234794.
Carpenter C, Zomer R. 1996. Forest ecology of the Makalu-Barun National Park
and Conservation Area, Nepal. Mountain Research and Development 16(2):135–
148. https://doi.org/10.2307/3674007.

Chaudhary RP, Uprety Y, Rimal SK. 2016. Chapter 12.2. Deforestation in Nepal:
Causes, consequences, and responses. In: Shroder JF, Sivanpillai R, editors. Bio-
logical and Environmental Hazards, Risks, and Disasters. Boston, MA: Academic, pp
335–372. https://doi.org/10.1016/B978-0-12-394847-2.00020-6.
Dasgupta P, Shakya B. 2023. Ecosystem services as systemic enablers for
transformation in the Hindu Kush Himalaya: An analytical synthesis. Regional
Environmental Change 23(1):39. https://doi.org/10.1007/s10113-022-02022-x.
Dorji Y, Schuldt B, Neudam L, Dorji R, Middleby K, Isasa E, K€orber K, Ammer C,
Annigh€ofer P, Seidel D. 2021. Three-dimensional quantification of tree
architecture from mobile laser scanning and geometry analysis. Trees
35(4):1385–1398. https://doi.org/10.1007/s00468-021-02124-9.
Dormann CF, Bagnara M, Boch S, Hinderling J, Janeiro-Otero A, Sch€afer D, Schall
P, Hartig F. 2020. Plant species richness increases with light availability, but not
variability, in temperate forests understorey. BMC Ecology 20(1):43. https://doi.
org/10.1186/s12898-020-00311-9.
Dubayah R, Armston J, Healey SP, Bruening JM, Patterson PL, Kellner JR,
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