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Exposure to ionizing radiation, mechanical trauma, toxic
chemicals or infections, or combinations thereof (i.e., com-
bined injury) can induce organic injury to brain tissues, the
structural disarrangement of interactive networks of neuro-
vascular and glial cells, as well as on arrays of the paracrine
and systemic destruction. This leads to subsequent decline in
cognitive capacity and decompensation of mental health.
There is an ongoing need for improvement in mitigating and
treating radiation- or combined injury-induced brain injury.
Cranial irradiation per se can cause a multifactorial enceph-
alopathy that occurs in a radiation dose- and time-dependent
manner due to differences in radiosensitivity among the
various constituents of brain parenchyma and vasculature.
Of particular concern are the radiosensitivity and inflamma-
tion susceptibility of: 1. the neurogenic and oligodendrogenic
niches in the subependymal and hippocampal domains; and 2.
the microvascular endothelium. Thus, cranial or total-body
irradiation can cause a plethora of biochemical and cellular
disorders in brain tissues, including: 1. decline in neurogenesis
and oligodendrogenesis; 2. impairment of the blood-brain
barrier; and 3. ablation of vascular capillary. These changes,
along with cerebrovascular inflammation, underlie different
stages of encephalopathy, from the early protracted stage to
the late delayed stage. It is evident that ionizing radiation
combined with other traumatic insults such as penetrating
wound, burn, blast, systemic infection and chemotherapy,
among others, can exacerbate the radiation sequelae (and vice
versa) with increasing severity of neurogenic and microvascu-
lar patterns of radiation brain damage. � 2021 by Radiation Research

Society

INTRODUCTION

There is growing concern regarding the long-term adverse
effects of ionizing radiation on nervous tissues are
associated with crucial aspects of brain constituents related
to mental activity, when the radiation-induced organic brain
injury severely affects mental health (1–3). The consistent
sequelae of high-dose radiation to the brain include
alteration of neuronal architecture, suppression of adult
neurogenesis, and induction of neuroinflammation, vascular
impairment, autoimmune response, radiation myelopathy
and neurological disorders, which can ultimately lead to
declining in cognitive capacity (1–16). Extensive research
has been done to explore the response of brain tissues to X
rays and gamma rays, resulting in a dramatic improvement
in radiation treatment modalities (4–26). Nevertheless, even
Gamma Knife and CyberKnifet procedures, with the
stereotactic precision, produce scattered radiation to the
normal parenchymal and vascular tissues outside the target
areas, presenting an ongoing challenge to radiation
oncologists (27–28).

Notably, the knowledge and perceptions of radiobiolog-
ical responses/effects has been constantly evolving over the
last century, undergoing revisions and encompassing new
data from modern molecular and cell biology, molecular
histopathology, micro-irradiation techniques for single-cell
target, human and animal genetics, functional genomics,
and systems biology (3 Omics), along with implementation
of computational predictive models, big data research
including clinical data on radiation, occupational and
military medicine (1–48). Ultimately, this effort has led to
a paradigm shift towards precision radiation oncology as
well as radiation protection and radiation countermeasures
based on integrative radiation systems biology (49–51).

Referring to radiation oncology, implementation of the
systems biology methodology for optimization of ionizing
radiation combined with chemotherapy or biological
response modifier (BRM) therapy could revolutionize the
future therapeutic modalities for cancer treatment. Indeed,
while the main objective of combined-modality therapy is to
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maximize the ratio of normal tissue preservation against
tumor cell reduction, clinical observations have often shown
worsening long-term adverse radiation effects on the brain
during the period after the ‘‘double-impacts’’ produced due
to radiation treatment combined with chemo- or BRM
therapy (12, 51).

Importantly, a crucial feature in the induction of adverse
effects of radiation combined injury is the synergy of different
etiological factors, i.e., radiation combined with concurrent or
subsequent secondary trauma (such as penetrating wound,
blunt, blast, thermal, hemorrhage, etc.) or insults from
chemical toxins and infections. For example, this has been
described in detail in a variety of models employing total-body
irradiation combined with a secondary insult occurring from
radiation-induced aseptic inflammation, immune suppression,
coagulopathy and a high susceptibility to bacterial transloca-
tion from wound and Enterobacteriaceae bacteremia (45). A
decrease in the LD50/30 dose for gamma rays has been reported,
in which animals received radiation combined with either skin
wound, burn or laceration (45).

The available clinical data on radiation combined injury
are limited and mostly originate from the cohorts of atomic
bomb survivors and victims of the Chernobyl nuclear
accident. Even more limited are clinical observations from
these groups on radiation combined brain injury; thus,
clarification of its pathogenesis based on these cohorts may
be challenging. Nonetheless, presumably, the effects of
high-dose radiation can include a decreased ability to
recover from mechanical (e.g., wound, blunt or blast)
trauma due to suppression of normal neurogenesis,
oligodendrogenesis and vasculogenesis, and induction of
parenchymal and neurovascular inflammation. Moreover,
these conditions can increase the risk of a tertiary effect, i.e.,
intracranial infections. Overall, importantly, brain trauma,
infection or chemotherapy/chemotoxins can exacerbate the
radiation encephalopathy sequelae (and vice versa). Predic-
tive models of these outcomes should be included in the
integrative radiation systems biology methodology and
employ data from translation research and combined
radiation therapy and clinical data from nuclear and
radiological accidents and incidents (12, 49, 51).

This review addresses the molecular and cellular mecha-
nisms mediating differential effects induced by high-dose (.2
Gy) exposure of X rays and gamma-photons in the cerebral
parenchymal and brain stroma that are associated with brain
dysfunction. Specifically, this review focuses on the counter-
measures against cerebrovascular impairment caused by
ionizing radiation and/or radiation combined injury.

X-ray and Gamma-Photon Tissue Irradiation: Molecular
Effects Induced by Ionization and the Mechanisms of Cell
Injury

The energy absorbed by tissues and body fluids upon
ionizing irradiation is dissipated within radiolysis of water
and organic and inorganic biomolecules (52–55).

The generated ‘‘primary reactive products’’ of radiolysis
are subjected to different types of recombination yielding
either the ‘‘secondary cytotoxic’’ products or adducts with
intact ‘‘bystander’’ constituents (54–56). Thus, the impact
of a pulse radiation to a single cell can per se produce an
instant effect on vital pathways that control transcriptional,
translational and post-translational events, cell metabolic
homeostasis, redox balance, cell-to-cell communication,
growth, differentiation or aberrations (56–63). Moreover, it
appears that living cells are equipped with numerous
molecular mechanisms [e.g., redox sensing transcriptional
factors, nuclear factor (erythroid-derived 2)-like 2 (Nrf2),
NF-jB, activator protein 1 (AP1) and mitogen-activated
protein kinase (MAPK)], to respond to different types of
cytotoxic stress and/or impacts of the damage-associated
molecular patterns (DAMPs), reactive oxygen species
(ROS) or the reactive electrophilic species, as a part of
the intrinsic defense control. Noticeably, radiation-induced
damage to the cell constituents occurs in a dose-dependent
manner. Thus, the extent of the subsequent cell remodeling
ultimately leads to either cell restoration or a complete cell
loss (e.g., cell senescence or death) (64–67). In this respect,
considering the high energy of the penetrating radiation, the
molecular damage to the cell and tissue structures from the
direct radiation impact is not specific, although the
consequent reactive responses to the radiation-produced
injury are. In general, this specificity defines levels of
radiosensitivity of cells in different tissues and systems.

As the ionization energy is delivered to the targeted
molecules, the electrons are subsequently ejected and
transferred to the oxidized molecules, yielding in the
biological environment, including the water ion-radicals
(H2O

�þ), an array of carbon-, oxygen-, sulfur-, and nitrogen-
centered ion-radicals and the excited water molecule (H2O

*)
and then, the discharged water-caged electrons (e–

aq),
hydroxyl radical (HO

�
), nucleophilic hydril (H

�
) and other

free radical species. There are numerous transient products
yielded in irradiated cells which disappear within a
millisecond via numerous redox reactions; namely the
water ion-radical (H2O

þ), the hydrated ejected electrons
(e–

aq), hydroxyl radical (HO
�
), nucleophilic hydril (H), and

an array of carbon-, oxygen-, sulfur-, and nitrogen-centered
ion-radicals in different biomolecules (52–54, 56). More-
over, these transient oxidized species disappear within a
millisecond via numerous redox reactions with antioxidants
or other redox-susceptible biomolecules, thus propagating
oxidative stress (52, 53, 68, 69). In particular, this is referred
to as the strong electrophilic hydroxyl radical (HO

�
), which

has a capacity to oxidize organic molecules with diffusion-
dependent constant rates (69, 70). Biomolecule-centered
radicals and the caged e– can either remain due to intra-
molecular recombination or react with the solvated oxygen
to form numerous peroxides and superoxide anion radicals
(O2

�–) (52, 53, 56). These secondary ROS can be either
promptly utilized in the Haber-Weiss/Fenton-type reactions
and by these means, activate the free-radical and radical-free
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metabolic pathways, or proceed to quenching by antiradical/
antioxidant redox mechanisms (54–57, 70–73). As an end
point of these redox reactions, a rise in non-radical
electrophiles and DAMPs in the irradiated tissues and
biofluids can exacerbate cytotoxicity due to the primary
radiation impact (74–79).

It would appear that the ‘‘secondary’’ ROS could
potentially amplify the ‘‘primary’’ oxidative stress; howev-
er, theoretical calculations indicate that the yields of
products, generated as a consequence of a primary
ionization event and essential for ‘‘secondary’’ oxidative
hit, are lower by orders of magnitude than those produced
by normal cellular metabolism (80). Therefore, the concept
of amplification of the radiation-induced ‘‘primary’’
oxidative stress has been further refocused on the shift of
metabolic and pro-inflammatory redox pathways in irradi-
ated cells (62, 63, 66, 77, 81–85). Indeed, numerous
observations indicate that the radiation-induced radiolysis
can affect crucial cellular constituents and tilt calcium
homeostasis, and thus can activate a cascade of metabolic
responses leading to a prolonged oxidative stress which
propagates systemically (64, 80–87). Moreover, there are
several redox mechanisms, which have been proposed to
drive the metabolic oxidative stress. Among these are
activation of: 1. Constitutive and inducible nitric oxide
synthases (62, 81); 2. NADPH oxidase (76, 83); 3.
Monoamine oxidase (88); 4. Radiation-inducible micro-
RNA miR-193a-3p (89); 5. Transient receptor potential
(TRP) proteins (90); and 6. ER-mitochondrial axis (83, 91–
93).

In this particular role, the radiation-induced imbalance of
mitochondrial redox machinery is the major consumer of
oxygen in aerobes as well as the major source of
metabolically produced ROS in most cells (83, 91–94).
This is especially important, considering that the mitochon-
drial volume represents a substantial radiation target, i.e., 4–
30% cell volume depending on the cell type (95). Recent
extensive investigations of the radiation effects on mito-
chondria have shown that these organelles have a superior
role in response to radiation hit by triggering: 1. Short- and
long-term metabolic responses (e.g., a decrease in oxidative
phosphorylation); 2. Metabolic amplification of the ‘‘pri-
mary’’ ROS yield from radiolysis; and 3. The cytochrome
C-dependent mechanism of programmed cell death (84, 91–
94). Numerous in vitro and in vivo observations indicate
that radiation effects on mitochondria have multifactorial
characteristics. First, mitochondrial DNA is very susceptible
to radiation damage. In response to the formation of lesions
in irradiated mitochondria, expression of specific mitochon-
drial genes that are related to cell survival can be
upregulated. They can also induce a compensatory increase
in the mitochondrial DNA copy number, i.e., ‘‘mitochon-
drial polyploidization’’ (84). The reactive products of
radiolysis such as ROS, RNS, RCS, RLS can produce
post-translational modifications of mitochondrial proteins
followed by functional alterations, such as the following: 1.

A prolonged dysregulation of the respiratory electron
transport chain (affecting complex I, complex II, complex
III and succinate/pyruvate-mediated respiratory capacity)
with subsequent increases in ROS production; 2. Alterations
in oxidative phosphorylation; 3. Remodeling of the
mitochondrial-ER network, activation of mitophagy, and
changes in the mitochondrial mass; 4. Increases in intra-
organelle communications and [Ca2þ]-mediated propagation
of oxidative stress; and 5. Increases in permeability and
swelling (83, 84, 91–96). Altogether, these reactions may
constitute the ‘‘mitochondrial ROS-induced ROS’’ mecha-
nism (97), and thus sustain the effect of prolonged oxidative
stress in irradiated tissues (83, 84, 87, 93, 94). Thus, the
radiation-associated ‘‘metabolic’’ activation of ROS can
further sustain and propagate the systemic electrophilic
stress to form a variety of non-targeted detrimental effects
on tissues and organ systems.

Oxidation of biomolecules due to radiolysis and the
Fenton mechanism has been extensively investigated over
the past decades. For a long time, the radiobiological effects
were associated with radiation-induced clustered DNA
lesions, i.e., two or more individual lesions within one or
two helical turns of the DNA that occur after passage of a
single radiation track through a nucleus. Mitochondrial
DNAs (mtDNAs) are equally susceptible to radiation injury
(98). Radiation can induce clustered DNA cleavage through
the direct impact of the ionizing photons on the DNA as
well as through the indirect action of reactive chemical
species formed near the DNA due to radiolysis and
oxygenation. Indirect effects are attributed to oxidative
damage by ROS, primarily by hydroxyl radicals generated
in radiolysis and the Fenton reactions (70, 85, 98, 99).
However, the ‘‘direct’’ damage of DNA induced by photons
occurs randomly in sugar and base moieties leading to
strand breakage, release of free (unaltered) DNA bases,
phosphates, and the formation of intermediate DNA free
radicals and the TBA, i.e., 2-thiobarbituric acid, reactive
products. The hydroxyl radicals react with the bases of
DNA rather than the sugars (70). In these events, the main
reaction is the addition of the hydroxyl radical to the p-
bonds of the bases. In the presence of oxygen, the resulting
pyrimidine carbon-based radicals can be converted to the
corresponding peroxyl radicals, as are sugar-based radicals.
Hydroxyl radical adducts of purines can be further subjected
to cleavage or undergo recombination. The ultimate intra-
molecular recombination of base-centered radicals can lead
to oxidation of the base and sugar moieties and the
oxidative DNA cleavage (55, 70, 71, 95–100).

While the targeted DNA damage and epigenetic alter-
ations are considered to be crucial mechanisms of the
radiation-induced cell death, mutagenesis and genomic
instability, the emerging role of other types of biomolecules
modified due to radiation is of growing interest. Thus, like
nucleic acids and nucleotides, deleterious effects of
radiation on proteins (or peptides and amino acids),
carbohydrates and lipid polyunsaturated fatty acids (PUFA)
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can occur either due to their radiolysis followed by
formation of RC

�
, ROO

�
, RO

�
, RS

�
and RN

�
, or due to

oxidation by ROS, primarily by hydroxyl radicals, resulting
from radiation exposure and the Fenton reactions. This free
radical oxidation results in an array of reactive electrophiles,
which can cause further post-translational modification
proteins, activation of cell defense mechanisms, or detri-
mental effect on homeostatic responses (76, 85, 100, 101),
Recently defined important electrophiles produced due to
radiation exposure and peroxidation are the protein-, amino
acid- and lipid-derived carbonyls (55, 67, 73, 104, 105).
Direct protein carbonylation, i.e., post-translational modifi-
cation resulting in the addition of reactive carbonyl groups
to proteins, occurs as a consequence of oxidation of lysine,
arginine, histidine, proline, glutamate, and threonine
residues, and fragmentation products of peptide bond
cleavage reactions. Protein carbonyls are reported to be
detectable for a while after radiation exposure (55, 85, 102,
103).

The radiation-induced oxidation of lipids generates a
large number of reactive intermediates, i.e., reactive lipid
species (RLS). Thus, radiation-induced cleavage of PUFA
or abstraction of a proton from PUFA by hydroxyl radical
leads to addition of molecular oxygen to form PUFA-
peroxides followed by their chemical degradation (Hock
cleavage). These peroxidation reactions yield a plethora of
PUFA-derived electrophilic (‘‘soft’’) carbonyls, which
includes a,b-unsaturated aldehydes and ketones, such as
2-alkenals, 4-hydroxy-2-alkenals (4-HNE), 4-oxo-2-alke-
nals (4-ONE), acrolein, and malondialdehyde (MDA) (85,
102). The molecular construction containing a,b-unsaturat-
ed carbonyl conjugated with the diene displays efficient
electron-withdrawing properties when reacting with nucle-
ophiles, such as cysteine thiol, lysine, or histidine residues,
via the Michael mechanism, producing a variety of intra-
and intermolecular covalent adducts. These covalent
modifications result in a free carbonyl attached to the
protein that appears as ‘‘secondary’’ carbonylation (75, 85,
102). In addition to carbonylation, the PUFA-derived
aldehydes can react with the amine moiety of lysine
residues to form the Schiff base adducts, which can further
undergo intra-protein recombinations (102). Importantly,
RLS such as MDA or 4-HNE can react with DNA and RNA
(nuclear and mitochondrial) as well, in particular, with the
guanine and adenine bases yielding etheno adducts (i.e.,
ethenobases). The produced aberrations in the nucleic acids
can lead to mis-transcriptions and thus to altered transcrip-
tional products. Moreover, by building Schiff bases with
histones and other transcription regulatory proteins in the
nucleus, these RLS can provoke clastogenic effects and
promote epigenetic alterations. Notably, PUFA derivatives
with conjugated dienes are particularly susceptible to in vivo
nitration with endogenously produced RNS yielding nitro-
alkenes, another group of electrophilic RLS (75). Biological
effects of a,b-unsaturated aldehydes and ketones have been
well addressed in the literature recently and the multi-

diversified interference of these products has been associ-
ated with the cell protein machineries situated in cytosol and
crucial organelles (e.g., mitochondria, ER and nuclei), and
formation of immunogens, inflammagens, and DAMPs in
the biofluids recognizable by PRRs on non-targeted cells
(76, 77, 98, 100, 102, 106, 107). Based on these
observations, post-translational modification of proteins
with PUFA-derived carbonyls, i.e., RLS, has also been
proposed as a novel signaling mechanism that modulates the
cell redox-stress responses, including those mediated by
Nrf2, NF-jB, heat-shock proteins 70 and 90, heat-shock
factor 1 (HSF-1) and APE/EpRE (75, 100, 102, 105, 106).

Notably, excessive generation of RLS implicated in the
Michael addition/reaction can spread carbonyl (electrophil-
ic) stress from the targeted cells to bystander cells via the
gap junction network or the extracellular vesicle mecha-
nisms, thus producing non-targeted effects including
mitochondrial dysfunction, ER stress, disturbance of
calcium homeostasis, and epigenetic and clastogenic
dysregulations (86, 100, 102). Overall, while the ‘‘radiolysis
phase’’ is short lived, it causes devastating systemic effects,
i.e., radiation-induced damage to proteins and lipids, post-
translational modification of proteins, impairment of DNA,
epigenetic alterations and formation of aberrant organelles
generates an array of mediators of stress, danger and
inflammation that interfere with cell communication
systems and homeostatic control (55, 64, 87, 108, 109). In
conjunction with these events, activation of free radical
reactions, formation of ROS, RNS, RCS, RLS, the Schiff
and etheno adducts, the products of protein sulfhydryl
oxidation as well as depletion of antioxidants are major
features of radiolysis in tissues and fluids, and therefore, are
considered to be biomarkers of oxidative stress after
radiation exposure.

Differential Susceptibility of Brain Structures and Systems
to Gamma-Photon Irradiation and Combined Injury

Impairment of the brain neuroregulatory activity and
functions as well as cognitive capacity due to radiation or
radiation combined injury is the result of induced organic
injury to the brain tissues, the structural disarrangement of
interactive networks of neurovascular and glial cells, as well
as on arrays of the paracrine and systemic destructive cues
originated from reactive responses to the impacts. The
response and structural and functional changes in brain cells
to radiation vary among different animal species (and
humans), cell phenotype, age and brain morphological area
and zones (e.g., the cerebral cortex vs. the hippocampus; the
lateral ventricles vs. the third ventricle) and are largely
suggested to fall in a linear dose-response pattern (4, 7, 18,
29, 30, 46–48, 110–118). However, the scope of injury and
the consequences of the impacts are determined by cell
susceptibility and their spatial-temporal status in the cell
interactive networks of the tissues, whether they are
neuronal, glial or neurovascular (7, 23, 24, 26, 117, 119–
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123). Notably, the differentiation stage and radiation dose/
dose rate can predispose the fate of affected cells. Indeed,
there are some particular phenotypes in the brain that are
able to proliferate, e.g., the cells of the subependymal zone,
glial and vascular endothelial progenitors, which are more
sensitive to radiation damage and undergo apoptosis at
lower doses compared to non-proliferating (e.g., terminally
differentiated and G0 stage) parenchymal and vascular cells.
Proliferating cells are also prone to senescence (117, 119–
122, 124–135).

Evidently, the pathogenesis of the radiation-induced brain
disease has a multifactorial character and depends on a
latency of cell responses, the dynamic of the radiation-
induced structural alterations and severity of the organic
injury (117, 122, 127, 128, 136, 137).

Moreover, a growing body of data from clinical and
translational research indicate that radiation effects on the
parenchyma cells and brain physiology are aggravated by
the associated damage to the microvascular endothelium
leading to cerebrovascular inflammation, breach of the brain
blood barrier, and impairment of metabolic homeostasis (6,
14, 26, 41, 117, 118, 136). Therefore, structural and
functional integrity, and the homeostatic and mental
functions may decline gradually within weeks through
years postirradiation (117, 118, 121, 138).

Overall, gamma photons per se, with their high ability to
penetrate the cranial cavity, can, to a certain degree,
directly affect all brain cell phenotypes (parenchymal and
stromal), as well as interstitial fluids in all parts and areas
of the brain regardless of radiation dose(s) given.
However, it is widely accepted that radiation exposure
below some certain single dose (as threshold) may not
produce either radiation sickness or long-term adverse
health effects in humans and animals, despite a presence of
transient lesions in photon-targeted cells (3, 4, 29, 48, 117,
118, 125). Thus, the risk of brain cancer is considerable at
radiation doses .0.2 Gy (110, 111, 118, 119, 139–141),
while a single dose to human ,0.02 Sv (or ,0.02 Gy
gamma photons) or cumulative lifetime exposures to ,0.1
Sv count as ‘‘no evidence for irradiation-related diseases’’
(142–145).

The estimation of limiting doses for direct radiation
effects in the CNS is based on morphological and functional
deficits. Thus, in humans, radiation doses between 0.35–
0.50 Gy cause transient radiation sickness, with nausea and
vomiting, that can develop a few days postirradiation (4, 46,
47, 145). In addition, delayed neurological disorder (.30
days) induced by 0.1–1.0 Gy radiation can originate from
morphological and functional changes within the neuronal
and vascular networks (14, 23, 26, 117, 118). A severe form
of delayed neuropathy, myelopathy, neuroinflammation,
vascular impairment, and decline in cognitive capacity
occurs after exposure to doses ranging from 1–5 Gy (i.e.,
LD50/60 for human total-body irradiation) followed by
supportive care (14, 23, 26, 117, 118, 141). Furthermore,
single doses of radiation over 20 Gy produces the acute

cerebrovascular syndrome characterized by very short
prodromal and latent phases followed by neurological
problems, including headache, seizures, cerebral edema,
abnormal cognition, neurological deficits and loss of
consciousness, as well as death (4, 26, 46, 47, 146, 147).
Given that radiation oncology treatments of the head and
neck employ high doses (i.e., cumulative dose ;60 Gy or
more with 2–6 Gy per fraction), the brain tissue is regarded
as a dose-limiting organ, with considerable concerns about
radiation-induced vascular injury (1, 2, 25, 26, 28, 112,
118–122, 148–151). Most importantly, the brain microvas-
culature represents the largest vascular network in humans
and animals, and up to 20% of the total oxygen consumed in
the body is provided to the brain (152–154).

Based on the clinical sequelae, radiation-induced brain
injury can be characterized as protracted acute, early
delayed and late delayed injury (25, 26, 118, 155–157).
Protracted acute cerebrovascular injury develops in hours to
days depending on radiation dose to the cranium (147, 157).
Early delayed brain injury occurs 1–4 months postirradia-
tion and can involve alterations in the architecture of
neuronal network, cerebral edema, transient micro-symp-
toms of organic damage to the nervous system and
demyelination followed by perturbations in the functional
activity of the nervous system (118, 121, 157). Although
both of these early injuries can result in severe reactions,
they are considered to be resolvable.

In contrast, late delayed brain injury is characterized
histopathologically by gray matter organic damage, ataxia,
vascular abnormalities, demyelination and, ultimately, white
matter necrosis, which usually begins to occur 4–6 months
postirradiation and can develop over years thereafter (118).
The late delayed injuries have been considered irreversible
and progressive (13, 14, 16, 22, 25, 26, 112, 114, 116, 118,
120, 122, 155–158). Thus, radiation-induced volumetric
changes related to cortical atrophy (i.e., temporal and limbic
cortex) have been reported in these patients a year after
radiotherapy. This volumetric effect occurs in a dose-
dependent manner at a dose range of 1–60 Gy with greater
effects at higher doses (159). It has also been found that
doses above 28.6 Gy resulted in a greater than 20%
probability of cortical atrophy, and the estimated decrease in
cortical thickness is –0.0033 mm (P , 0.001) for every 1
Gy increase in the dose (159).

The explanation for this pathology has been exclusively
based on alterations in mitotic activity, impairment of the
proliferating capacity and apoptotic responses of either glial
cells (e.g., astrocytes and oligodendrocytes in the forebrain
subependyma) or vascular endothelial cells (6, 22, 112, 114,
122, 129, 141–143, 158, 160, 161). Evidently, irradiation of
the subependymal zone can also dramatically affect a
population of the adult neural stem cells that sustain brain
tissue remodeling and cognitive functions (7, 23, 39, 116,
117, 127, 149, 160). Moreover, the radiation parenchymal
effects can be exacerbated by the radiation-induced
profound loss of capillary density within the hippocampus
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region leading to perfusion impairment (121, 161). Overall,

the extensive damage to the parenchymal and/or to the

stromal cells as well as a progressive loss of their

progenitors can lead to deterioration by neuroinflammation

along with breach of the blood-brain barrier (BBB) that can

ultimately lead to white matter lesions (5, 7, 25, 26, 115,
116, 128, 144, 158, 162). With the above considerations,

there are two conceptually different hypotheses proposed to

explain the mechanisms underlying the radiation-induced

temporal and structural alterations of brain tissues and the

radiation brain disease. One of these is based on

parenchyma-associated pathogenic mechanisms, and the

other is focused on the vascular etiology of the disease (5, 6,
39, 116, 118, 120–122, 138, 162, 163).

The parenchymal hypothesis of radiation-induced brain

injury is focused on the neural progenitor cells (NPCs) and

oligodendrocyte precursors (OP) that are required for adult

neurogenesis and oligodendrogenesis that occur in the

specific microenvironments, i.e., the angiogenic and astro-

glial niches of the subventricular zone and the subependymal

zone at the lateral ventricles as well as in the dentate gyrus at

the hippocampus (Fig. 1). Thus, endothelial cells and

astrocytes situated in the niches control, promote and mediate

NPC renewal and/or further differentiation to neurons and

oligodendrocytes (5–7, 9, 13–16, 39, 114–117, 122, 124,
144, 158, 160, 162–164). Cranial irradiation is shown to

induce: 1. Apoptosis in the subependymal zone and the

dentate gyrus; and 2. A dose-dependent loss of the neuronal

FIG. 1. Diagram of the mid-sagittal plane of the human brain with indication of distinct radiosensitivity of
brain structures/zones and radiation-response centers. Clinical data. � Radiation-induced nausea and vomiting
occur after irradiation at doses .0.35 Gy; the effect develops with a dose-dependent latency and is due to
responses of the chemoreceptor trigger zone of the medulla oblongata to the radiation-induced pro-inflammatory
stimuli. � Cortical atrophy occurs in a dose-dependent manner (1–60 Gy irradiation; 1 Gy increments) with
greater effects at higher doses, where the temporal and limbic cortex exhibits the greatest change in cortical
thickness per Gy, compared to other regions (159). Radiation therapy at doses above 28.6 Gy results in a .20%
probability to manifest cortical atrophy (170). � Brain exposure to a single 5–15 Gy radiation dose can cause
structural/functional alterations in glial cells and ultimately leads to the fiber demyelination (16, 112, 114, 118,
171, 172). � Late delayed effects of cranial radiotherapy (35–40 Gy fractionated, 1.8 Gy per day) include
reduction in the white matter volume (e.g., the corpus callosum, olfactory bulbs, the anterior commissure) (173).
� A long-term effect of radiation at moderate-to-high-doses includes a risk for development of brain tumors
(174). Translational research. � Brain irradiation, single fractions ranging from 0.5–15 Gy, can trigger
structural/functional alterations in hippocampal cells and induce apoptosis of mitotically active brain cells in
SEZ and dentate gyrus, thus detrimentally suppressing normal neurogenesis and oligodendrogenesis, affecting
myelination and white matter development, particularly in the corpus callosum, parietal cortex and
subventricular zone. Impairment of neurogenesis includes a significant shortening in dendritic length, reductions
in the number of dendritic branches and branch points, and declines in the dendritic spine density that can occur
after a month postexposure. Moreover, the above effects are frequently accompanied by a chronic microglia
activation and can upregulate neuroinflammation and leads to decline in the cognitive function (8, 14, 16–18, 23,
39, 65, 115, 117, 118, 122, 123, 130–132, 175, 176). �Microvascular degeneration can occur after 0.1 Gy single
dose exposure (rarefaction of capillary density in mouse brain) (117, 144). A dramatic increase in endothelial
aberration appears after irradiation at doses . 4 Gy (16). These effects are associated with a decline in
vasculogenesis and a development of neurovascular inflammation in hippocampus, the fimbria, and the ventricle
choroid plexus that exacerbate cognitive impairment (112, 114, 116–119, 121, 160, 177).
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stem cells as well as suppression of proliferation and
differentiation of the surviving NPCs. Moreover, radiation
toxicity affects reproductive capacity of oligodendrocyte
type-2 astrocyte (O-2A) progenitor cells essential for the

oligodendrocyte maturation (10, 13, 14, 15, 21, 22, 39, 122,
130, 156, 162–164).

The vascular hypothesis is supported by a large body of
data that has described the radiation-induced vascular
structural changes, including vessel dilation, vasculopathy
and depletion of endothelial progenitors, appearance of
senescent and aberrant endothelial cell, as well as activation
of endothelial apoptosis and vascular inflammation (7, 120,
121, 128, 136, 154). Quantitative studies of irradiated

animal brains have also demonstrated time- and dose-
dependent reductions in the number of endothelial cell
nuclei and blood vessel lengths (112, 119, 121, 161).

The vascular tissue displays a biphasic mode in response
to radiation. The first acute phase can occur within 24 h
postirradiation where the underlying mechanisms are
associated with the radiation-induced apoptosis of endothe-
lial cells (133). The second late phase of radiation effects on
vasculature beds requires month(s) for development and

features capillary collapse, thickening of basement mem-
brane and a loss of the endothelial clonogenic activity (133).
Notably, the radiosensitivity of vascular tissues can vary
based on the vessel caliber, i.e., macrovessels .300
microns, microvessels ,300 microns, arterioles and venules
.10 microns and capillaries ,10 microns (137). Evidently,

capillaries are the most radiosensitive components of the
vasculature (165). Thus, Dimitrievich et al. (166, 167) have
demonstrated that sensitivity of the capillaries to single X-
ray doses ranging from 200 to 2,000 rad has been
significantly greater than that of larger vessels. They have
also shown that the major features of radiation injury have
been represented by capillary disruption, and extravasation

of blood components as well as proinflammatory alterations
(166). There is reported evidence that the high vulnerability
of capillary beds to radiation is due specifically to high
radiation sensitivity of their endothelium, which is the major
structural constituent of capillary walls (136, 168, 169).
Referring to the radiation-induced brain disease, the
microvasculature represents the principal histo-hematic

interface in the CNS that sustains and controls the nervous
tissue homeostasis (10). Therefore, the radiation-induced
damage to the normal capillary endothelium can result in a
breach of the brain-blood barrier leading to severe health
outcomes.

Overall, while it is widely accepted that radiation does not
produce pathognomonic morphologic features, that is,
radiation-induced alterations may occur as a result of

injuries by other factors, nonetheless, it is evident that
microvascular injury may drive some unique self-sustaining
mechanisms of chronic radiation diseases (6, 7, 119, 137).
Neurological disorders resulting from brain irradiation are
listed in Table 1.

Endothelial Cell Response to Radiation Exposure and the
Vascular Patterns of CNS Effects after Radiotherapy and
Radiation Combined Injury

Microvascular Endothelium in Integrity of Brain Vascular
Barrier. The endothelium of the microvascular beds
comprises specific cell phenotypes and represents a part
of (BBB) that tightly controls the brain immunochemical
homeostasis (10). The BBB is a highly organized
multicellular gate-keeping structure, which sustains the
brain tissue immunochemical homeostasis by regulating the
molecular trans-endothelial transport between the paren-
chyma and the systemic circulation and by restricting
translocation of the peripheral immune cells. Importantly,
there is a lack or low level of constitutive expression of
major histocompatibility I molecules on neurons and
oligodendrocytes of the adult brain. The limited permeabil-
ity of the CNS microvascular endothelium is mostly
attributed to its intrinsic low pinocytic activity and a high
level of efflux transporters. This BBB-specific cell layer is
tightly bound by the tight junction (TJ) and the adherent
junction (AJ) molecules that are situated in the intercellular
space between the adjacent endothelial cells.

There is a large body of evidence to indicate that the
vascular cellular components along with the parenchymal
components constitute structural/functional modules, named
as the multicellular neurovascular units (NVUs). NVUs can
be defined as complex functional and anatomical structures
composed of endothelial cells with their TJs/AJs, a basal
lamina covered with pericytes and smooth muscular and
parenchymal cells, including astrocytes, neurons, interneu-
rons and adjacent perivascular microglia (144, 178, 179).
Moreover, the vascular endothelial monolayer is embedded
in a complex meshwork of interacting proteins, glycopro-
teins, proteoglycans, glycolipids and extracellular vesicles
that constitute glycocalyx and extracellular matrix. Thus,
the NVU architecture depicts the influence of parenchymal,
mural, extracellular components and paracrine factors in the
unique function of the brain microvascular endothelium (10,
24, 178). Moreover, NVUs can represent functional
platforms for integrating responses of pro- and anti-
inflammatory pathways under normal and pathological
conditions (41).

Radiation Induces Endothelial Remodeling and Changes
Endothelial Function. Evidently, the vascular endothelial
cells in the NVU construct are vulnerable to direct radiation
impacts, indirect bystander effects and the secondary
inflammatory factors (6, 9, 16, 79, 121, 133, 144, 151).
This makes the microvascular tissue extremely susceptible
to radiation injury. Indeed, radiation-induced biochemical
alterations and stressogenic stimuli can drive morphological
and functional alterations in endothelial cells, namely
expression of pro-inflammatory phenotypes, remodeling of
tight junctions and NVU interactions, increases in perme-
ability of endothelial lining of microvasculature, cell death
and detachment from the basement membrane (136, 144,
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180, 181). These vascular effects are often exacerbated by
neuroinflammatory responses associated with radiation,
such as decreases in expression of protein kinase B (Akt)
and anti-inflammatory cytokines, and increases in expres-
sion of pro-inflammatory mitogen-activated protein kinases
(MAPK) (182). Ultimately, this microvascular remodeling
can result in a BBB breach and an intraparenchymal
hemorrhage.

There is some evidence that high-dose (.2 Gy) radiation
is associated with development of aberrant endothelial cells,
whereby the affected cells can either transfer from the
quiescent state to a pro-inflammatory phenotype or proceed
to mitotic or apoptotic cell death, depending on the
delivered radiation dose (11, 76, 120, 121, 128, 151, 181,
183, 184).

The endothelial pro-inflammatory phenotypes are char-
acterized by the expression of cytokines, chemokines, and

adhesion molecules that facilitate the recruitment and

homing immune cells to sites of infection or tissue injury

(9, 11, 118, 121, 142, 144). Naturally, endothelial cell

activation is a normal part of the vascular defense

mechanisms. In the event of radiation exposure, there are

several pathways, including DAMP-activating pathways,

which can trigger pro-inflammatory endothelial response

(185, 186). Evidently, DAMP implicates signaling cascades

activated via toll-like receptors, purinergic receptors and

inflammasomes. Thus, exposure of endothelial cells to the

radiation-produced DAMP, dual-function alarmins, such as

HMGB1, and exosomes, can upregulate pro-inflammatory

responses mediated by NF-jB, MAPK and interferon

regulatory factor 3 (IRF3) (187, 188). Ultimately, these

reactions can result in expression of several adhesion

molecules such as intercellular adhesion molecule (ICAM)-

TABLE 1
Neurological Disorders Resulted from Brain Ionizing Irradiation

Type Dose to brain Latency Duration
Prodromes, morphological

and/or functional pathology

Acute .20 Gy single Minutes–hour 2 Days Fatigue, headache, fever, nausea, vomiting, hypotension,
encephalopathy, major impairment of cognitive
function, cerebellar ataxia, cerebral edema, increase in
intracranial pressure, respiratory distress, cardiovascular
shock, cerebral anoxia, death. (145–147)

4–16 Gy single WBI,
supportive care

Hours–days Days–weeks Fatigue, headache, fever, nausea, vomiting, hypotension,
encephalopathy, impairment of cognitive function, acute
psychosis, cerebellar ataxia, cerebral edema,
subarachnoid-parenchymal hemorrhage. Chance of death
after .8 Gy irradiation (4, 46, 47, 145–147).

20–60 Gy fractionated
radiotherapy

Days Weeks Fatigue, headache, fever, hypotension, nausea, vomiting,
temporal encephalopathy with impairment of cognitive
function, neuroinflammation, respiratory distress,
cerebral edema (14, 16, 144, 157).

Early delayed 3–60 Gy, single or
fractionated
(radiotherapy or
translational
research)

Weeks 4–6 months Encephalopathy, temporal cognitive dysfunction, transient
myelopathy, endocrine dysfunction, vasculopathy.
Reversible suppression of the brain stem cells (2, 14,
121, 123, 144, 157, 162, 175). [Note, suppression of
neurogenesis and vasculogenesis can occur due to ,2.0
Gy radiation (122)].

In a range of 5 Gy– 60 Gy, radiation at 20–50 Gy
induced white matter injury which became significant
;3 months postirradiation (112).

Late delayed 3–60 Gy, single or
fractionated
(radiotherapy or
translational
research)

4–6 Months
to 1 year

Years–lifetime Cranial neuropathy, myelopathy, vasculopathy, loss of
mitotically-active cells (precursors of neurones and
oligodendrocytes), demyelination, white matter necrosis,
gliosis, neuroinflammation, cerebral atrophy,
progressive and irreversible cognitive dysfunction. High
risk for progressive dementia and endocrine
dysfunction. High risk for development of malignant
neoplasm (2, 14, 17, 22, 26, 117, 121, 144, 156, 159–
162, 168–176).

Radiotherapy at 20–50 Gy causes long-term mental
impairment. Mental decline in children after 30–35 Gy
can be discernible 4–6 months thereafter and can
become pronounced 2–3 years later (112).

50–60 Gy irradiation induced dry granular or fibrinoid
necrosis, with calcification, perivascular fibrosis,
collagenization and vessel telangiectasia, with all
changes occurring within 6 months of treatment (112).
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1, vascular cell adhesion molecule (VCAM)-1, and E-
selectin (184).

Apoptosis of microvascular endothelial cells can occur
within 24 h postirradiation to .5 Gy of gamma photons or
X rays in a dose-dependent manner (123, 181, 183, 184,
189). The data accumulated on this topic over the past 30
years indicate that endothelial apoptosis drives the early
microvascular radiation toxicity (190). These acute vascular
effects in different tissues, including brain, can appear
within days to weeks postirradiation. Chronic effects are
associated with the endothelial cell senescence in cerebral
vascular beds and these transformations may occur within
months to years (137). Thus, the applied cumulative
radiation dose, implemented fraction size, intrinsic nature
of the vascular bed and specificity of brain areas subjected
to irradiation, together can determine radiation outcomes.
Moreover, another factor that defines the endothelial
response to ionizing radiation is the degree of differentiation
of endothelial cells. Notably, endothelial progenitor cells
(EPCs) are not only attributed to embryonic tissues, but the
pool of peripheral blood EPCs originates from bone marrow
and resident sources of many other tissues. It appears that
this reservoir of EPCs can actively contribute to vascular
remodeling, whereas the radiation-induced suppression of
proliferation and ablation of EPCs causes vascular dys-
function (10, 191).

In addition to the above, there is a large body of
published research with a focus on elucidating the
molecular pathways leading to endothelial apoptosis. In
this respect, of particular interest are the intrinsic mecha-
nisms activated by radiation-induced damage to DNA,
mitochondria and plasma membrane. The apoptosis mech-
anism activated by DNA damage implicates the p53-
dependent pathway in which p53 activates transcription of
the pro-apoptotic BH3-only proteins PUMA, NOXA or
Bax, while the ‘‘mitochondrial damage associated’’ mech-
anism is mediated by the subsequently released cytochrome
C (62, 132, 134).

Moreover, much of the literature based on in vitro and in
vivo research have also suggested that the radiation-induced
endothelial cell apoptosis is largely mediated by the lipid
second messenger ceramide upon activation of acid/neutral
sphingomyelinases (ASMase/NSMase) hydrolyzing sphin-
gomyelin and releasing ceramide (133, 136, 192). One
crucial target of ceramide is the RAC1/MEKK1 pathway,
which interacts with the protein kinase MAPK8 regulating
apoptosis through effector caspases, i.e., caspase-1, caspase-
3 and caspase-6, as well as the autocrine stimulation of the
death receptor pathway. Interestingly, this protein kinase is
also implicated in the extrinsic apoptotic mechanism
activated by external cues such as TNF-a (193).

The Radiation-Induced Endothelial Damage and Micro-
vascular Impairment. As discussed above, the recent
concepts of cellular mechanisms of the radiation-induced
impairment of brain microvasculature regard the vascular
endothelium as one of the main targets in radiation

exposure. Thus, a high-dose radiation exposure or repeated
fractional radiotherapy can exceed the adaptive physiolog-
ical response and intrinsic resilience of the endothelium,
thereby leading to endothelial dysfunction. This patholog-
ical condition can first appear in the form of insufficient
responses to paracrine/endocrine/physiological stimuli and a
failure of the endothelium to perform its normal, physio-
logic functions. Then, the radiation-induced massive
formation of aberrant endothelial cells would lead to
reduction of the cell density in the microvasculature that
culminates in deterioration of the vascular tone, and
vascular inflammation and declining integrity of BBB. This
string of events, along with evident development of
coagulopathy associated with declining the levels of
platelets in the peripheral blood, often culminates in the
parenchymal hemorrhage as a part of the sequelae of the
acute disease (47, 194).

It is widely accepted that upon nuclear/radiological
accidents or acts of nuclear detonation, the ionizing
radiation would, with high-percentage estimates, be con-
founded by physical trauma (including burns) or exposure
to toxic chemicals; this could also occur with infection with
endemic, environmental or weaponized pathogens. A
combination of these factors results in combined injury,
which is more severe compared to due exposure to the same
radiation dose/dose rate alone (45). Although the mecha-
nisms of this synergistic interaction are not clearly
understood, evidently a combination of factors can, while
damaging/deranging biological barriers, also synergistically
induce immune suppression and upregulate cascades of the
systemic and local reactive responses in the injured
parenchymal and vascular tissues. Ultimately, these alter-
ations increase bacterial translocation, susceptibility to
sepsis and the multiple organ failure outcomes (45).

Since Lawrence et al. reported Enterobacteriaceae
bacteremia and subsequent sepsis as major factors of animal
mortality after irradiation, the crucial role of bacterial
breach, translocation and sepsis in radiation sequelae has
been broadly documented in clinical observations and a
variety of animal models of radiation combined injury (45,
195).

It is worth noting that the development of immunosup-
pression in irradiated animals can increase susceptibility to
bacterial inflammagens and septicemia in order of magni-
tude compared to nonirradiated controls (45, 195). This
phenomenon also suggests implication of the ‘‘secondary’’
septic responses in vasculature and parenchymal tissues
sensitized by ‘‘the primary’’ radiation exposure. Moreover,
these secondary responses can align with coagulopathy and
the generalized hemorrhagic Shwartzman-like reaction,
which leads to brain hemorrhage documented in animal
models in the early delayed phase postirradiation (194).

Taken together, based on the information above, it is
reasonable to suggest that acute and/or delayed encepha-
lopathy due to nuclear accidents (196) can be aggravated by
the infection-induced impairment of endothelium in the
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cerebral vasculature. Implication of neurovascular pattern in
the encephalopathy due to combined impacts would be even
more evident when such combination constitutes radiation
and acute or sub-acute traumatic brain injuries characterized
by mechanical damages to vasculature and intracranial
hemorrhage.

Overall, a decline in brain function due to radiation
combined injury is a challenge to civilian and military
physicians. Development of new therapeutic modalities for
managing the associated neurovascular injury could be a
crucial step to address this challenge.

Perspectives on Mitigation of Microvascular Injury due to
Radiation Therapy and Radiation Combined Impacts

Over time, several approaches and strategies have been
considered for reducing radiation effects in the endothelium
and brain cells, which are based on recruiting intrinsic
resources for repair/resistance capacity and on the reduc-
tion/modulation of responses that drive pro-apoptotic
pathways or senescence (12, 65, 133, 136, 197). These
strategies include: Increase in capacities of the EPC-
clonogen-generating tissues and the growth factor-produc-
ing cells; 2. Development of recombinant growth factors
(e.g., VEGF); and 3. Molecular interference approaches
using small molecules such as antioxidants, transcriptional
modulators, inhibitors of the central renin-angiotensin
system, inhibitors/modulators of the protein kinase path-
ways, among others. There is a large body of recently-
published literature on these topics (12, 197–199).

In this respect, remarkable advances have been made
based on investigations into the radioprotective effects of
the basic fibroblast growth factor (bFGF) on the endothe-
lium (133, 200). Here, it was suggested that the radiopro-
tection resulted from suppression of the ceramide-related
apoptosis (discussed above) where the PKC system operates
as a bFGF effector (200). Moreover, implementation of the
emerging cell therapy techniques for reconstitution of
damaged microvasculature using donor EPCs and mesen-
chymal stromal cells presents a new opportunity for
managing cerebrovascular impairment caused by radiation,
trauma, sepsis or combination thereof (201–204).

A growing body of translational data suggests that the
ghrelin peptide, an endogenous ligand of the growth
hormone secretagogue receptor, can ameliorate vascular
impairment under different pathological conditions (205–
207). Ghrelin originally was reported to induce growth
hormone release through pituitary GHSR-1a stimulation.
However, recently published studies have indicated multiple
paracrine, autocrine and endocrine roles of ghrelin,
reflecting the ubiquitous expression of GHSR-1a in a
variety of tissues and organs. Thus, in addition to the
established effects on food intake and growth hormone
release, ghrelin has emerged as a potent immunoregulatory
and anti-inflammatory agent. Moreover, ghrelin can also
ameliorate neuronal apoptotic transformations in models of

brain injury, making it an effective intrinsic neuroprotector
(206, 208, 209). There is evidence to suggest that ghrelin
can inhibit neuronal and endothelial apoptosis by activating
the extracellular-signaling-regulated-kinase (ERK)1/2, mi-
togen-activated protein kinase (MAPK) (180, 210), protein
kinase A (PKA) and protein kinase C pathways (PKC). The
activation of these pathways is associated with reduced
activation of BAX, an improved Bcl2/BAX ratio and
suppression of apoptosis/improved cell survival (210, 211).

There are promising published studies that have shown
the pro-survival effects of ghrelin in rodent models of
radiation injury and the combined radiation injury (radiation
accompanied by sepsis or trauma) (180, 192). Using a
mouse model of acute radiation injury and combined
radiation injury (skin trauma), Kiang et al. has previously
reported on the mitigating effects of ghrelin in hematopoi-
etic tissue (180) and cerebral vasculature (180).

CONCLUSIONS

Radiation and radiation combined injury induce severe
brain injury in a dose- and trauma score-dependent manner
and, in part, are associated with neurovascular impairment.
Whether the combined injury was the result of nuclear
industrial accidents, detonation of nuclear/radiological
devices or radiation therapy, it can nevertheless lead to
devastating human health outcomes including severe brain
injury. Research and development of new therapeutic
modalities for radiation- and radiation combined brain
injury should include the integrative radiation systems
biology methodology, and should employ analyses of big
data obtained from translational research, combined radio-
therapy (169) and clinical data from nuclear and radiolog-
ical accidents and incidents.

ACKNOWLEDGMENTS

The writing of this review was supported by AFRRI RBB34363, RAB

33529, RAB310934, NIH/NIAID IAA YI-AI-5045-04 and JPC-7

VP000276-01 to JGK. This review has been cleared and approved by

AFRRI and USUHS leadership management. The views, opinions and

findings contained in this report are those of the authors and do not reflect

official policy or positions of the Armed Forces Radiobiology Research

Institute, the Uniformed Services University of the Health Sciences, the

Department of Defense, or the U.S. government. The commercial products

identified in this article do not necessarily imply recommendation or

endorsement by the federal government and do not imply that the products

identified are necessarily the best available for the purpose.

Received: June 17, 2020; accepted: April 2, 2021; published online: May

12, 2021

REFERENCES

1. Crossen JR, Garwood D, Glatstein E, Neuwelt EA. Neurobehav-
ioral sequelae of cranial irradiation in adults: a review of
radiation-induced encephalopathy. J Clin Oncol 1994; 12:627–
42.

2. Roman DD, Sperduto PW. Neuropsychological effects of cranial
radiation: current knowledge and future directions. Int J Radiat
Oncol Biol Phys 1995; 31:983–98.

10 GORBUNOV AND KIANG

Downloaded From: https://complete.bioone.org/journals/Radiation-Research on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



3. Kovalchuk A, Kolb B. Low dose radiation effects on the brain –
from mechanisms and behavioral outcomes to mitigation
strategies. Cell Cycle 2017; 16:1266–70.

4. Dainiak N, Waselenko JK, Armitage JO, MacVittie TJ, Farese
AM. The hematologist and radiation casualties. Hematology Am
Soc Hematol Educ Program 2003; 473–96.

5. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores
adult hippocampal neurogenesis. Science 2003; 302:1760–65.

6. Coderre JA, Morris GM, Micca PL, Hopewell JW, Verhagen I,
Kleiboer BJ, et al. Late effects of radiation on the central nervous
system: role of vascular endothelial damage and glial stem cell
survival. Radiat Res 2006; 166:495–503.

7. Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW.
Irradiation induces regionally specific alterations in pro-inflam-
matory environments in rat brain. Int J Radiat Biol 2010; 86:132–
44.

8. Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD,
Fike JR. Extreme sensitivity of adult neurogenesis to low doses of
X-irradiation. Cancer Res 2003; 63:4021–7.

9. Moravan MJ, Olschowka JA, Williams JP, O’Banion MK.
Cranial irradiation leads to acute and persistent neuroinflamma-
tion with delayed increases in T-cell infiltration and CD11c
expression in C57BL/6 mouse brain. Radiat Res 2011; 176:459–
73.

10. Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation
induces neural precursor-cell dysfunction. Nat Med 2002; 8:955–
62.

11. Yuan H, Goetz DJ, Gaber MW, Issekutz AC, Merchant TE, Kiani
MF. Radiation-induced up-regulation of adhesion molecules in
brain microvasculature and their modulation by dexamethasone.
Radiat Res 2005; 163:544–51.

12. Robbins ME, Zhao W, Garcia-Espinosa M.A, Diz DI. Renin-
angiotensin system blockers and modulation of radiation-induced
brain injury. Curr Drug Targets 2010; 11:1413–22.

13. Okada S, Okeda R. Pathology of radiation myelopathy.
Neuropathology 2001; 21:247–65.

14. Greene-Schloesser D, Moore E, Robbins ME. Molecular
pathways: radiation-induced cognitive impairment. Clin Cancer
Res 2013; 19:2294–300.

15. Tome WA, Gokhan S, Gulinello ME, Brodin NP, Heard J,
Mehler MF, et al. Hippocampal-dependent neurocognitive
impairment following cranial irradiation observed in pre-clinical
models: current knowledge and possible future directions. Br J
Radiol 2016; 89:20150762.

16. Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S.
Brain irradiation and long-term cognitive disability: Current
concepts. Nat Rev Neurol 2017; 13:52–64.

17. Vogel FS. Effects of high dose gamma radiation on the brain and
individual neurons. In: Haley TJ, Snider RS, editors. Response of
the nervous system to ionizing radiation. New York; London:
Academic Press: 1962. p. 249–60.

18. Balentov S, Hnilicova P, Kalenska D, Murin P, Hajtmanova E,
Lehotsky J, et al. Effect of whole-brain irradiation on the specific
brain regions in a rat model: Metabolic and histopathological
changes. Neurotoxicology 2017; 60:70–81.

19. Taylor ML, Kron T. Consideration of the radiation dose delivered
away from the treatment field to patients in radiotherapy. J Med
Phys 2011; 36:59–71.

20. Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant
TE, et al. Radiation dose-volume effects in the brain. Int J Radiat
Oncol Biol Phys 2010; 76:S20–7.

21. Yang T, Wu SL, Liang JC, Rao ZR, Ju G. Time-dependent
astroglial changes after gamma knife radiosurgery in the rat
forebrain. Neurosurgery 2000; 47:407–15, discussion 415–16.

22. Panagiotakos G, Alshamy G, Chan B, Abrams R, Greenberg E,
Saxena A, et al. Long-term impact of radiation on the stem cell

and oligodendrocyte precursors in the brain. PLoS One 2007;
2:e588.

23. Parihar VK, Limoli CL. Cranial irradiation compromises
neuronal architecture in the hippocampus. Proc Natl Acad Sci
USA 2013; 110:12822–7.

24. Bylicky MA, Mueller GP, Day RM. Radiation resistance of
normal human astrocytes: the role of non-homologous end
joining DNA repair activity. J Radiat Res 2019; 60:37–50.

25. Schultheiss TE, Kun LE, Ang KK, Stephens LC. Radiation
response of the central nervous system. Int J Radiat Oncol BioI
Phys 1995; 31:1093–112.

26. Tofilon PJ, Fike JR. The radioresponse of the central nervous
system: a dynamic process. Radiat Res 2000; 153:357–70.

27. Petti PL, Chuang CF, Smith V, Larson DA. Peripheral doses in
CyberKnife radiosurgery. Med Phys 2006; 33:1770–9.

28. Shinde A, Akhavan D, Sedrak M, Glaser S, Amini A. Shifting
paradigms: whole brain radiation therapy versus stereotactic
radiosurgery for brain metastases. CNS Oncol 2019; 8:CNS27.

29. Kovalev EE, Smirnova OA. Estimation of radiation risk based on
the concept of individual variability of radiosensitivity. In:
Reeves GI, Ainsworth EJ, editors. AFRRI Contract Report 96-1.
Bethesda, MD: Armed Forces Radiobiology Research Institute;
1996:1–202.

30. Ruhm W1, Azizova T, Bouffler S, Cullings HM, Grosche B,
Little MP, et al. Typical doses and dose rates in studies pertinent
to radiation risk inference at low doses and low dose rates. J
Radiat Res 2018; 59:ii1–10.

31. De-Coursey E. Human pathological anatomy of ionizing
radiation effects of the atomic bomb explosions. Mil Surg
1948; 102:427–32.

32. Cronkite EP. The hemorrhagic syndrome of acute ionizing
radiation illness produced in goats and swine by exposure to the
atomic bomb at Bikini, 1946. Blood 1950; 5:32–45.

33. Pan HY, Mazur LM, Martin NE, Mayo CS, Santanam L,
Pawlicki T, et al. Radiation oncology health information
technology: is it working for or against us? Int J Radiat Oncol
Biol Phys 2017; 98:259–62.

34. Lee WJ, Choi Y, Ko S, Cha ES, Kim J, Kim YM, et al. Projected
lifetime cancer risks from occupational radiation exposure among
diagnostic medical radiation workers in South Korea. BMC
Cancer 2018; 18;1206.

35. Davidson ST. Any dose is too high. Environ Health Perspect
2005; 113:A735.

36. Vaiserman A, Koliada A, Zabuga O, Socol Y. Health impacts of
low-dose ionizing radiation: Current scientific debates and
regulatory issues. Dose Response 2018; 16:1559325818796331.

37. Kerns SL, Ostrer H, Rosenstein BS. Radiogenomics: using
genetics to identify cancer patients at risk for development of
adverse effects following radiotherapy. Cancer Discov 2014;
4:155–65.

38. Shouse SS, Warren SL, Whipple GH. II. Aplasia of marrow and
fatal intoxication in dogs produced by roentgen radiation of all
bones. J Exp Med 1931; 53:421–35.

39. Pellmar TC, Lepinski DL. Gamma radiation (5–10 Gy) impairs
neuronal function in the guinea pig hippocampus. Radiat Res
1993; 136:255–61.

40. Ghita M, Fernandez-Palomo C, Fukunaga H, Fredericia PM,
Schettino G, Brauer-Krisch E, et al. Microbeam evolution: from
single cell irradiation to pre-clinical studies. Int J Radiat Biol
2018; 94:708–18.

41. Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ.
Gene expression changes in mouse brain after exposure to low-
dose ionizing radiation. Int; J Radiat Biol 2003; 79:759–75.

42. Otsuka K, Koana T, Tauchi H, Sakai K. Activation of
antioxidative enzymes induced by low-dose-rate whole-body
gamma irradiation: Adaptive response in terms of initial DNA
damage. Radiat Res 2006; 166:474–8.

REVIEW 11

Downloaded From: https://complete.bioone.org/journals/Radiation-Research on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



43. Amundson SA. Functional genomics and a new era in radiation
biology and oncology. Bioscience 2008; 58:491–500.

44. Brothwell MRS, West CM, Dunning AM, Burnet NG, Barnett
GC. Radiogenomics in the era of advanced radiotherapy. Clin
Oncol (R Coll Radiol) 2019; 31:319–25.

45. Kiang JG, Olabisi A. Radiation: A poly-traumatic hit leading to
multi-organ death. Cell Biosci 2019; 9:25.

46. Diagnosis and treatment of radiation injuries. Safety reports series
2. Vienna: International Atomic Energy Agency; 1998.

47. Follow-up of delayed health consequences of acute accidental
radiation exposure. IAEA-TECDOC-1300. Vienna: International
Atomic Energy Agency; 2002.

48. Health risks from exposure to low levels of ionizing radiation.
BEIR (Biological Effects of Ionizing Radiation) VII Phase 2
Report, National Research Council. Washington, DC: National
Academy Press; 2006

49. Brahme A, Lind BK. A systems biology approach to radiation
therapy optimization. Radiat Environ Biophys 2010; 49:111–24.

50. Mayo CS, Phillips M, McNutt TR, Palta J, Dekker A, Miller RC,
et al. Treatment data and technical process challenges for
practical big data efforts in radiation oncology. Med Phys
2018; 45:e793–e810.

51. Unger K. Integrative radiation systems biology. Radiat Oncol
2014; 9:21.

52. Coderre J. Radiation chemistry. Chapter 7. In: 22.55J Principles
of Radiation Interactions. Fall 2004. MIT OpenCourseWare.
License: Creative Commons BY-NC-SA. Cambridge, MA:
Massachusetts Institute of Technology. (https://ocw.mit.edu)

53. LaVerne JA. OH radicals and oxidizing products in the gamma
radiolysis of water. Radiat Res 2000; 153:196–200.

54. Singh A, Singh H. Time-scale and nature of radiation-biological
damage: approaches to radiation protection and post-irradiation
therapy. Prog Biophys Mol Biol 1982; 39:69–107.

55. O’Neill P, Wardman P. Radiation chemistry comes before
radiation biology. Int J Radiat Biol. 2009; 85:9–25.

56. Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad
M, Vogt A, et al. Rapid proteomic remodeling of cardiac tissue
caused by total body ionizing radiation. Proteomics 2011;
11:3299–311.

57. Benderitter M, Vincent-Genod L, Pouget JP, Voisin P. The cell
membrane as a biosensor of oxidative stress induced by radiation
exposure: a multiparameter investigation. Radiat Res 2003;
159:471–83.

58. Corre I, Niaudet C, Paris F. Plasma membrane signaling induced
by ionizing radiation. Mutat Res 2010; 704:1–7.

59. An JH, Kim J, Seong J. Redox signaling by ionizing radiation in
mouse liver. Ann N Y Acad Sci 2004; 1030:86–94.

60. Gorbunov NV, Pogue-Geile KL, Epperly MW, Bigbee WL,
Draviam R, Day BW, et al. Activation of the nitric oxide synthase
2 pathway in the response of bone marrow stromal cells to high
doses of ionizing radiation. Radiat Res 2000; 154:73–86.

61. Choi KM, Kang CM, Cho ES, Kang SM, Lee SB, Um HD.
Ionizing radiation-induced micronucleus formation is mediated
by reactive oxygen species that are produced in a manner
dependent on mitochondria, Nox1, and JNK. Oncol Rep 2007;
17:1183–8.

62. Shinomiya N. New concepts in radiation-induced apoptosis:
‘Premitotic apoptosis’ and ‘postmitotic apoptosis’. J Cell Mol
Med 2001; 5:240–53.

63. Gajdusek C, Onoda K, London S, Johnson M, Morrison R,
Mayberg M. Early molecular changes in irradiated aortic
endothelium. J Cell Physiol 2001; 188:8–23

64. Vo NTK, Shahid M, Seymour CB, Mothersill CE. Effects of dose
rate on the reproductive cell death and early mitochondrial
membrane potential in different human epithelium-derived cells

e x po s ed t o g a m ma r a y s . D os e Re s po n se 2 01 9 ;
17:1559325819852508.

65. Kiang JG, Fukumoto R, Gorbunov NV. Lipid peroxidation after
ionizing irradiation leads to apoptosis and autophagy. In: Angel
C, editor. Lipid Peroxidation. Rijeka, Croatia: InTech Open
Access Publisher; 2012. p. 261–78.

66. Davies MJ, Forni, LG, Willson RL. Vitamin E analogue Trolox
CEsr and pulse-radiolysis studies of free-radical reactions.
Biochem J 1988; 255:513–22.

67. Mezyk SP. Rate constant determination for the reaction of
hydroxyl and glutathione thiyl radicals with glutathione in
aqueous solution. J Phys Chem 1996; 100: 8861–66.

68. Breen AP, Murphy JA. Reactions of oxyl radicals with DNA.
Free Radic Biol Med 1995; 18:1033–77.

69. Ostdal H, Davies MJ, Andersen HJ. Reaction between protein
radicals and other biomolecules. Free Radic Biol Med 2002;
33:201–9.

70. Jones DP. Radical-free biology of oxidative stress. Am J Physiol
Cell Physiol 2008; 295:C849–68.

71. Bild W, Ciobica A, Padurariu M, Bild V. The interdependence of
the reactive species of oxygen, nitrogen, and carbon. J Physiol
Biochem 2013; 69:147–54.

72. Azzam EI, de Toledo SM, Little JB. Stress signaling from
irradiated to non-irradiated cells. Curr Cancer Drug Targets 2004;
4:53–64.

73. Schopfer FJ, Cipollina C, Freeman BA. Formation and signaling
actions of electrophilic lipids. Chem Rev 2011; 111:5997–6021.

74. Uchida K. Redox-derived damage-associated molecular patterns:
Ligand function of lipid peroxidation adducts. Redox Biol 2013;
1:94–96.

75. Ilnytskyy Y, Kovalchuk O. Non-targeted radiation effects – an
epigenetic connection. Mutat Res 2011; 714:113–25.

76. Kwon JE, Kim BY, Kwak SY, Bae IH, Han YH. Ionizing
radiation-inducible microRNA miR-193a-3p induces apoptosis
by directly targeting Mcl-1. Apoptosis 2013; 18:896–909.

77. Rodel F, Frey B, Multhoff G, Gaipl U. Contribution of the
immune system to bystander and non-targeted effects of ionizing
radiation. Cancer Lett 2015; 356:105–13.

78. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen
RB. Ionizing radiation-induced, mitochondria-dependent genera-
tion of reactive oxygen/nitrogen. Cancer Res 2001; 61:3894–901.

79. Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB.
Activation of constitutive nitric-oxide synthase activity is an early
signaling event induced by ionizing radiation. J Biol Chem 2002;
277:15400–6.

80. Spitz DR, Azzam EI, Li JJ, Gius D. Metabolic oxidation/
reduction reactions and cellular responses to ionizing radiation: a
unifying concept in stress response biology. Cancer Metastasis
Rev 2004; 23:311–22.

81. Wang Y, Liu L, Pazhanisamy SK, Li H, Meng A, Zhou D. Total
body irradiation causes residual bone marrow injury by induction
of persistent oxidative stress in murine hematopoietic stem cells.
Free Radic Biol Med 2010; 48:348–56.

82. Kam WW, Banati RB. Effects of ionizing radiation on
mitochondria. Free Radic Biol Med 2013; 65:607–19.

83. Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of
ionizing radiation on biological molecules–mechanisms of
damage and emerging methods of detection. Antioxid Redox
Signal 2014; 21:260–92.

84. Zhao W, Robbins ME. Inflammation and chronic oxidative stress
in radiation-induced late normal tissue injury: therapeutic
implications. Curr Med Chem 2009; 16:130–43.

85. Tulard A, Hoffschir F, de Boisferon FH, Luccioni C, Bravard A.
Persistent oxidative stress after ionizing radiation is involved in
inherited radiosensitivity. Free Radic Biol Med 2003; 35:68–77.

86. Collins-Underwood JR, Zhao W, Sharpe JG, Robbins ME.

12 GORBUNOV AND KIANG

Downloaded From: https://complete.bioone.org/journals/Radiation-Research on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



NADPH oxidase mediates radiation-induced oxidative stress in
rat brain microvascular endothelial cells. Free Radic Biol Med
2008; 45:929–38.

87. Mancuso M, Pasquali E, Leonardi S, Rebessi S, Tanori M,
Giardullo P, et al. Role of connexin43 and ATP in long-range
bystander radiation damage and oncogenesis in vivo. Oncogene
2011; 30:4601–8.

88. Klumpp D, Misovic M, Szteyn K, Shumilina E, Rudner J, Huber
SM. Targeting TRPM2 channels impairs radiation-induced cell
cycle arrest and fosters cell death of T cell leukemia cells in a Bcl-
2-dependent manner. Oxid Med Cell Longev 2016;
2016:8026702.

89. Zhang B, Wang Y, Pang X, Su Y, Ai G, Wang T. ER stress
induced by ionising radiation in IEC-6 cells. Int J Radiat Biol
2010; 86:429–35.

90. Zhang B, Davidson MM, Zhou H, Wang C, Walker WF, Hei TK.
Cytoplasmic irradiation results in mitochondrial dysfunction and
DRP1-dependent mitochondrial fission. Cancer Res 2013;
73:6700–10.

91. Kobashigawa S, Suzuki K, Yamashita S. Ionizing radiation
accelerates Drp1-dependent mitochondrial fission, which in-
volves delayed mitochondrial reactive oxygen species production
in normal human fibroblast-like cells. Biochem Biophys Res
Commun 2011; 414:795–800.

92. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive
proinflammatory cytokine production. J Exp Med 2011;
208:417–20.

93. Anastacio MM, Kanter EM, Makepeace CM, Keith AD, Zhang
H, Schuessler RB, et al. Relationship between mitochondrial
matrix volume and cellular volume in response to stress and the
role of ATP-sensitive potassium channel. Circulation 2013;
128:S130–5.

94. Brady NR, Elmore SP, van Beek JJ, Krab K, Courtoy PJ, Hue L,
Westerhoff HV. Coordinated behavior of mitochondria in both
space and time: a reactive oxygen species-activated wave of
mitochondrial depolarization. Biophys J 2004; 87:2022–34.

95. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced
ROS release: an update and review. Biochim Biophys Acta 2006;
1757:509–17.

96. Georgakilas AG, O’Neill P, Stewart RD. Induction and repair of
clustered DNA lesions: what do we know so far? Radiat Res
2013; 180:100–9.

97. Cadet J, Douki T, Gasparutto D, Ravanat JL. Oxidative damage
to DNA: formation, measurement and biochemical features.
Mutat Res 2003; 531:5–23.

98. Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM. Cell
signalling by reactive lipid species: new concepts and molecular
mechanisms. Biochem J 2012; 442:453–64.

99. Anuranjani, Bala M. Concerted action of Nrf2-ARE pathway,
MRN complex, HMGB1 and inflammatory cytokines – implica-
tion in modification of radiation damage. Redox Biol 2014;
2:832–46.

100. Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress
and covalent modification of protein with bioactive aldehydes. J
Biol Chem 2008; 283:21837–41.

101. Kim YC, Barshishat-Kupper M, McCart EA, Mueller GP, Day
RM. Bone marrow protein oxidation in response to ionizing
radiation in C57BL/6J mice. Proteomes 2014; 2:291–302.

102. Duran L, Tappel AL. Production of carbonyl compounds and
sulfur compounds on irradiation of amino acids. Radiat Res 1958;
9:498–501.

103. Wong CM, Marcocci L, Liu L, Suzuki YJ. Cell signaling by
protein carbonylation and decarbonylation. Antioxid Redox
Signal 2010; 12:393–404.

104. Haberzettl P, Hill BG. Oxidized lipids activate autophagy in a
JNK-dependent manner by stimulating the endoplasmic reticulum
stress response. Redox Biol 2013; 1:56–64.

105. Picklo MJ, Azenkeng A, Hoffmann MR. Trans-4-oxo-2-nonenal
potently alters mitochondrial function. Free Radic Biol Med
2011; 50:400–7.

106. Hei TK, Zhou H, Chai Y, Ponnaiya B, Ivanov VN. Radiation
induced non-targeted response: mechanism and potential clinical
implications. Curr Mol Pharmacol 2011; 4:96–105.

107. Berbee M, Fu Q, Boerma M, Wang J, Kumar KS, Hauer-Jensen
M. Gamma-tocotrienol ameliorates intestinal radiation injury and
reduces vascular oxidative stress after total-body irradiation by an
HMG-CoA reductase-dependent mechanism. Radiat Res 2009;
171:596–605.

108. Valentin J. Low-dose extrapolation of radiation-related cancer
risk. Ann ICRP 2005; 35:1–140.

109. Tubiana M, Aurengo A. Dose-effect relationship and estimation
of the carcinogenic effects of low doses of ionising radiation: The
Joint Report of the Academie des Sciences (Paris) and of the
Academie Nationale de Medecine. Int J Low Radiat 2006; 2:135–
53.

110. Calvo W, Hopewell JW, Reinhold HS, Yeung TK. Time-and
dose-related changes in the white matter of the rat brain after
single doses of X rays. Br J Radiol 1988; 61:1043–52.

111. The 2007 Recommendations of the International Commission on
Radiological Protection. Oxford: ICRP publication 103. Ann
ICRP 2007; 37:1–332.

112. Steen RG, Koury M, Granja CI, Xiong X, Wu S, Glass JO, et al.
Effect of ionizing radiation on the human brain: White matter and
gray matter T1 in pediatric brain tumor patients treated with
conformal radiation therapy. J Radiat Oncol BioI Phys 2001;
49:79–91.

113. Jenrow KA, Brown SL, Lapanowski K, Naei H, Kolozsvary A,
Kim JH. Selective inhibition of microglia-mediated neuro-
inflammation mitigates radiation-induced cognitive impairment.
Radiat Res 2013; 179:549–56.

114. Tome WA, Gokhan S, Brodin NP, Gulinello ME, Heard J,
Mehler MF, et al. A mouse model replicating hippocampal
sparing cranial irradiation in humans: a tool for identifying new
strategies to limit neurocognitive decline. Sci Rep 2015; 5:14384.

115. Casciati A, Dobos K, Antonelli F, Benedek A, Kempf SJ, Belles
M, et al. Age-related effects of X-ray irradiation on mouse
hippocampus. Oncotarget 2016; 7:28040–58.

116. Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S.
Mechanisms of radiotherapy-associated cognitive disability in
patients with brain tumours. Nat Rev Neurol 2017; 13:52–64.

117. Reinhold HS, Calvo W, Hopewell JW, van der Berg AP.
Development of blood vessel-related radiation damage in the
fimbria of the central nervous system. Int J Radiat Oncol Biol
Phys 1990; 18:37–42.

118. Hopewell JW, Campling D, Calvo W, Reinhold HS, Wilkinson
JH, Yeung TK. Vascular irradiation damage: its cellular basis and
likely consequences. Br J Cancer Suppl 1986; 7:181–91.

119. Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z,
Sonntag WE. Whole brain radiation-induced vascular cognitive
impairment: mechanisms and implications. J Vasc Res 2013;
50:445–57.

120. Shinohara C, Gobbel GT, Lamborn KR, Tada E, Fike JR.
Apoptosis in the subependyma of young adult rats after single
and fractionated doses of X-rays. Cancer Res 1997; 57:2694–702.

121. Chakraborti A, Allen A, Allen B, Rosi S, Fike JR. Cranial
irradiation alters dendritic spine density and morphology in the
hippocampus. PLoS One 2012; 7:e40844.

122. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult
hippocampal neurogenesis. J Comp Neurol 2000; 425:479–94.

123. Lowe XR, Bhattacharya S, Marchetti F, Wyrobek AJ. Early brain
response to low-dose radiation exposure involves molecular
networks and pathways associated with cognitive functions,
advanced aging and Alzheimer’s disease. Radiat Res 2009;
171:53–65.

REVIEW 13

Downloaded From: https://complete.bioone.org/journals/Radiation-Research on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



124. Goldberg JS, Hirschi KK. Diverse roles of the vasculature within
the neural stem cell niche. Regen Med 2009; 4:879–97.

125. Chopra H, Hung M.K, Kwong DL, Zhang CF, Pow EHN.
Insights into endothelial progenitor cells: Origin, classification,
potentials, and prospects. Stem Cells Int 2018; 2018:9847015.

126. Nordal RA, Wong CS. Molecular targets in radiation-induced
blood-brain barrier disruption. Int J Radiat Oncol Biol Phys 2005;
62:279.

127. Brush J, Lipnick SL, Phillips T, Sitko J, McDonald JT, McBride
WH. Molecular mechanisms of late normal tissue injury. Semin
Radiat Oncol 2007; 17:121–30.

128. van der Maazen RWM, Kleiboer BJ, Verhagen I, van der Kogel
AJ. Irradiation in vitro discriminates between different O-2A
progenitor cell subpopulations in the perinatal central nervous
system of rats. Radiat Res 1991; 128:64–72.

129. Gobbel GT, Bellinzona M, Vogt AR, Gupta N, Fike JR, Chan
PH. Response of postmitotic neurons to X-irradiation: implica-
tions for the role of DNA damage in neuronal apoptosis. J
Neurosci 1998; 18:147–55.

130. Chow BM, Li YQ, Wong CS. Radiation-induced apoptosis in the
adult central nervous system is p53-dependent. Cell Death Differ
2000; 7:712–20.

131. Li YQ, Cheng Z, Wong S. Differential apoptosis radiosensitivity
of neural progenitors in adult mouse hippocampus. Int J Mol Sci
2016; 17:pii:E970.

132. Pena LA, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of
endothelial cells in the murine central nervous system: protection
by fibroblast growth factor and sphingomyelinase deficiency.
Cancer Res 2000; 60:321–7.

133. Ungvari Z, Podlutsky A, Sosnowska D, Tucsek Z, Toth P, Deak
F, et al. Ionizing radiation promotes the acquisition of a
senescence-associated secretory phenotype and impairs angio-
genic capacity in cerebromicrovascular endothelial cells: Role of
increased DNA damage and decreased DNA repair capacity in
microvascular radiosensitivity. J Gerontol A Biol Sci Med Sci
2013; 68:1443–57.

134. Li YQ, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS.
Endothelial apoptosis initiates acute blood-brain barrier disrup-
tion after ionizing radiation. Cancer Res 2003; 63:5950–6.

135. Fajardo LF. The pathology of ionizing radiation as defined by
morphologic patterns. Acta Oncol 2005; 44:13–22.

136. Naveed M, Zhou QG, Han F. Cerebrovascular inflammation: A
critical trigger for neurovascular injury? Neurochem Int 2019;
126:165–77.

137. Wilke C, Grosshans D, Duman J, Brown P, Li J. Radiation-
induced cognitive toxicity: pathophysiology and interventions to
reduce toxicity in adults. Neuro Oncol 2018; 20:597–607.

138. Chien L, Chen WK, Liu ST, Chang CR, Kao MC, Chen KW, et
al. Low-dose ionizing radiation induces mitochondrial fusion and
increases expression of mitochondrial complexes I and III in
hippocampal neurons. Oncotarget 2015; 6:30628–39.

139. Prise KM. New advances in radiation biology. Occup Med
(Lond) 2006; 56:156–61.

140. Pierce DA, Preston DL. Radiation-related cancer risks at low
doses among atomic bomb survivors. Radiat Res 2000; 154:178–
86.

141. Haley BM, Paunesku T, Grdina DJ, Woloschak GE. The increase
in animal mortality risk following exposure to sparsely ionizing
radiation is not linear quadratic with dose. PLoS One 2015;
10:e0140989.

142. Lumniczky K, Szatmari T, Safrany G. Ionizing radiation-induced
immune and inflammatory reactions in the brain. Front Immunol
2017; 8:517.

143. Anno GH, Baum SJ, Withers HR. Symptomatology of acute
radiation effects in humans after exposure to doses of 0.5 to 30
Gy. Health Phys 1989; 56:821–38.

144. Mettler FA, Upton AC. Medical effects of ionizing radiation.
Philadelphia: Saunders; 1995.

145. Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL,
Dickerson WE, et al. Strategic National Stockpile Radiation
Working Group. Medical management of the acute radiation
syndrome: recommendations of the Strategic National Stockpile
Radiation Working Group. Ann Intern Med 2004; 140:1037–51.

146. West CM, Barnett GC. Genetics and genomics of radiotherapy
toxicity: towards prediction. Genome Med 2011; 3:52.

147. Marsh JC, Gielda BT, Herskovic AM, Abrams RA. Cognitive
sparing during the administration of whole brain radiotherapy and
prophylactic cranial irradiation: Current concepts and approaches.
J Oncol 2010; 2010:198208.

148. Hansasuta A, Choi CY, Gibbs IC, Soltys SG, Tse VC, Lieberson
RE, et al. Multi-session stereotactic radiosurgery for vestibular
schwannomas: single institution experience with 383 cases.
Neurosurgery 2011; 69:1200–9.

149. Baker DG, Krochak RJ. The response of the microvascular
system to radiation. Cancer Invest 1989; 7:287–94.

150. Walker EJ, Shen F, Young WL, Su H. Cerebrovascular casting of
the adult mouse for 3D imaging and morphological analysis. J
Vis Exp 2011; 57:e2958.

151. Marin-Padilla M. The human brain intracerebral microvascular
system: development and structure. Front Neuroanat 2012; 6:38.

152. Rolfe DF, Brown GC. Cellular energy utilization and molecular
origin of standard metabolic rate in mammals. Physiol Rev 1997;
77:731–58.

153. Sheline GE. Radiation therapy of brain tumors. Cancer 1977;
39:873–81.

154. Greene-Schloesser D, Robbins ME. Radiation-induced cognitive
impairment–from bench to bedside. Neuro Oncol 2012; 14:iv37–
44.

155. Walker AJ, Ruzevick J, Malayeri AA, Rigamonti D, Lim M,
Redmond KJ, et al. Postradiation imaging changes in the CNS:
how can we differentiate between treatment effect and disease
progression? Future Oncol 2014; 10:1277–97.

156. Shah R, Vattoth S, Jacob R, Manzil FF, O’Malley JP, Borghei P,
et al. Radiation necrosis in the brain: imaging features and
differentiation from tumor recurrence. Radiographics 2012;
32:1343–59.

157. Karunamuni R, Bartsch H, White NS, Moiseenko V, Carmona R,
Marshall DC, et al. Dose-dependent cortical thinning after partial
brain irradiation in high-grade glioma. Int J Radiat Oncol Biol
Phys 2016; 94:297–304.

158. van den Maazen RWM, Kleiboer BJ, Berhagen I, van der Kogel
AJ. Repair capacity of adult rat glial progenitor cells determined
by an in vitro clonogenic assay after in vitro or in vivo
fractionated irradiation. Int Radiat Biol 1993; 63:661–6.

159. Brown WR, Blair RM, Moody DM, Thore CR, Ahmed S,
Robbins ME, et al. Capillary loss precedes the cognitive
impairment induced by fractionated whole-brain irradiation: a
potential rat model of vascular dmentia. J Neurol Sci 2007;
257:67–71.

160. Sundgren PC, Cao Y. Brain irradiation: effects on normal brain
parenchyma and radiation injury. Neuroimaging Clin N Am
2009; 19:657–68.

161. Burns TC, Awad AJ, Li MD, Grant GA. Radiation-induced brain
injury: low-hanging fruit for neuroregeneration. Neurosurg Focus
2016; 40:E3.

162. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis
from adult neural stem cells. Nature 2002; 417:39–44.

163. Fajardo LF, Berthrong M. Vascular lesions following radiation.
Pathol Annu 1988; 23 Pt 1:297–330.

164. Dimitrievich GS, Fischer-Dzoga K, Griem ML. Radiosensitivity
of vascular tissue. I. Differential radiosensitivity of capillaries: a
quantitative in vivo study. Radiat Res 1984; 99:511–35.

14 GORBUNOV AND KIANG

Downloaded From: https://complete.bioone.org/journals/Radiation-Research on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



165. Fischer-Dzoga K, Dimitrievich GS, Griem ML. Radiosensitivity
of vascular tissue. II. Differential radiosensitivity of aortic cells in
vitro. Radiat Res 1984; 99:536–46.

166. Ljubimova NV, Levitman MK, Plotnikova ED, Eidus LK.
Endothelial cell population dynamics in rat brain after local
irradiation. Br J Radiol 1991; 64:934–40.

167. Mendonca MS, Chin-Sinex H, Dhaemers R, Mead LE, Yoder
MC, Ingram DA. Differential mechanisms of x-ray-induced cell
death in human endothelial progenitor cells isolated from cord
blood and adults. Radiat Res 2011; 176:208–16.

168. Karunamuni RA, Moore KL, Seibert TM, Li N, White NS,
Bartsch H, et al. Radiation sparing of cerebral cortex in brain
tumor patients using quantitative neuroimaging. Radiother Oncol
2016; 118(1):29–34.

169. Peper M, Steinvorth S, Schraube P, Fruehauf S, Haas R, Kimmig
BN et al. Neurobehavioral toxicity of total body irradiation: a
follow-up in long-term survivors. Int J Radiat Oncol Biol Phys
2000; 46:303–11.

170. Makola M, Douglas Ris M, Mahone EM, Yeates KO, Cecil KM.
Long-term effects of radiation therapy on white matter of the
corpus callosum: a diffusion tensor imaging study in children.
Pediatr Radiol 2017; 47:1809–16.

171. Reddick WE, Glass JO, Palmer SL, Wu S, Gajjar A, Langston
JW, et al. Atypical white matter volume development in children
following craniospinal irradiation. Neuro Oncol 2005; 7:12–9.

172. Braganza MZ, Kitahara CM, Berrington de Gonzalez A, Inskip
PD, Johnson KJ, Rajaraman P. Ionizing radiation and the risk of
brain and central nervous system tumors: a systematic review.
Neuro Oncol 2012; 14:1316–24.

173. Betlazar C, Middleton RJ, Banati RB, Liu GJ. The impact of high
and low dose ionising radiation on the central nervous system.
Redox Biol 2016; 9:144–56.

174. Beera KG, Li YQ, Dazai J, Stewart J, Egan S, Ahmed M, et al.
Altered brain morphology after focal radiation reveals impact of
off-target effects: implications for white matter development and
neurogenesis. Neuro Oncol 2018; 20:788–98.

175. Calvo W, Hopewell JW, Reinhold HS, van den Berg AP, Yeung
TK. Dose-dependent and time-dependent changes in the choroid
plexus of the irradiated rat brain. Br J Radiol 1987; 60:1109–17.

176. Maki T, Hayakawa K, Pham LDD, Xing C, Lo EH, Arai K.
Biphasic mechanisms of neurovascular unit injury and protection
in CNS diseases. CNS Neurol Disord Drug Targets 2013;
12:302–15.

177. McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The
translational significance of the neurovascular unit. J Biol Chem
2017; 292:762–70.

178. Paemeleire K. The cellular basis of neurovascular metabolic
coupling. Acta Neurol Belg 2002; 102:153–7.

179. Heckmann M, Douwes K, Peter R, Degitz K. Vascular activation
of adhesion molecule mRNA and cell surface expression by
ionizing radiation. Exp Cell Res 1998; 238:148–54.

180. Kiang JG, Smith JT, Anderson MN, Umali MV, Ho C, Zhai M, et
al. A novel therapy, using Ghrelin with pegylated G-CSF, inhibits
brain hemorrhage from ionizing radiation or combined radiation
injury. Pharm Pharmacol Int J 2019; 7:133–45.

181. Ahmad M, Khurana NR, Jaberi JE. Ionizing radiation decreases
capillary-like structure formation by endothelial cells in vitro.
Microvascular Res 2007; 73:14–19.

182. Hildebrandt G, Maggiorella L, Rodel F, Rodel V, Willis D, Trott
KR. Mononuclear cell adhesion and cell adhesion molecule
liberation after X-irradiation of activated endothelial cells in vitro.
Int J Radiat Biol 2002; 78:315–25.

183. Hellweg CE. The nuclear factor kappaB pathway: a link to the
immune system in the radiation response. Cancer Lett 2015;
368:275–89.

184. Dong X, Tong F, Qian C, Zhang R, Dong J, Wu G, et al. NEMO
modulates radiation-induced endothelial senescence of human

umbilical veins through NF-kappaB signal pathway. Radiat Res
2015; 183:82–93.

185. Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E,
Shelhamer JH, et al. Inflammation-promoting activity of HMGB1
on human microvascular endothelial cells. Blood 2003;
101:2652–60.

186. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S. MAPK
pathways in radiation responses. Oncogene 2003; 22:5885–96.

187. Hu S, Gao Y, Zhou H, Kong F, Xiao F, Zhou P, et al. New
insight into mitochondrial changes in vascular endothelial cells
irradiated by gamma ray. Int J Radiat Biol 2017; 93:470–6.

188. Meyn RE, Stephens LC, Milas L. Programmed cell death and
radioresistance. Cancer Metastasis Rev 1996; 15:119–31.

189. Malinovskaya NA, Komleva YK, Salmin VV, Morgun AV,
Shuvaev AN, Panina YA, et al. Endothelial progenitor cells
physiology and metabolic plasticity in brain angiogenesis and
blood-brain barrier modeling. Front Physiol 2016; 7:599.

190. Lozano J, Menendez S, Morales A, Ehleiter D, Liao WC,
Wagman R, et al. Cell autonomous apoptosis defects in acid
sphingomyelinase knockout fibroblasts. J Biol Chem 2001;
276:442–8

191. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, et al.
Requirement for ceramide-initiated SAPK/JNK signaling in
stress-induced apoptosis. Nature 1996; 380:75–9.

192. Gorbunov NV, Kiang JG. Ghrelin therapy decreases incidents of
intracranial hemorrhage in mice after whole-body ionizing
irradiation combined with burn trauma. Int J Mol Sci 2017;
18:1693.

193. Brook I, Elliott TB, Ledney GD. Chapter 17. Infection after
ionizing radiation. In: Zak O, Merle A, Sande MA, editors.
Handbook of animal models of infection. San Diego, CA;
London, UK: Academic Press; 1999. p. 151–61

194. Kehoe AD, Nikiforov AM, Alexanin SS, Neronov EG,Tikhomir-
ova OV, Shun’kov VB, et al. Angiotensin-converting enzyme
genotype and encephalopathy in Chernobyl cleanup workers. Eur
J Neurol 2009; 16:95–100.

195. Uckun FM, Tuel-Ahlgre L, Song CW, Waddick K, Myers DE,
Kirihara J, et al. Ionizing radiation stimulates unidentified
tyrosine-specific protein kinases in human B-lymphocyte precur-
sors, triggering apoptosis and clonogenic cell death. Proc Natl
Acad Sci U S A 1992; 89:9005–9.

196. Li M, Ping G, Plathow C, Trinh T, Lipson KE, Hauser K, et al.
Small molecule receptor tyrosine kinase inhibitor of platelet-
derived growth factor signaling (SU9518) modifies radiation
response in fibroblasts and endothelial cells. BMC Cancer 2006;
24:6–79.

197. Jain KK. The handbook of neuroprotection. Germany; New
York: Springer; 2019. p. 1–287.

198. Haimovitz-Friedman A, Balaban N, McLoughlin M, Ehleiter D,
Michaeli J, Vlodavsky I, et al. Protein kinase C mediates basic
fibroblast growth factor protection of endothelial cells against
radiation-induced apoptosis. Cancer Res 1994; 54:2591–7.

199. Yu Q J, Tao H, Wang X, Li MC. Targeting brain microvascular
endothelial cells: a therapeutic approach to neuroprotection
against stroke. Neural Regen Res 2015; 10:1882–91.

200. Qiu J, Hirschi KK. Endothelial cell development and its
application to regenerative medicine. Circ Res 2019; 125:489–
501.

201. Zhou Y, Shao A, Xu W, Wu H, Deng Y. Advance of stem cell
treatment for traumatic brain injury. Frontiers Cell Neurosci
2019; 13:301–10.

202. Bonsack B, Heyck M, Kingsbury C, Cozene B, Sadanandan N,
Lee JY, et al. Fast-tracking regenerative medicine for traumatic
brain injury. Neural Regen Res 2020; 15:1179–90.

203. Tesauro M, Schinzari F, Caramanti M, Lauro R, Cardillo C.
Metabolic and cardiovascular effects of ghrelin. Int J Pept 2010;
2010:864342.

REVIEW 15

Downloaded From: https://complete.bioone.org/journals/Radiation-Research on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



204. Lopez NE, Gaston L, Lopez KR, Coimbra RC, Hageny A,
Putnam J, et al. Early ghrelin treatment attenuates disruption of
the blood brain barrier and apoptosis after traumatic brain injury
through a UCP-2 mechanism. Brain Res 2012; 1489:140–8.

205. Katare R, Rawal S, Munasinghe P, Tsuchimochi H, Inagaki T,
Fujii Y, et al. Ghrelin promotes functional angiogenesis in a
mouse model of critical limb ischemia through activation of
proangiogenic microRNAs. Endocrinology 2016; 157:432–45.

206. Spencer SJ, Miller AA, Andrews ZB. The role of ghrelin in
neuroprotection after ischemic brain injury. Brain Sci 2013;
3:344–59.

207. Chung H, Seo S, Moon M, Park S. Phosphatidylinositol-3-kinase/
Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways
mediate protective effects of acylated and unacylated ghrelin
against oxygen-glucose deprivation-induced apoptosis in primary
rat cortical neuronal cells. J Endocrinol 2008; 198:511–21.

208. Baldanzi G, Filigheddu N, Cutrupi S, Catapano F, Bonissoni S,

Fubini A, et al. Ghrelin and des-acyl ghrelin inhibit cell death in
cardiomyocytes and endothelial cells through ERK1/2 and PI 3-
kinase/AKT. J Cell Biol 2002; 159:1029–37.

209. Shah KG, Wu R, Jacob A, Blau SA, Ji Y, Dong W, et al. Human
ghrelin ameliorates organ injury and improves survival after
radiation injury combined with severe sepsis. Mol Med 2009;
15:407–14.

210. Kiang JG, Smith JT, Cannon G, Anderson MN, Ho C, Zhai M, et
al. Ghrelin, a novel therapy, corrects cytokine and NF-kB-AKT-
MAPK network and mitigates intestinal injury induced by
combined radiation and skin-wound trauma. Cell Biosci 2020;
10:63.

211. Kiang JG, Zhai M, Lin B, Smith JT, Anderson MN, Jiang S. Co-
therapy of pegylated-G-CSF and ghrelin for enhancing survival
after exposure to lethal radiation. Front Pharmacol 2021;
2021:628018.

16 GORBUNOV AND KIANG

Downloaded From: https://complete.bioone.org/journals/Radiation-Research on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



<<
	/CompressObjects /Tags
	/ParseDSCCommentsForDocInfo true
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 150
	/GrayImageResolution 150
	/DoThumbnails false
	/ColorConversionStrategy /LeaveColorUnchanged
	/GrayImageFilter /FlateEncode
	/EmbedAllFonts true
	/CalRGBProfile (sRGB IEC61966-2.1)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams false
	/ImageMemory 1048576
	/DownsampleMonoImages false
	/ColorSettingsFile (None)
	/PassThroughJPEGImages false
	/AutoRotatePages /None
	/Optimize true
	/ParseDSCComments true
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 1200
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth 8
	/PreserveFlatness true
	/CompressPages true
	/GrayImageMinResolution 150
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages false
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.4
	/MonoImageResolution 1200
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile ()
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/AutoFilterColorImages false
	/DownsampleGrayImages false
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 150
	/PDFXRegistryName ()
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Gray Gamma 2.2)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth 8
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /FlateEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/PDFXOutputConditionIdentifier ()
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
		/PTB <>
		/FRA <>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
		/NOR <>
		/DEU <>
		/SVE <>
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
		/JPN <>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/SUO <>
		/ESP <>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
	>>
	/CropMonoImages true
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo false
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages true
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages true
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		2400
		2400
	]
>>
setpagedevice


