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This study explores the likely prevalence of false indica-
tions of dose-response nonlinearity in large epidemiologic
cancer radiation cohort studies (A-bomb survivors, IN-
WORKS, Techa River). Reasons: Increasing numbers of
tests of nonlinearity are being made in studies. Hypothesized
nonlinear dose-response models have been justified to policy
makers by analyses that rely in part on isolated findings that
could be statistical fluctuations. After removing dose
nonlinearity (linearization) by adjusting person-years of
observation at each dose category, indications of nonlinearity,
necessarily false, were counted in 5,000 randomized replica-
tions of six datasets. The average frequency of any false
positive for five indicators of nonlinearity tested against a
linear null was roughly 25% in Monte Carlo simulations per
study, consistent with binomial calculations, increasing to
;50% within 6 studies assessed. Comparable frequencies
were found using Akaike’s information criterion (AIC) for
model selection or multi-model averaging. False above-zero
threshold doses were found more than 50% of the time,
averaging to 0.05 Gy, consistent with findings in the 6 studies.
Such bias, uncorrected, could distort meta-analyses of
multiple studies, because meta-analyses can incorporate high
P value findings. AIC-based correction for the extra
threshold parameter lowered these false occurrences to 8 to
19%. Given the simulation rates, the possibility of false
positives might be noted when isolated findings of nonline-
arity are discussed in a regulatory context. When reporting a
threshold dose with a P value . 0.05, it would be informative
to note the expected high false prevalence rate due to
bias. � 2023 by Radiation Research Society

INTRODUCTION

Regulation of exposure to ionizing radiation is based on
the idea that cancer outcomes are roughly linear with

radiation dose and have no dose threshold (1–5). This has
become the regulatory default or null model. The default in
radiation epidemiology is usually tested by fitting cancer
counts to mathematical models of response that differ as a
function of the dose variable, while relying on null
hypothesis testing to assess any need for nonlinear
components to be incorporated, such as quadraticity,
curvature, or dose threshold. Commonly, a graph is also
presented showing a smoothed ‘‘loess’’ fit, along with
confidence bands (6–9). Thus, a reader can make visual
judgments about dose response, supralinear or sublinear,
even if authors make no explicit inferences about
nonlinearity based on the image. Modest changes to
linearity at low doses are part of the regulatory default, as
quantified by a scaling factor, the low dose extrapolation
factor (LDEF) (10).

The regulatory default is not set in stone and is subject to
change by policy makers. For instance, in 2018 critics of the
linear non-threshold theory (LNT) were able to write
sections of a proposed dose-response rule at the USEPA
(11–14), although subsequently vacated by a Federal Court
(15). A stated underlying argument by some critics is, ‘‘If
the LNT is correct, then it should be able to explain the
findings in all studies. . .’’ (16, 17). This reasoning may
explain the emphasis placed on isolated findings by some
LNT critics as part of their argumentation (16–20).
However, such thinking does not account for multiple tests
for nonlinearity within and across studies.

Isolated indications of nonlinearities in dose response,
including those labeled as statistically significant, can occur
due to statistical fluctuations in cancer counts at different
dose categories. As an example, consider replications where
counts at higher doses fluctuate upwards. Positive curvature
will be introduced. Positive curvature will also be
introduced if counts at lower doses fluctuate downward. If
the fluctuations are large enough, fitting software will find a
false positive for nonlinearity.

Isolated findings need to be interpreted based on the
statistics of multiple comparisons, which is not a concept
familiar to everyone with influence on regulatory policy.
Moreover, for novel assessment methods, especially visual
assessment, the necessary statistical properties needed to
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interpret multiple results within and across studies may not

have been well established.

The estimation of the prevalence of false findings of five

types of nonlinearity in multiple comparisons within and

across 6 epidemiologic cohort studies is the subject of this

paper. The 6 publicly available cohort datasets analyzed

were 2 Techa River cohorts (incidence and mortality) (9,
21), the INWORKS worker study (22), and three Atomic

bomb survivor studies (7, 8, 23). Using simulation, four sets

of questions were explored about multiple comparisons in

radiation epidemiology studies.

1. Are there analysis methods in radiation epidemiology

that could overstate evidence for nonlinearity, for

instance, because the method underestimates the chances

that a finding is a false positive?

2. In general, what is the expected aggregated false

positive rate for a study, given the many tests for

nonlinearity carried out in studies? Specifically, what is

the likelihood that at least one false positive for

nonlinearity would show up in a single study given, n,
possibly correlated tests?

3. What is the likelihood that at least one false positive for
nonlinearity would show up in multiple studies? How do
the simulation results compare with results in the
published studies?

4. Does the reporting of three dose-threshold values
averaging to 0.043 Gy in four epidemiology studies
provide evidence of a true dose threshold, or does the
75%-occurrence rate reflect statistical noise or above-
zero bias? Specifically, what is the expected frequency
of above-zero dose thresholds irrespective of P values?

Based on the answers to these four sets of questions,
implications for regulatory analysis and radiation research
are discussed. To look for false findings in analysis methods
that do not rely on null-hypothesis testing, the Akaike
information criterion (AIC) was also considered for
selecting models, as was multi-model averaging.

To quantify expected prevalence of indications of
nonlinearity, we developed a straightforward way to
transform risk values in publicly available cohort datasets
to remove all nonlinearity from dose responses (herein
referred to as ‘‘linearization’’). Randomness was added to
dose category counts using simulation to generate 5,000
replications to analyze for nonlinearity. The linearization
procedure ensured that the regulatory null hypothesis of
linearity without threshold was known to be true for the
modified datasets (Fig. 1). Thus, any finding of a nonlinear
response in the replicates would have to be false, caused by
statistical fluctuation, no matter what the assessment method
might be: standard, novel, parametric, non-parametric or
visual.

Although the main assessments made in this article were
carried out on cohort data with grouped counts, it was also
of interest to see if a more detailed analysis based on
individual dose and cancer outcome would produce any
improvement in results. For this purpose, an additional
simulation step was required to disaggregate individual
cases from grouped data. While we worked with cohort data
sets, the methodology is also applicable to case-control
studies, as we briefly describe in the Discussion section.

Our article is not about finding the true dose response or
supporting the LNT scientifically. Our concern here is that
whatever method of inference is chosen, null hypothesis
testing or multi-model inference, results should be presented
in ways that minimize misinterpretation about isolated or
statistically biased findings.

This paper has two distinct audiences. The first consists of
those who do statistical modeling and/or quantitative
analysis to inform regulatory decision-making. The second
audience consists of those who do not fall in either of these
two categories but who are consumers of epidemiologic
data or have an interest in dose-response relationships.
Those in the second group may want to skip some of the
detail in the Materials and Methods section. In addition,
note that the final section, Summary and Conclusions, can
serve as an executive summary.

FIG. 1. Comparison of excess relative risk (ERR), indicated by
cancers/person-time, before and after linearization of the 2017 A-
bomb LSS data. The ‘‘after’’ data (solid triangles) were obtained by
scaling person-time for each data point so that the revised risk lay
exactly on a linearized line. No change was made in cancer count data.
For plotting purposes, the risks were normalized to the lowest fitted
risk value.
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MATERIALS AND METHODS

This section is divided into five subsections, including ‘‘Datasets
and treatments,’’ followed by four subsections corresponding to the
four sets of questions asked in the Introduction:

� Datasets and treatment, which includes: Dataset sources; Linear-
ization of risks; Relative risk data; Consideration of study
covariates and standardization.

� Methods for question 1 (Are there high false positive rates for
single tests?): Indicators of nonlinearity; Evaluation of nonlinear
shapes; Fitting cancer count data.

� Methods for question 2 (What is the expected rate of at least one
false positive in a single study?): Binomial calculations for a single
study.

� Methods for question 3 (What is the expected rate of at least one
false positive in multiple studies?): Binomial calculations for
multiple studies; AIC selection of best model; Multi-model
averaging.

� Methods for question 4 (What is the expected frequency of above-
zero dose thresholds?): Toy threshold-dose-response model; Fitting
simulated individualized survival data.

� Process flowcharts can be found in the supplementary material2

(https://doi.org/10.1667/RADE-21-00217.1.S1), figs. S1 to S4
(https://doi.org/10.1667/RADE-21-00217.1.S2): Flowchart over-
view; Flowchart for linearizing the datasets; Flowchart for
analyzing the linearized datasets; Flowchart for finding maximum
likelihood and confidence intervals.

Dataset Sources and Treatments

Datasets. Six publicly available cohort datasets were analyzed: two
Techa River cohorts (incidence and mortality) (9, 21), the INWORKS
worker study (22), and three A-bomb survivor studies (7, 8, 23).
Analysis began with pairs of counts and person-years of observation
obtained for a sequence of dose categories. For the three A-bomb
survivor studies, the needed pairs were extracted from their publicly
available, stratified datasets (24–26). Data for the Life Span Study
(LSS) cohorts were chosen for analysis. Data were grouped either
directly or by adjusting person-years for covariates (standardization),
using mean corrections determined in the respective studies, as
discussed later in this section. For the default analyses of the A-bomb
datasets, the maximum dose included was ;0.6 Gy to keep the focus
on the lower dose range and to better match dose ranges in the other
studies analyzed. Even in studies with large regression sample sizes,
the dose ranges can be restricted to the lower regions when looking for
nonlinear effects at low doses (8).

Pairs of counts and person-years for the INWORKS study (22) and
both the Techa River incidence cohort study (9) and the mortality
cohort study (21) were obtained from data found in the published
literature. For ease of reproducibility and to show the differences in
reference dose levels, the 6 sets of paired data are collected in the
Supplementary Material (tables S1–S3; https://doi.org/10.1667/
RADE-21-00217.1.S2). The number of dose categories (the regression
sample size) was, 11, 7 and 7, respectively, for the INWORKS and the
two Techa River studies. In contrast, the A-bomb datasets have 14–16
dose categories over the same dose range and around 25 over the total
dose range.

The Techa River datasets had an unusual pattern of counts per
category, where the counts in the lowest category (reference category)
were much lower than the counts in the next two higher dose
categories. To explore the impact of such a reversal on the frequency
of false positives, modifications were made to the datasets for

sensitivity analysis. The count in the reference category was scaled
upward to match the count in the second dose category, while
simultaneously scaling person years to keep risk the same.

For the 2017 A-bomb dataset, we chose the Not-In-City group
(NIC) as the reference level to avoid questions about the reference
level being above a possible dose region of hormesis (27, 28). Only
the 2017 dataset separates data for the NIC group. Because such a
reference level is not standard, sensitivity analyses were performed.
For example, the Not-In-City group was combined with the group of
survivors at closer distances, namely those located between 3 and 10
km from the epicenter at the time of the bombings.

It was pointed out to us by a reviewer that, in an earlier set of
simulations for the two-stage clonal model, which can produce
highly discontinuous dose response functions, reliable parameter
estimates for the dose response function simulated were only
obtained by individualized regression. Parameter estimates for this
model were not reliable when individuals were grouped into Poisson
dose categories (29). Although the dose response models considered
in this article are all continuous in dose, the likelihoods for the
threshold and 2-slope spline models can have discontinuous
derivatives. We therefore looked to see if individualizing risks
would make a difference in the results for these two dose-response
models.

To this end, two new datasets were created with 17,500 simulated
Techa River individuals to be used in dose threshold analysis and
1,750 to be used in the 2-slope spline analysis. Each simulated
individual was assigned a dose and a survival history, which
incorporated radiation-induced mortality. The radiation contribution
to survival was generated by a Cox proportional hazards model, with
hazard function linear in dose (Supplementary text S-1; https://doi.org/
10.1667/RADE-21-00219.1.S2).

Linearization of Risks

The data were linearized by adjusting person-years of observation
at each dose category, which allows the risk at any dose category to
be arbitrarily set, while preserving relative variance of risk. The
unadjusted risk at each dose category in a cohort study is determined
by the number of cancer cases per person-year at risk (counts/pyr).
The relative error (standard deviation over the mean) in these risk
values depends only on the count variable, if any experimental error
in person-years is neglected, as is standard. To obtain a synthetic set
of pure linear data with Poisson errors and therefore relative errors
matching the underlying study, the counts in each dose category
were left unchanged. Only the number of person years in a dose
category was modified, which allowed changes in risk without
change in count. Person-years were scaled at each dose category, k¼
1 to n, as in Eq. (1), so that the ratio of count to person-years
increased linearly with the category’s dose at index k, designated as
dk.

Linearized person years kð Þ ¼ count kð Þ3 person years k ¼ 1ð Þ
count k ¼ 1ð Þ3 1þ s 3 dkð Þ :

ð1Þ

The variable s¼ slope. Transformation stages for each dose category
in the 2017 A-bomb dataset are shown in Supplementary tables S-2
and S-3 (https://doi.org/10.1667/RADE-21-00219.1.S2). After linear-
ization, the numbers and positions of the dose categories and the
corresponding counts and count variances remain. The process is
equivalent to assigning every individual study subject in a dose
category the same value of person-years multiplied by a dose
dependent factor whose inverse is linear in dose.

Once the risk was set to pure linearity of dose response, Monte
Carlo simulation techniques were used (30) to quantify prevalence of
nonlinearity. Poisson variations were added to the count data using the
open source R-function, rpois (31). Each of 5,000 unique dose-
response curves was generated for each of the 6 linearized datasets by

2 Editor’s note. The online version of this article (DOI: https://doi.
org/10.1667/RADE-21-00217.1) contains supplementary information
that is available to all authorized users.
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drawing from the Poisson distribution centered on the average count
data in each dose category. Random samples of the modified data were
then drawn and used to compute test statistics whose distributions
provided estimates of the test statistic under the null (30). Sensitivity
runs were made with the same starting random number seed, so that
the same replications were analyzed for each different set of
assumptions.

Person-years were kept unchanged from replication to replication.
The choice of linear slope is a free parameter that can be chosen to
match published values or varied to see if changes in slope affect the
results of analysis. A published linear slope may have been affected by
some underlying and uncaptured nonlinearity, and, of course, its value
is subject to statistical and other errors so it may deviate from other
studies.

Relative Risk Data

In addition to the absolute risks discussed above, we also explored a
nonstandard relative risk model, where the data were made relative by
dividing all risk values by the reference risk (risk at the lowest dose).
This model is not based on a reparameterization that leaves the data
alone but makes the parameters relative. Such a reparameterization
was not considered here, because it does not produce results that differ
from the absolute risk model in our simple case without covariates
(results not shown). To distinguish this type of relative risk model
from the reparametrized versions, it is labeled here as a ‘‘relative risk
data model.’’ An analyst might consider such a relative risk model for
exploring nonlinearity, which is easy to analyze with well-established
and accessible software routines, should proprietary software, such as
AMFIT, not be accessible for analyzing the reparametrized version.
Alternatively, an analyst might simply be exploring alternatives to
standard approaches.

Consideration of Study Covariates and Standardization

Only univariate analysis with dose as the independent variable was
carried out in this article. In the case of the A-bomb datasets, it was
possible to adjust risks by important sex-averaged covariates, such as
age at exposure and age of attainment. This was possible because the
necessary sex-averaged adjustment functions for relative risk models
(not absolute risk models) and their fitted coefficients were included in
the published A-bomb articles (Supplementary table S-4; https://doi.
org/10.1667/RADE-21-00219.1.S2). Sex-averaged coefficients for
absolute risk models were not available for all three A-bomb datasets,
so the coefficients for relative risk models were used.

As a sensitivity test, these adjustment factors were used to produce
standardized person-years for each stratum prior to linearization. Use
of these covariate-adjusted risks in linearization of the datasets
produced a change in absolute risk scale factor only. There was no
change in relative risk at any dose category, a result that was initially
surprising to us but was confirmed by algebraic analysis (Supple-
mentary text S-2; https://doi.org/10.1667/RADE-21-00219.1.S2), as
well as confirmed numerically by running simulations and obtaining
the same false finding frequencies.

The fact that standardization does not change the linearization by
more than a scale factor is a fortunate result, because no covariate
adjustment functions are publicly available for either the Techa River
Cohort or the INWORKS worker study. Neither could we adjust
background by city and location for the A-bomb data, as has routinely
been done in studies carried out at the Radiation Effects Research
Foundation (RERF). We also were unable to adjust for smoking in the
2017 dataset as was done in the corresponding LSS study (8).
Although the relative variation between our crude and standardized
risk estimates for the A-bomb datasets amounted to less than 10% in
the 0 to 0.6 Gy range (results not shown), such a modest change would
not be expected for the INWORKS study, where worker age would be
correlated with cumulative dose.

Methods for Question 1 (Are there High False Positive Rates for a
Single Test?)

Indicators of Nonlinearity. All of the five indicators of nonlinearity
used or inferable from smoothed graphs in the six published studies
were tested in each replication of linearized data. Specifically, we
catalogued dose thresholds, curvature and quadratic terms in the
replicates, as well as the dose response shapes, supralinearity and
sublinearity (including hormesis). The tests are described further in
Table 1. Individual test results were tabulated and aggregated for each
replicate. For null-hypothesis testing, a (false) positive was counted
when 95%-confidence intervals for the relevant parameter excluded
the linear null.

A separate count was made for false-positive curvatures having
absolute magnitudes greater than 1 and thus a greater than twofold
difference in risk at 1 Gy compared to what would be expected from
the slope at low doses. These we deem to be of regulatory interest.

Perhaps, the most important finding of a nonlinearity for regulatory
policy would be evidence of a dose threshold. The threshold model
used here is a simple, 1-parameter extension of the linear default:

Y dð Þ � Y 0ð Þ ¼ B d � Dð Þ; for d.D
0; for d � D

� �
: ð2Þ

Where d is dose, D is the threshold dose value, B is the slope above
threshold, and Y is the risk of cancer.

The case of most interest is when D is found to have a narrow
confidence range that excludes the null of 0. However, in addition to
counting false positives for D, tabulations were made for all D values
above zero in the simulations, no matter how weak the statistical
evidence. This was done for several reasons. First, results about dose
thresholds that do not rise to the level of a false positive are routinely
published with P values, forming a collection that could be used for
meta-analysis. Second, dose threshold findings are sometimes
presented or discussed in the literature as indicators of nonlinearity
without considering the strength of the evidence (32, 33), making it of
interest to quantify the likelihood of such indications being statistical
fluctuations. It can be argued that such unsupported claims are so
obviously flawed that no quantitative response is needed. However,
dismissal out of hand may not be sufficient to carry the day with
audiences who influence regulation; quantitative illustrations of the
frequency of false indications may be helpful.

Average values for the threshold dose, which might serve as a
measure of bias away from the null, were also calculated. In an attempt
to gain insight into above-zero threshold values, separate counts were
made for those threshold dose values that satisfied the AIC criterion
for an improved fit, which penalizes the statistical likelihood for each
extra parameter introduced (34).

Evaluation of Nonlinear Shapes

Nonlinear shapes beyond the 3-parametric functions, threshold,
quadraticity and curvature, were addressed using four methods. The
methods were loess smoothing, 2-slope spline, the occurrence of five
points lying on one side of the linear line, and multi-model averaging.
A 2-slope spline dose response function was of particular interest,
because it was used in the Techa River mortality study. For AIC
selection and multi-model averaging in our analyses, the 2-slope
spline function provided the only shape analysis. The 2-slope spline
fits were made to each replicate using the R-functions, ‘lSpline’ and
optimizer,‘mle.’

The 5-consecutive-point method was of interest because such dose-
response curves tend to look nonlinear. They are an example of what
has been called the ‘‘clustering illusion’’ (35). To qualify as a
nonlinearity, the required five points had to start with the second data
point and cluster on one side of the linear fit to the data, all by at least
0.1 standard deviation.
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Locally estimated scatterplot smoothing (loess) was taken to be the
default shape analysis. To qualify as an apparent sublinear or
supralinear dose response, the 95%-loess confidence band had to fall
below or rise above, respectively, the linear fit to the data, somewhere
in the 0–0.25 Gy interval. The loess method was chosen as the default
for shape analysis because it is easy to understand and interpret. It also
has been used in numerous radiation epidemiologic cohort studies (6–
9), including three of those analyzed here. The loess technique is of
particular interest in an investigation of false findings, because the
method is not recommended for datasets with a small number of data
points (36) and could reasonably be expected to have non-standard
error rates. Further details are given in Supplementary text S-3 (https://
doi.org/10.1667/RADE-21-00219.1.S2).

Additional details for indications of nonlinearity:

1. The dose range in which nonlinear shapes were tallied was 0 to
0.25 Gy, somewhat above the 0.1 Gy that is typically cited as the
boundary above which linearity is not contested, at least for high
dose rates (1, 37). The reason for the higher choice here is that
some LNT critics have been concerned about apparent deviations

higher in the dose-response curve for the 2012 A-bomb mortality
study, from 0.2 to 0.7 Gy (28). The value of 0.25 was chosen as a
reasonable limit for illustrative purposes. In counting totals of
nonlinear shapes, only one per simulation was tallied (to avoid
double counting).

2. There is ambiguity in the designation of the baseline for hormesis,
which determines how low the confidence bands around the
smoothed curve must fall to qualify as hormesis. Three options
were considered.
a. The default reference level was the y-axis risk value at the

zero-dose intercept for a linear fit to the data, with the idea that
such a level represents the null hypothesis for linearity.

b. A sensitivity case was the y-axis intercept of the fitted
function, either loess or 2-slope spline, which some might
consider more realistic.

c. A second sensitivity case was the y-value of the first data
point, a choice that requires no modeling assumptions.
Because this choice is vulnerable to fluctuations in the count
at the first datapoint, excessive false results may be produced
when the number of counts is small at the first datapoint.

TABLE 1
Overview and Description of Indicators of Nonlinearity Assessed in Replicatesa

Fitted parameter Indicationa Method Comment Sensitivity analysis

Threshold dose (false
positive)

Confidence interval (CI)
excluding zero

Profile likelihoodb Ill-behaved profile
likelihoodc

t test critical values

Threshold dose (.0) Central value .0 Profile likelihoodb Ill-behaved profile
likelihoodc

Quadratic term CI excluding zero t test for weighted
regression; profile
likelihood for Poisson

Well-behaved profile
likelihood

Profile likelihood step
search

Curvatured CI excluding zero t test; profile
likelihood for Poisson

Ill-behaved profile
likelihoodd

Likelihood ratio test

Curvature magnitude .1 CI excluding zero t test; profile
likelihood for Poisson

Ill-behaved profile
likelihoodd

Loess shape teste, f CI exclude linear fit at a
dose , 0.25 Gye

R-routine, ‘‘loess’’

2-slope spline shape testf Lower limit of breakpoint
dose .0

Profile likelihoodb Ill-behaved profile
likelihoodc

Likelihood ratio test

5-point shape test 5-points on one side of
linear lineg

Occurrences counted Percent not obvious for
relativized data

AIC model score Model with lowest AIC
scoreh

Subtract penalty from max
loglikelihood

AIC ¼ –2 3 penalized
loglikelihood

Ratio of ERR/Gy’s in
multi-model fit

Ratio of ERR/Gy’s more
than factor of 2 up or
down below 0.25 Gy
compared to 1 Gyi

AIC-weighted average of 5
models, with 2-slope
spline for shape

CI of multi-model
average had to also
exclude linear fit at
some dose

a False indications¼ either false positives (nominal alpha¼ 0.05) or above-zero dose threshold. The threshold function was constant up to the
breakpoint, a linear function of dose thereafter.

b For dose threshold and 2-slope spline, a segmented search between dose categories using standard maximum likelihood estimation (mle)
routines produced the same results as a brute force step-by-step search over the entire breakpoint range, only faster.

c Boundary at zero; profile likelihood for dose breakpoint often had multiple peaks and almost always had discontinuous derivatives at doses
corresponding to dose categories (Supplementary figs. S-6 and S-7; https://doi.org/10.1667/RADE-21-00219.1.S2). Likelihood at zero breakpoint
for 2-slope spline was usually discontinuous.

d Curvature was determined using the formulation of dose response as, dose 3 (slope þ curvature 3 dose). The profile likelihood shape contains
both a valley and a peak (Supplementary fig. S-10; https://doi.org/10.1667/RADE-21-00219.1.S2). It implicitly depends on the ratio of two
variables, one of which can be zero.

e Only one shape per replicate was counted to avoid double counting.
f Separate counts for supra- and sublinearity. Hormesis counts are usually a subset of sublinearity, but not always for a reference level set to the

risk at the first datapoint.
g Exceedances began with the second dose category, all exceeding 0.1 standard deviation (obtained from square root of counts).
h AIC ¼ Akaike information criterion. The loglikelihood penalty is the number of parameters in the model.
i If highest dose in dataset is ,1 Gy (INWORKS, Techa River), then the comparison was the ERR/Gy at the highest dose. Average of models

was used, not medians.
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Fitting Cancer Count Data

Each replicate’s data were analyzed for the five nonlinearities by
software either by T-test, profile likelihood or likelihood ratio test.
Software was set to call a result a positive when the relevant test
statistic reached 95%-confidence (alpha set to 0.05). Deviations from
a 5% false-positive rate, which are known to occur (38), could then be
assessed by counting the number of software-assigned positives in
simulations. Only if the rate in simulations exceeded 10% did we call
attention to it, for two reasons. First, some radiation studies use 10% to
delineate positives (22, 39, 40). Second, different tests are available to
test essentially the same null hypothesis but can give different results
for finite regression sample sizes (41). Finally, test values have their
own uncertainty (42). Furthermore, an incorrect assumption about the
true value of alpha and the width of the distribution for a test statistic
would likely have little practical impact were the deviation modest.

For scoping purposes, brute force step searches involving many
thousands of small increments in dose were made to find the maxima
and confidence intervals for profile likelihoods predicted by software.
This profile approach allowed graphical visualization of the
complexities of profile likelihoods as functions of parameter values,
which made it clear that in some cases software algorithms were
inappropriate for finding maxima and confidence intervals. As in
Neriishi et al. (43), 95% confidence limits were taken at 3.84/2¼ 1.92
units above and below the parameter value at the log of the maximum
profile likelihood (44).

Most of the nonlinear models have only one more parameter than
the linear default, so the profile likelihood and likelihood ratio tests
were generally the same. For the 2-slope spline model, there were two
extra parameters, so lower confidence bounds for likelihood ratio tests
were found at 5.99/2 units below the maximum loglikelihood.

When it was not necessary to perform step searches, e.g., for a
linear-quadratic dose response, the maximum likelihoods were found
using standard optimization software, specifically maximum likeli-
hood estimator, ‘‘mle’’ in the R-statistical language, which sped up
calculations. For the linear-quadratic fits, false-positive designations
were based on the standard errors produced by the software, which are
based on assumptions of smooth behavior at maximum likelihood.
However special treatment was necessary to use standard software
optimizers to speed up calculations for threshold breakpoint and 2-
slope spline, which can have multiple likelihood peaks and
discontinuous derivatives. For these two functions, threshold and 2-
slope spline, segmented searches between dose category boundaries
were used to obtain maximum likelihoods and critical points for
profile likelihood, as well as for use in likelihood ratio tests. Between
datapoints, the likelihood met regularity conditions allowing searches
with the mle function to be used to find local maxima within the
segments. These calculations were also checked with brute force step
searches.

Additional details of the fitting process are listed below.

1. Confidence intervals are used in this article as benchmarks, not to
indicate a bright line boundary. The bright-line approach is also
implicit in the language of positives, true or false; we use such
language here for convenience and because of its wide use in
many fields as part of null hypothesis statistical inference.

2. Dose-response was analyzed with inverse-variance weighted linear
regression and Poisson regression. The variance for weighted
regression of absolute data was taken proportional to the cohort
count in a dose category and thus based on Poisson statistics.
When fitting the excess relative risk version of this model, the first
risk point was deleted, since it does not vary from 0 by definition,
and no intercept parameter was allowed in the fit. With relativized
data, the variance is no longer pure Poisson. For weighted linear
regression, the new variance of the ratios was calculated and used
in weighting. To make the calculation, the count distributions were
approximated as normal distributions and the ratio of counts was
also approximated as a normal distribution (45). To extend

analysis to 2 Gy for sensitivity analyses of the A-bomb datasets,
only weighted linear regression with Poisson based weights was
used, because Poisson regression for the 0–2 Gy range introduces
its own nonlinearity due to exponentiation of the fitted results to
log data

3. Weighted linear regression and Poisson regression may give
different inference results for finite number of dose categories (i.e.,
regression sample size), due to the different underlying likelihood
functions, normal vs. Poisson. To check that the false positive
rates calculated by weighted linear regression would, as regression
sample size was increased, converge to the results obtained using
Poisson regression, sample sizes were artificially increased. To
this end, new data points were interpolated and placed halfway
between count positions of the databases to keep the dose category
intervals reasonably uniform, as would likely be done in a real
study. Next, all data points were scaled to maintain total counts the
same. This process was iterated so that the number of data points
was approximately increased fourfold. Likelihood ratio tests were
made and checked for convergence as sample size increased.

Methods for Question 2 (What is the Expected Rate of at Least One
False Positive in a Single Study?)

The number of replicates with at least one false positive among the
five tests for nonlinearity were simply counted for the 5,000 replicates
of study data. This accounted for any correlations between the five
tests.

Binomial Calculations for a Single Study

With the standard choice of 95% confidence bands, false positives
for a single test of nonlinearity will happen in ;5% of the simulations,
assuming required assumptions about the data and modeling are met.
The probability, then, that at least one false positive will show up
when k independent tests for nonlinearity are made in a single study
can be obtained by a binomial calculation and compared to simulation
rates. With k set to 5, the number of tests of nonlinearity available in
the A-bomb studies that we considered, the result is 23% assuming
independence of the tests.

1� 0:955 ¼ 0:23: ð3Þ

Methods for Question 3 (What is the Expected Rate of at Least one
False Positive in Multiple Studies?)

The generalization of Eq. (3) to multiple studies is given in Eq. (4),
where fj is the aggregate false positive rate in the jth of n studies.

Fm ¼ 1� 1� f1ð Þ 1� f2ð Þ . . . 1� fnð Þ: ð4Þ
For the case of five independent statistical tests of nonlinearity in 6
studies, where the rate in each study is 23%, Eq. (4) predicts a 79%
chance that at least one false positive would show up in 6 independent
studies. This triplet of numbers, 5%, 23%, and 79% is to be compared
with modified values discussed later, when the assumption of
independent, perfect tests is relaxed. There are two cases to consider.
In the first case it is assumed that all five tests of nonlinearity are
available for all 6 studies, which is the assumption that is made to
generate the numbers in most of the tables and graphs to follow. The
total number of tests considered across all studies, then, is 30. In the
second case, which is used to compare simulation results with actual
study results, the number of test results available in each specific study
was used to determine the reduced f values to insert in Eq. (4). In both
cases, the f values were determined from simulations, which
automatically accounts for correlation between the different statistical
tests of nonlinearity.

To improve the match with actual results in the second case, the
dose range considered was increased for the A-bomb datasets to 0–2
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Gy, and weighted linear regression of absolute data was used to
preserve linearity in this dose range. Poisson regression of absolute
data was used for the other datasets.

A study-by-study listing of the primary test results available in the 6
studies, which total to 20, is given in Supplementary table S-5 (https://
doi.org/10.1667/RADE-21-00219.1.S2). A primary test means a test
performed on all data, without any subgrouping. To fully compare
simulation results to A-bomb findings, which included a positive
finding for nonlinearity in dose response for males in the 2017 A-
bomb study, it was necessary to go beyond primary tests. To this end,
linearization was carried out for the 2017 A-bomb dataset separately
by sex.

To put the curvature result for males in perspective, a Bonferroni
correction of 40¼23 20 tests was used for comparing with simulation
results. The factor of 2 comes from the assumption that all of the six
study groups would have looked at their test results by sex and would
only have reported a result by sex, if it had a very low P value. Thus,
we inferred that there might have been tests conditional on sex that did
not reach 95% confidence, which led us to double the Bonferroni
adjustment to account for this conservative possibility.

AIC Selection of Best Model

One way to avoid choosing a privileged null, as null hypothesis
testing does, is to rank models by the highest statistical likelihood
found in fits to the data. However, with this method, adding extra
parameters to a model will always lead to smaller model residuals. To
compensate, a model’s fitted likelihood can be penalized by a term
related to the number of parameters. A common choice for the
likelihood penalty in radiation epidemiology (23, 46–49), which we
adopt here, is based on the AIC criterion (34, 50), which in turn has
roots in information theory (34). Researchers have other choices,
including ‘‘corrected’’ AIC, ‘‘consistent’’ AIC, and Bayesian
Information criterion (50), which may change results depending on
sample size (50).

To apply the standard AIC method, unity was subtracted from the
statistical loglikelihood determined for each fitted parameter. The
model generating the highest penalized likelihood (lowest AIC score)
was then chosen in each replication of the 5,000 datasets. If AIC
selection picked any of the nonlinear dose response functions over the
linear default model, a false positive was declared and counted.
Although a privileged null is avoided with the AIC penalty method,
there is an implicit linear null for nested models like threshold,
quadraticity, curvilinearity, and 2-slope spline. In such cases, the AIC
criteria produces the same results as would selecting a model using a
null-hypothesis test, but with a higher cutoff P value than 0.05, namely
0.157 (50).

Multi-Model Averaging

Multi-model averaging (51) is an example of multi-model inference.
The averages were obtained by weighting the five dose-response
functions with normalized AIC weights (52). The weights were based
on the negative exponentiation of half the AIC values (51, 52), which
is algebraically equivalent to taking weights proportional to the
likelihood determined by software, reduced by a factor of e–p, where p
is the number of fitted model parameters. The standard error of the
multi-model fit at each point on the fitted curve was based on the
square root of the weighed sum of the squares of the standard errors
produced by fitting software for each model. Multiplication by 1.96
produced the confidence bands.

The final dose-response curve is analogous to a smoothed curve and
conceivably might be less likely to produce false positives. However,
the choice of a method to compare a multi-model curve to the linear
curve used in regulation is not obvious. The approach taken here for
illustrative purposes is to require at least a doubling or halving of the
crude slope (ERR/Gy) at low doses, while at the same time requiring
the 95% confidence band for the fitted curve to exclude the linear fit.

Without both of those conditions being met, we presume that
regulators would have minimal interest in considering any modifica-
tions to regulatory policy.

Some authors narrow down the number of nested models before
including them in the mix of models analyzed with AIC weights (52).
In our case, we only have nested models to begin with, so we include
them all in the model average. Note that some authors pick replicate
risk medians of multi-models rather than averages (52). There are,
thus, different versions of multi-model inference, which means that
our results will not necessarily generalize.

Methods for Question 4 (What is the Expected Frequency of Above-
Zero Dose Thresholds?)

Toy Threshold-Dose-Response Model. To aid in understanding
frequency results for threshold doses above zero, a toy threshold-dose-
response function, with a threshold dose between the first two
datapoints, was introduced for use with absolute risk data. The model
can be analyzed graphically, without the need for algebraic fitting of
data (Supplementary text S-4 and the figure embedded therein; https://
doi.org/10.1667/RADE-21-00219.1.S2).

Fitting Simulated Individualized Survival Data

The Cox proportional hazard model was used to first create
individualized linearized datasets using a hazard function linear in
dose to predict cancer mortality history. In each replicate, random-
ization was introduced into the timing of death for each simulated
individual. Next, the Cox model was used again, this time to fit the
previously created data with nonlinear hazard functions. If a parameter
for nonlinearity in a hazard function were declared a positive finding
by the software, it would have to be a false positive, because the
original dataset was built with a linear function. An embedded
flowchart found in Supplementary text S-1 (https://doi.org/10.1667/
RADE-21-00219.1.S2) shows the process.

Two nonlinear hazard functions were used, dose threshold and 2-
slope-spline. Hypothetical dose breakpoints in the modeling were
chosen at each of the 17,500 individually assigned doses, not between
them. The ‘‘Surv’’ function from the ‘‘survival’’ package in the R-
statistical language (31) was used to provide a response variable for
use in fitting with the R-function, ‘‘coxph.’’ For loess fitting, survival
time of cancer deaths was the outcome fitted to dose. To directly
compare individualized results with the standard cohort approach, the
individualized results were grouped into dose categories and analyzed
with Poisson regression.

Except for loess fitting of survival times, it was not feasible to run
5,000 replications of the Cox hazard analyses, as was done in the main
analyses in this paper. We found 200 replications were sufficient to
compare the individualized results to those obtained for the grouped
data. A similar approach was taken with the 2-slope spline model, but
the number of persons analyzed was reduced to 1,750.

RESULTS

This section includes the following subsections: Results
related to questions 1–4; results related to statistical
modeling; sensitivity analysis.

Results Related to Question 1 (Are there High False Positive
Rates for Single Tests?)

False positives rates over 10% occurred for tests of
individual dose response functions such as curvature in
some nonstandard situations. Thus, there were analysis
methods in radiation epidemiology that could overstate
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evidence for nonlinearity in simulations, but this happened
only in two situations. For instance, false positive rates from
13 to 40% occurred across datasets for dose threshold if
some standard optimization methods were used to find
maximum likelihoods. The excess could be eliminated by
using software capable of analyzing data with multiple
peaks and discontinuous derivatives in parameter likeli-
hood.

High rates of false positives were also found for some
dose-response functions when datasets were analyzed that
had a small reference count, even as high as 150. For
example, false positives for curvature of relative risk data
analyzed with Poisson regression were 66% for Techa River
incidence and 28% for Techa River mortality.

Other dose-response functions that gave elevated false
positive rates for Techa River were the ‘‘5 point test’’ (5
consecutive points on one side of the linear line). It showed
13% for sublinear and 11% for supralinear when analysis
was carried out on relative risk incidence data for Techa
River. Even absolute risk data could show elevated rates for
Techa River datasets. For example, weighted linear
regression of absolute risk data produced false error rates
in excess of 10% for the Techa River when it came to
threshold (11%), 2-slope spline (16% sublinear, 20%
supralinear), and hormesis with the reference being the first
data point (38%). The best performing case was Poisson
regression of absolute risk data, which had no rates above
10% except for 1 of 3 definitions of hormesis.

A sensitivity analysis demonstrated that it was indeed the
low counts, 17 for Techa River incidence data and 150 for
the mortality data, that caused the high false positive rates.
When the Techa River reference count numbers were
artificially increased to match counts in the next highest
dose category, 630 and 955 for the two datasets,
respectively, all the false positive rates were below 10–
11%. Note that in this sensitivity analysis, the reference
level person-years were also scaled to keep reference risk
values unchanged. Similar problems did not appear in the

other four studies analyzed, because the lowest count
number in their reference categories was 4,600.

For completeness, results above 10% for all false
positives for nonlinearity are listed in Supplementary table
S-6 (https://doi.org/10.1667/RADE-21-00219.1.S2). All re-
sults, including those below 10%, can be found in
Supplementary tables S-7a– S-7d. Count numbers for each
dose category in each of the six studies can be found in
Supplementary tables S-1 and S-2. Four examples of loess
fitting to the linearized 2017 A-bomb data are presented in
Supplementary fig. S-5. Additional examples of false dose
response shapes found with loess smoothing, 50 in total, are
available in Supplementary file 1 (https://doi.org/10.1667/
RADE- 21-00219.1.S1).

Although almost all of the results for the A-bomb datasets
in this article were calculated for a restricted mid-dose
region of 0 to 0.6 Gy, it was of interest to assess a higher
dose range for comparison. Table 2 gives such a
comparison, showing rates when the dose range is extended
from 0.6 Gy to 2 Gy. In the extended dose range case,
simple Poisson regression will introduce its own non-
linearities, so weighted linear regression was used in the
simulations. The resulting false positive rates for individual
tests of nonlinearity as shown in the first five rows of Table
2 were similar for both dose ranges. All values were less
than 10%.

Because the true dose response is not expected to be
perfectly linear, without any higher order terms (2), not all
nonlinearities would be of regulatory interest. As stated
earlier, a curvature of regulatory interest was defined for this
paper to be one with magnitude greater than 1, which means
that risks at very low doses will be around half the value
predicted by the LNT or less. Although this restriction had
modest impacts on the frequency of false positives for
curvature in the INWORKS, Techa River, and A-bomb
datasets restricted to ;0.6 Gy, there was a large reduction in
frequency in simulations when the A-bomb upper dose limit
for regression was raised to 2 Gy. The frequencies found for

TABLE 2
False Positive Rates for Nonlinearity, Alone and in Aggregate, for the LSS 2017 A-Bomb Linearized Dataset for Two
Dose Ranges, 0 to 0.6 Gy and 0 to 2 Gy (Absolute Risk Data for 5,000 Replications with 95% Confidence Intervals)a,b

0 to 0.6 Gy 0 to 2 Gy

Linearized dataset: Poisson regressionc Weighted linear regressionc

False positive for
Threshold breakpoint 0.065 (0.058, 0.072) 0.056 (0.050, 0.062)
Quadratic term 0.052 (0.046, 0.058) 0.054 (0.048, 0.060)
Curvature 0.053 (0.047, 0.059) 0.076 (0.069, 0.083)
Supralinear (loess shape) 0.070 (0.063, 0.077) 0.058 (0.052, 0.064)
Sublinear (loess shape) 0.078 (0.071, 0.085) 0.063 (0.056, 0.070)

At least 1 false positive among the above 5 indicators of nonlinearity in a replication 0.19 (0.18, 0.20) 0.19 (0.18, 0.20)

a The numbers shown in the first 5 rows should be compared with the ideal of 0.05. Numbers shown in the last row are aggregates for a study
and should be compared to 0.23, which is the expectation for five independent tests each with a false positive rate of 0.05.

b 95% CI based on Le, Diop, Al-Emadi, 2013 (https://doi.org/10.29115/SP-2013-0006). The maximum dose considered for threshold and shape
determinations was taken to be 0.25 Gy for the dose range, 0 to 0.6 Gy and 0.5 when considering the dose range 0–2 Gy.

c Poisson regression does not introduce any nonlinearities of concern in dose response when doses are restricted to ,0.6 Gy. Weighted linear
regression does not introduce nonlinearities in dose response for any dose range.
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curvature magnitude exceeding unity were 0.16%, 0.3%,
and 0.1% for the 2007, 2012, and 2017 datasets,
respectively. The rate was also 0.1% for the 2017 dataset,
when data for males were analyzed separately. Results for
the 0–2 Gy range turn out to be important later, when
considering the likelihood of positives for curvature
reported in the 2017 A-bomb study.

Results for Individualizing Risk

As was largely the case for Poisson regression of absolute
risk data, individualizing risks for the Techa River mortality
dataset did not produce any false positive findings above
10% for the two indicators of nonlinearity tested, dose
threshold and 2-slope spline.

Linearization Graph

Figure 1 shows a comparison plot of the (standardized)
excess relative risks before and after linearizing the 2017 A-
bomb incidence study. It can be seen that there is no
nonlinearity left in the linearized curve. The ‘‘before’’ data
(dashes) in Fig. 1 were standardized to age 70 and age at
exposure of 30 years by adjusting person-years to better
match published data. Doing so did not change the
linearized data beyond a scaling. The ‘‘after’’ data (solid
triangles) were obtained by scaling person-time for each
data point so that the revised risk lay exactly on a linearized
line. No change was made in cancer count data. What is left
of the original study are the number and positions of the
dose categories and the corresponding counts and count
variances, which are used in regressions. The slope of the
linearized curve was taken to match the published version

computed over the entire dose range. It is slightly lower
than the slope obtained by fitting the dose range used (0 to
0.6 Gy). For plotting purposes, the risks were normalized to
the lowest fitted risk value.

Results Related to Question 2 (What is the Expected Rate of
at Least One False Positive in a Single Study?)

False positives for nonlinearity from null-hypothesis
testing were aggregated to obtain a net rate per study
replicate, given five tests per study. Figure 2 shows, for
each of the 6 datasets considered, the aggregate false-
positive rate per study obtained in simulations for the
different methods of regression and data treatment. The
graph dramatizes the poor performance of relativized risk
data when the counts in the reference level are small (Techa
River). When the count rates were artificially increased in
the sensitivity exercise mentioned earlier, the high aggregate
rates for relativized Techa River data dropped to levels
comparable to the results for the other datasets shown in
Fig. 2 (results not shown).

Figure 2. also shows the better performance obtained with
Poisson regression of absolute risk data, even for the Techa
River datasets with their low count rate in the reference
level. In fact, the Techa River datasets performed better than
the A-bomb datasets for Poisson regression of absolute data.
Why are they better than the A-bomb datasets in this case?
The false positive rates for shapes after loess fitting to data
made the difference. The Techa River rates were only 30%
of the corresponding rates for the A-bomb studies.

The percentage of studies with at least one false positive
averaged over all cases in Fig. 2 was ;25%, which is higher

FIG. 2. The percentage of times that at least 1 false positive showed up in a single dataset, given five tests for nonlinearity per study. Regression
sample sizes are highest at the left, lowest on the right. The dashed line at 15% is the average over the six datasets for Poisson regression of
absolute risk data. ‘‘Weighted’’ stands for weighted linear regression. The high values for Techa River relative risk data are caused by low count
rates in the reference category, which was used as the divisor.
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than the 23% predicted by Eq. (3) for independent statistical
tests. How can non-independent tests combine to reach and
exceed 23%? This happens because in the higher cases, the
individual false positive rates are above 5%, compensating
for test overlap. Results for single study, aggregate false
positive rates that incorporated shape methods other than
the default loess fitting, specifically 2-slope spline fits or the
five data-point criterion, can be found in Supplementary
tables S-8a through S-8d (https://doi.org/10.1667/RADE-
21-00219.1.S2).

Even without a low reference count, relativized risk data
can be a particularly unreliable choice for Poisson
regression, because it is a ratio of Poisson counts. The
variance in the relative risks is not Poisson and is
underestimated in Poisson regression of this type of data,
thereby increasing the frequency of false positives.

The average over the six studies for Poisson regression of
absolute risk data was 15%. It is shown as the dashed line in
Fig. 2. The value of 15% per study is lower than the 23%
frequency predicted in Eq. (3) for independent tests with an
individual rate of 5%, implying that the tests for
nonlinearity are not independent.

AIC selection did not eliminate the multiple comparisons
problem associated with null-hypothesis testing of multiple
types of dose response function. This was evident with all
six datasets, including those whose results are presented in
Table 3, specifically, the 2007 and 2017 A-bomb, IN-
WORKS, and Techa River mortality datasets. As shown in
Table 3, a nonlinear model was falsely selected as superior
to the underlying linear model 24 to 29% of the time, using
Poisson regression of absolute data, compared to 15% of the
time that null-hypothesis testing falsely selected a positive
for nonlinearity averaged over the 6 datasets for the same
underlying regression method and data treatment (Fig. 2).
Using weighted linear regression of absolute risk data, the
corresponding numbers for AIC selection were 35% to
61%, compared to 21% for null-hypothesis testing averaged
over the 6 datasets. High frequencies of aggregated false
positives were not a surprise given the high effective false-
positive cutoff rate (alpha ¼ 0.157) implicit in AIC model
selection of nested models. These high frequencies could be
reduced using versions of AIC with stronger likelihood
penalties (50), such as ‘‘corrected’’ or ‘‘consistent’’ AIC
(results not shown). AIC selection avoids the need to
explicitly pick a privileged null hypothesis, but it is
implicitly a multiple comparison and may make false
selections.

Multi-model averaging of nested models with AIC
weights did not decrease the frequency of false indications
of nonlinearity compared with null-hypothesis testing in
most cases, using our two-fold requirement for a false
positive. When only the first requirement was met, namely
that the confidence band for the average shape excluded the
linear line at some dose below 0.25 Gy, the frequency of
false positives found for multi-model averaging were
similar to the results for AIC selection (results not shown).

When the requirement of a major deviation at low doses was
added, the fraction of time that a multi-model fit qualified in
simulations as a false positive under our definition ranged
from 10 to 25% for Poisson regression of absolute data
(Table 3). The average per-study result of 17.5% was
slightly higher than the corresponding average result of 15%
for null-hypothesis testing. The two numbers are not
directly comparable, because the nonlinear shape functions
incorporated were different, specifically loess fitting for
null-hypothesis testing and 2-slope spline for multi-model
fitting. Loess fitting tends to pick up more false positives.
Regardless, given the uncertainties in definitions and
calculations, the conclusion is that both techniques, null-
hypothesis testing and multi-model averaging can produce
isolated false positives for nonlinearity at comparable rates.

Dataset by dataset numbers for both types of shape
analysis, loess and 2-slope spline, are archived in
Supplementary tables S8a–S8d (https://doi.org/10.1667/
RADE-21-00219.1.S2) for null hypothesis testing that can
be compared to the results for AIC selection and multi-
model fitting given in Table 3.

Results Related to Question 3 (What is the Expected Rate of
at Least One False Positive in Multiple Studies?)

The expected rate of at least one false positive occurring
in multiple studies was obtained by substituting into Eq. (4)
the appropriate single-study, aggregate false positive rates
(fj). In the first case considered, it was assumed that all five
tests for nonlinearity were available for all six studies,
leading to a predicted rate of 61% for Poisson regression of
absolute data with dose restricted to a maximum of ;0.6
Gy. For comparison with actual results in published studies,
it was necessary to use fj based on the actual test results,
which were less than five in some studies. In this second
case, the chances of at least one false positive occurring in
the studies was 50%. Based on this 50% figure, there would
be a good chance that the single positive for nonlinearity
found for primary tests in the actual studies (8) could be a
false positive, at least if results for subgroup data are
ignored. The more general case of subgroup findings is
considered in the discussion section.

The simulation-derived, per-study rates (f values) that
were inserted into Eq. (4) for the first case equaled 0.18,
0.19, 0.19, 0.13, 0.088, and 0.084. The listed sequence
begins with the rates for the three A-bomb studies in
chronological order, followed by INWORKS and the two
Techa River studies, incidence and mortality. The f-values
in the second case were, 0.19, 0.11, 0.19, 0.0, 0.085, and
0.06.

Results Related to Question 4 (What is the Expected
Frequency of Above-Zero Dose Thresholds?)

An above-zero threshold falsely occurred more than 50%
of the time in the simulations for most of the datasets, due to
a bias in the threshold dose, which to our knowledge has not
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previously been discussed. Figure 3a shows the distribution
of dose threshold values found in 5,000 simulations of the
linearized 2017-A-bomb dataset determined using Poisson
regression methods of absolute risk data below 0.6 Gy.

Experimental error or statistical variation at a true
threshold dose of zero must be zero or positive, but the
high frequency of skewing was a surprise before the data
were plotted. Percentages ranged from 46% to 69%,
depending on the regression method and data treatment,
when averaged over the 6 datasets (Supplementary table S-
9; https://doi.org/10.1667/RADE-21-00219.1.S2). The per-
centages were also high (73%), when data were individu-
alized.

Because the datasets had been linearized, all of the above-
zero threshold dose values were false, caused by statistical
noise. No threshold dose peaking occurred, as expected, in
the 200 replications of individualized data simulated for the
Techa River mortality study, because no dose categorization
was involved.

The peaks for dose threshold in Fig. 3a match the dose
values assigned to each dose category. About 2/3 of the
threshold dose values above zero are contained in the peaks,
including the peak very close to zero dose. Data points in
Fig. 3a that qualified as false positives did not occur until
doses exceeded the 4th peak at 0.029 Gy.

There were four threshold dose values reported among the
6 published studies (7, 8, 21, 23), whose average value
agrees with the simulation results, 0.043 Gy vs. 0.045 Gy,

respectively. These findings are consistent with the
published above-zero threshold doses being caused by
statistical bias in the threshold dose parameter.

The quadratic parameter whose distribution is shown in
Fig. 3b also has a high percentage of false non-zero values,
in fact nearly 100%, but the values are equally likely to be
negative as positive. Therefore, there is no potential
problem for meta-analysis across studies.

Only 1.7% of the above-zero thresholds in Fig. 3a rose to
the level of a false positive, so there is no increase in false
positives above the expected value of 5%. However,
without knowledge of the high expectation rate for dose
thresholds with high P values, a reader might see an
apparent inconsistency between the reported high P values
and the appearance of above-zero dose thresholds in 3 out
of 4 cohort studies that tested for threshold nonlinearity (7,
8, 21, 23).

Requiring an AIC test to label a threshold model fit as an
improvement was another way to discount most of the
above-zero dose thresholds found in the simulations. Only
6.3% of dose threshold values in the upper panel were
associated with improvements in fit sufficient to satisfy the
Aikake information criterion. Across regression methods
and data treatment, the percentage of dose threshold values
meeting an AIC criterion varied from 6.3 to 23%. There
were three above-zero dose thresholds with P values
reported in the 6 studies considered, all of which failed to
qualify under AIC selection as an improvement in fit. Their

TABLE 3
Fraction of Time in 5,000 Replications that False Deviations from Linearity were Found in Linearized Datasets using

Aikake Information Criterion (AIC)

Criteria

AIC model selection Multi-model averaging

Regression method and dataset
(absolute risk data)

At least 1 of 5 nonlinear models outperformed the
linear model using AIC ranking criteriona

The 95%-confidence band for the AIC-weighted,
multi-model fit excluded the linear null at some
dose and also deviated substantially from linearity
anywhere below 0.25 Gyb,c

Poisson Regression
A-bomb LSS 2007 0.24 0.10 (0.014)
A-bomb LSS 2017 0.29 0.11 (0.017)
INWORKS 0.25 0.24 (0.053)
Techa River mortality 0.26 0.25 (0.11)

Weighted linear regression
A-bomb LSS 2007 0.35 0.21 (0.030)
A-bomb LSS 2017 0.41 0.21 (0.056)
INWORKS 0.44 0.33 (0.12)
Techa River mortality 0.61 0.41 (0.19)

a Rankings based on minimum AIC value, which includes a likelihood penalty for number of parameters. The AIC rankings are equivalent for
the nested models considered here to null-hypothesis testing with an alpha of 0.157, not 0.05. Nonlinear models included were dose threshold,
linear-quadratic, curvature, and 2-slope spline. The largest nonlinear contributor to frequency was usually the 2-slope spline model, sometimes
with a value as much as, or more than, the sum of all the others.

b Hormesis fraction given in parenthesis. Substantial deviation was defined to require the crude slope (ERR/Gy) to deviate by a factor of 2 up or
down from the ERR/Gy at higher doses, either at 1 Gy or at the highest dose in the dataset. A factor of 2 deviation was chosen with the idea that it
would be large enough to trigger regulatory interest. Without this criterion, the values were similar to those in the left column for AIC selection.
The number of replications for Poisson regression was 1,000 for multi-model averaging.

c AIC weights for each model are the relative statistical likelihood obtained from fitting software multiplied by a penalty term, e–p, where p is the
number of fitted model parameters.
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P values were too high, lying above the 0.157 boundary

that, for nested models, determines whether a fit is an

improvement under the AIC criterion (50).

Results Related to Statistical Modeling

2-Slope Spline and Threshold. The 2-slope spline function

does not have the standard asymptotic properties (53, 54) on

which standard software may rely to quantify error rates of

type I, and convergence of a likelihood test with regression

sample size is slow (55). The profile likelihood curve was

usually discontinuous at 0 breakpoint and always constant

thereafter within the first and last regions defined by dose

category boundaries. Discontinuous jumps in profile
likelihood derivatives, as well as multiple peaks, could
appear in other profiled regions.

Although the profile likelihood for the threshold model
was continuous at zero breakpoint, and the likelihood was
only constant for the last dose region, it too could have
discontinuous profile likelihood derivatives and multiple
peaks within its boundaries. Note that a two-peak likelihood
surface for threshold dose, described as unusual, was
reported in the 2017 A-bomb study (8). Example profile
likelihood curves for 2-slope spline and dose threshold are
shown in Supplementary figs. S-6 and S-7 (https://doi.org/
10.1667/RADE-21-00219.1.S2).

This nonstandard profile likelihood behavior generally
prevented off-the-shelf software from finding the proper
parameter values and critical points for threshold dose
response and 2-slope splines. The software would not
always find the maximum of the maxima within segments,
which is why segmented searches were made between dose
category values.

Although the 2-slope spline breakpoint showed the same
peaking structure above zero breakpoint as found in the
threshold model, the lower slope was not constrained in any
way. It split in simulations evenly between positive and
negative values (results not shown), showing no preference
for either sublinear or supralinear dose response. Thus, false
findings across studies would also split between sublinear
and supralinear shapes and would not present a problem for
meta-analysis.

The frequency of false positives for dose threshold,
sublinearity and supralinearity with 2-slope spline were
,10% for Poisson regression of absolute risk data, but
accurate results required careful optimization of the
parameter searches. Calculated rates were high if a naı̈ve
search for optimum dose threshold value were made using
derivative methods for obtaining confidence intervals
(Supplementary table S-7b; https://doi.org/10.1667/RADE-
21-00219.1.S2). As expected, differences in false positive
rates for 2-slope spline fits between regression methods
decreased as regression sample sizes were expanded
(Supplementary table S-10 and Supplementary figs. S-8
and S-9; https://doi.org/10.1667/RADE-21-00219.1.S2).

The false positive rates did not converge to 5%. This was
initially surprising to us but was consistent with the
literature in cases when the null hypothesis (zero break-
point) lies on the boundary of a constrained parameter space
(53, 54). Quite a bit is known in such situations, ‘‘... but
knowledge is scattered across the literature and considerably
less well known among practitioners’’ (56). A mixture
distribution of chi-square statistics is expected that can
depend on the configuration of the datapoints (53). As a
result, the standard numerical values for setting critical
points for false positives are not valid in these special cases.
This fine point made little practical difference in the
simulations: false positive rates for threshold did not
increase above 10% for standard Poisson regression and

FIG. 3. Histograms of parameter values fitted to 5000 dataset
replicates. Threshold dose values are shown in upper panel (3a).
Values for the quadratic term in the LQ model are shown in lower
panel (3b). All non-zero values are false, failing to capture the
underlying linearized dose response. Values were obtained from
Poisson regression of absolute risk data for the linearized 2017 A-
bomb dataset below 0.6 Gy. The peaks in the upper panel for dose
threshold match the dose values assigned to each dose category. About
2/3 of the dose values above zero are contained in the peaks, including
the peak very close to zero dose.
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barely increased over 10% for the case of weighted linear
regression of absolute data (11% for threshold dose in the
Techa River incidence case).

Curvature

Dose response functions with breakpoints were not the
only examples of unusual profile likelihood curves.
Curvature had a profile likelihood shape that almost always
contained both a valley and a peak, an example of which is
shown in Supplementary fig. S-10 (https://doi.org/10.1667/
RADE-21-00219.1.S2).

Individualizing Data

As for loess shape fitting to individualized survival data,
it was possible to carry out the full 5,000 replications.
Sublinear and supralinear false positive rates were 10% and
9.3%, respectively. This is 4 to 5 times higher than the
results for loess fits to grouped cancer risks at Techa River.
However, such a comparison is not between equivalents.
One endpoint is survival time, and the other endpoint is
accumulated mortality counts.

What was most notable about the loess fitting to
individualized survival times for the Techa River mortality
dataset was the low frequency of hormesis, with hormesis
reference level equal to the average survival time at zero
dose. The value of 0.6 per thousand was 300 times smaller
than the corresponding hormesis frequency of 18%
accumulated using loess fitting to grouped risk data. This
finding is not surprising in light of the recommendation to
use a loess algorithm only when the number of datapoints is
large (36), which was not the case with the analysis of
grouped counts.

Graphs corresponding to fits to a dose threshold model for
a single replication of individualized Techa River mortality
data are shown in Supplementary fig. S-11 (https://doi.org/
10.1667/RADE-21-00219.1.S2). In the individualized 2-
slope spline case (not shown), bumps and oscillations in the
profile likelihood for breakpoint were more common than in
the corresponding dose threshold plots. Supplementary table
S-11 shows that false positive rates found when simulated
individuals were analyzed with a Cox model were similar to
the false positive rates obtained when groups of these
individuals were analyzed as Poisson counts.

Sensitivity Analyses

Sensitivity analyses included varying the dose response
slope used in linearization and the smoothing parameter in
loess fitting. None of these variations led to any changes in
conclusions. Nor did variations in A-bomb parameters,
specifically, the choice of reference level, the upper dose
range, and the number of persons considered. Details of
sensitivity analyses, including those mentioned earlier in the
text, can be found in Supplementary text S-5 (https://doi.
org/10.1667/RADE-21-00219.1.S2).

DISCUSSION

This section includes the following subsections: Regula-
tory default, Threshold dose bias, Hormesis, Multiple
comparisons, Simulation frequency results compared to
study results, Unknown error rates of type I, Linearization
in case/control studies, and Methodological limitations.

Regulatory Default

The choice of a linear dose response function for cancer
causation as the null model is a policy choice by regulators,
which in the past has coincided with long-standing
recommendations by almost all national and international
regulatory and scientific organizations (2–4). We have
assumed in this paper that when considering changes to the
status quo, regulators of radiation exposure would continue
to give the LNT privileged status as the default dose
response model. Were a threshold model to be the
regulatory norm for a substance, it would have the
privileged status and it would be the linear model that
would be expected to meet a ‘‘clearly superior’ ranking
before adoption (57). False positives would still be an issue,
but it would be false positives for linearity or other
nonconforming responses that would need to be considered.

From the scientific perspective, the linear model is simple
and transparent, satisfying Occam’s razor in adding only
one free parameter to the constant term. It and the pure
quadratic function have the least number of parameters of
standard models, which makes them experimentally attrac-
tive as the models to use first when count numbers are
limited.

The pure quadratic model is rarely considered in current
radiation cancer epidemiology. Pure linearity, however, is
the usual starting point, as indicated by its use as the default
in all the epidemiologic studies considered for this paper.
Yet, there is potential merit in analyzing dose response in
ways that do not privilege the linear LNT model. As we
have shown in this paper (Table 3), these methods can also
exhibit substantial false indications of nonlinearity within a
study, which may be of interest to regulators.

Multi-model fitting, like other data smoothing techniques,
has an interesting potential advantage in regulatory debates
about dose response. Every multi-model fit is likely to be
nonlinear to some degree, which could change the
conversation from, ‘‘Is the fit nonlinear?’’ to ‘‘How much
nonlinearity is there, and does it matter?’’ Although not
explored here, one complexity of multi-model averaging
made evident by the results of this paper is that the threshold
dose bias will be averaged into the multi-model shape to
some extent, if a threshold dose response is one of the
models included in the multi-model average.

Threshold Dose Bias

The simulation threshold results dramatize the fact that a
bias exists for threshold dose. Intuitively, after seeing the
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simulation results in Fig. 3a, one might guess that half a bell
curve would fall above zero dose and the other half would

be clamped at zero, but an analytic proof is not obvious.
Will more data and more dose categories reduce the

numbers? The results from analysis of the toy threshold-
dose-response function suggest not. Graphical analysis of

the toy function indicates that, regardless of the magnitude
of the spacing between dose categories, the appearance of
above-zero dose thresholds in fits to data will be common.

There exists a location for a threshold dose between the first
two datapoints that will always reduce the residuals of the

fit to the data, if two common conditions are met (Materials
and Methods section and Supplementary text S-4; https://

doi.org/10.1667/RADE-21-00219.1.S2). This predicted in-
sensitivity to the distance between dose categories was
supported by the high frequency of dose thresholds found in

the simulation of 17,500 individuals in the Techa River
mortality dataset, where the spacing between individual

dose categories was very small.

Hormesis

Hormesis is a biphasic dose response in which effects at
low doses are opposite to those at high doses. In the present

context, this suggests that low-dose radiation exposures are
beneficial. Any model that predicts protective effects in a
low-dose range would be difficult to fit into a regulatory

regime. One reason is that there are concerns about the
generalizability of hormetic responses (58). A major

obstacle in regulatory application would be that the actual
breakpoint dose for a hypothetical protective effect would

be uncertain, and if one were identified, it could well vary
among subgroups owing to genetic variation in susceptibil-
ity (59).

Multiple Comparisons

The results for aggregated false positives per study

(Tables 2 and 3) were restricted to primary tests of
nonlinearity and thus underestimate the possible instances

of multiple comparisons because they do not account for
secondary tests. The 2017 A-bomb study by Grant et al. (8)

assessed a large number of dose ranges, historical dosimetry
schemes, and other sensitivity-test subgroupings. We
counted 8 confidence intervals for quadraticity, 10 P values

for curvature in the main text, and almost 100 P values for
curvature in the appendices. These indicators are not

independent. While it is scientifically necessary to analyze
all such fits to data to avoid missing any nonlinearities (60),

the presentation of so many results without any guidance
about multiple comparisons might lead some readers astray.

As several thoughtful reviews and commentaries suggest,

even the research community is not immune to misinter-
pretations of statistical significance (35, 61, 62). This may

be an appropriate moment to pay attention in regulatory
analysis to the complications of multiple comparisons and

the large numbers of statistical inferences that are made,
within and across studies.

Should adjustments be made for multiple comparisons?
Adjusting significance to account for multiple comparisons
may lead to an increase in the number of false negatives,
which could lead to important research findings being
overlooked (60). From a decision-maker’s perspective,
however, adjusting for multiple comparisons makes statis-
tical sense, but not necessarily with simple approaches such
as a Bonferroni correction. It would be better to consider the
costs of the false positives and false negatives (63, 64),
which might be measured in social, health, and/or monetary
units.

A Bonferroni correction may still be useful as a sensitivity
calculation, because it gives an extreme, where the cost of a
false negative is assumed negligible compared to the cost of
a false positive. When a great number of tests are carried
out, a false discovery rate calculation will be less
conservative than a Bonferroni correction (65), but may
still be incomplete from a decision-support perspective
without some idea of cost functions for false positives and
negatives. Overall, given the debate over adjustment and its
complexity, there is no simple recommendation that can be
made.

Simulation Frequency Results Compared to Study Results

As for false positives, there was only one study among the
six that reported a positive for its primary analysis using all
of the data without subgrouping. That study result was a
curvature test in the 2017 A-bomb study with a P value of
0.03. To compare the result to simulation results is
straightforward for this primary analysis, as discussed in
the Results section, which predicted a 50% chance of
finding a false positive among the 20 tests for nonlinearity
in the six studies. Thus, both a true and false positive are
compatible with the A-bomb primary finding, making the
finding uninformative.

However, there is additional evidence to consider beyond
the crossing of the bright-line P value of 5%. In the case of
the curvature finding for males in the 2017 A-bomb study,
the magnitude of the curvature was 1.3 and the P value was
0.002. Even multiplying 0.002 by a conservative Bonferroni
correction of 40 (Materials and Methods) would leave the
chances of a false finding to be low at 0.08, which argues
against the curvature finding for males being explainable by
multiple comparisons, although still possible. In simula-
tions, a false positive for curvature for males equal to or
greater than 1.3 occurred only with a frequency of 0.001,
consistent with the low P value of 0.002.

There are findings in other A-bomb studies that also
might be considered by a review committee. For instance,
the 2012 A-bomb study reported a positive for upward
curvature (P ¼ 0.02), not as a primary test, but as a test
within a 6-category subgroup consisting of a 2-category
dose range for three time periods (their table 7). Whether or
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not quadraticity and dose threshold were also tested in these
6 subgroupings was not specified, and we did not try to
simulate this situation. The 2000 A-bomb study (6), whose
data we did not linearize, presented a smoothed loess fit that
trends in the opposite direction for nonlinearity, appearing
graphically to be a positive finding for supralinearity, not
sublinearity. Uncertainty in the neutron component of dose
may also be relevant to interpretations of the A-bomb
curvature finding. Increasing the neutron RBE to the higher
end of its uncertainty range made the curvature in the A-
bomb data negative, as has been reported (66).

Unknown Error Rates of Type I

It can be difficult to argue that one fitting method or data
treatment is superior to the others. Poisson regression seems
natural for radiation cohort studies, but errors other than
count variations are assumed to be negligible. If an analyst
felt that error types other than count fluctuations were
important, such as errors in dosimetry and/or cancer mortality
classification (67), it might be reasonable to prefer weighted
linear regression, which accounts for residual errors using the
data directly. On the other hand, it does seem from the results
in this paper (Fig. 2) that a relative risk data model can
produce very high error rates of Type I when both the
number of data categories and the number of counts in the
reference level are small. An alternative way of getting
relative risks in such cases might be considered, for instance
by reparametrizing the regression equations before making
maximum likelihood estimates or by relativizing absolute
risks after fitting, not before.

Linearization in Case/Control Studies

The linearization method presented here for cohort studies
is straightforward. For case-control studies, which do not
have person-years to adjust, count data would have to be
adjusted. A reasonable approach to linearization in these
kinds of studies would be to adjust both case and control
counts, so that at each dose category the standard deviation
of the log odds ratio is kept constant upon linearization
(Supplementary text S-6; https://doi.org/10.1667/RADE-21-
00219.1.S2).

Methodological Limitations

Because covariates such as age, sex, and city of bombing
were not included in the regressions, the results strictly
apply only to univariate regressions and could change
somewhat with multivariate analysis. Thus, comparison
with univariate study results would be the most direct use of
the method described here. It has been assumed that the
datasets are independent. Yet, the 2007 and 2017 A-bomb
studies have overlapping cancer incidence data, although
the methodology, including dosimetry and choice of
covariates, has changed between publication dates, intro-
ducing some additional effective randomness.

In some studies, uncertainty in dose values has been taken
into account in novel ways (68). Although variance in dose
values could have been introduced when adding Poisson
variation to linearized count data, we did not analyze this
possibility. The methods considered here included Poisson
regression, weighted linear regression, regression of relative
risk data, AIC selection, and multi-model fitting. Other
analysis methods that were not covered may be of interest to
some readers (32, 46, 47, 68, 69), including one study that
used simulation of data replicates to check confidence limits
(47).

SUMMARY AND CONCLUSIONS

False Positive Rates for a Single Test of Nonlinearity

According to simulations of the six linearized cohort
studies, there were two situations where false positive rates
for null-hypothesis tests of nonlinear cancer dose response
exceeded 10%. The first situation was software related.
Some common regression software could not correctly
analyze models like dose threshold that had discontinuous
derivatives and could have multiple peaks for parameter
values on the likelihood surface. The excess rates were
limited to dose threshold and 2-slope spline models, but the
excesses appeared in all datasets.

The second problematic situation was caused by unusu-
ally low counts in the reference categories of two datasets,
specifically the Techa River incidence and mortality
datasets. The excess rates only occurred if nonstandard
regression methods or data treatment were used. High false
positive rates did not appear for standard Poisson regression
of absolute risk data, even with the low counts in the
reference category, except in a single instance of the three
definitions of hormesis assessed.

Linearization combined with simulation proved to be an
informative diagnostic tool for identifying problematic
methods for detecting nonlinearities in dose response. The
analysis carried out in this paper has largely assumed a
regulatory default that is linear without threshold, but the
methods introduced here can be adapted to use other types
of dose response as the default, should a different one be
selected in the future by regulators.

Multiple Tests in a Single Study

Even when individual tests of nonlinearity have low false
positive rates, conducting multiple tests for nonlinearity in a
study can present a multiple comparisons problem. As many
as five tests per study for nonlinear dose-response functions
can be identified in epidemiological studies of radiation and
cancer (7–9, 21, 23). Consequently, the expected frequency
of false positives in a study can be substantial, about 19%
per study for the three A-bomb datasets according to
simulations of linearized data, using Poisson regression of
absolute risk data below 0.6 Gy. The value was 15%, when
averaged over all six studies (Fig. 2).
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The false positive rates quoted above were obtained for
null-hypothesis testing. Considering approaches other than
null-hypothesis testing, such as AIC model selection or
multi-model fitting, did not solve the problem of false
nonlinearities turning up in simulations (Table 3).

Multiple Tests in Multiple Studies

When datasets were considered as a group, the chance of
at least 1 false positive occurring in the 20 primary test
results available in the 6 published studies was estimated to
be 50%. Thus, the 1 positive found in the actual six studies
using all the data (primary finding) with a P of 0.03 could
easily be a false positive. In subgroup analysis by sex, there
was strength of evidence to evaluate in the case of the
finding of curvature for males in the 2017 A-bomb study.
The magnitude of the curvature parameter was greater than
1, and the P value was 0.002. Binomial calculations
combined with simulations and a Bonferroni correction
suggested that it was unlikely that such a result was
explainable by multiple comparisons.

Above-Zero Dose Threshold Findings

In the six studies considered, four of them fitted their data
to a dose threshold model. Of these, three reported above-
zero dose threshold values averaging to about 0.05 Gy.
Although none rose to the level of a positive, their high
frequency was unexpected. Simulation provided a simple
explanation. Analysis of linearized data showed that a high
frequency was to be expected simply on the basis of random
fluctuations in counts coupled with a statistical bias in the
threshold dose parameter.

Without accounting for threshold dose bias or correcting
for the extra model parameter, meta-analyses of above-zero
dose thresholds, formal or informal, will be invalid. AIC
methods provided a correction method by penalizing
threshold fits for the extra parameter introduced. In
simulations, this dramatically reduced the frequency of
above-zero threshold fits that could be considered an
improvement over the linear null. Furthermore, AIC
methods could be applied to published P values and were
sufficient to declare the published cases poor fits to the data,
with no improvement over a linear fit.

Implications for Regulatory Analysis

A single isolated result from a study is sometimes
presented to policy makers and the public as ‘‘statistically
significant,’’ and may therefore be judged by some as
convincing evidence of nonlinearity at low dose levels and
falsification of the linear regulatory default model. These
two words, statistically significant, have developed a magic
in the wider culture that can overwhelm nuanced conver-
sation and affect public policy. However, without screening
for false positivity, isolated findings should not be
considered valid evidence against the regulatory default.

Binomial calculations and simulation as part of regulatory
analysis may help in judging if a result might be a false
positive.

Implications for Radiation Research

When using nonstandard and novel methods of analysis
on cohort datasets or subsets of them, or when there is a
small number of count numbers or dose categories, it could
be helpful for authors to quantify false positive rates. The
linearization and simulation techniques presented here may
be useful for this purpose.

Regulatory policy is not set by researchers, but their
language and the visuals they present can affect it. For
instance, epidemiologic studies can be cited and debated by
those trying to influence regulatory policy, legislation and
public opinion. In discussing their finding of nonlinearity
for male cancer dose response, Grant et al. (8) were
sensitive to the authors’ role in shaping regulation, warning
against trying at this time to ‘‘confidently guide the
development of modified radiation protection policies.’’
Their reasoning went beyond study uncertainties to include
the contrasting results found in other studies. This is
recognition of the multiple comparisons problem and an
indirect warning of the possibility of false positives.

The simulation results in our paper strengthen the idea
that explicit discussion of the potential for false positives (at
least qualitatively), which is common practice in many
fields, could be a useful addition to a study in radiation
cancer epidemiology if the reporting or discussion of
nonlinearity is deemed relevant to regulatory analysis. The
recognition in papers of the possibility of false positives
could reinforce the need to look at the family of studies
before reaching decisions, which is what expert review
committees do.

Another option that could be considered is to avoid the
shorthand words, ‘‘statistically significant.’’ Authors and
commenters might instead consider language that is less
dependent on the drawing of bright lines, for instance, by
discussing degrees of compatibility (70).

Attempting to correct for multiple comparisons is not
necessarily a better solution for researchers, given the
controversy over its desirability in the research context (60,
64). Furthermore, adjusting P values or confidence intervals
in one study does not account for the comparisons across
studies that can raise to high levels the chances of finding a
false positive. When results are of regulatory interest, it can
be constructive to point out the importance of considering
the multiple comparisons problem and the possibility of
associated false positives

SUPPLEMENTARY INFORMATION

Supplementary File S-1 contains graphs of the first 50
dose response curves for 5,000 simulations of the 2017
dataset for a fixed span of 0.7.
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Supplementary tables S-1–S-4 provide information on
parameters, count data, person years, and regression sample
sizes used in modeling. Nonlinearities considered or
graphed in the individual 6 studies are listed in Supple-
mentary table S-5. Values for simulated false positive rates
for tests of nonlinearity in dose response that exceeded 10%
are found in Supplementary table S-6. Supplementary tables
S-7a-7d and tables S-8a-8d provide frequencies of false
positives for different regression methods and data treat-
ment, with and without aggregation. Aggregated frequen-
cies of false indications of nonlinearity, with and without
adding above-zero dose thresholds are found in Supple-
mentary table S-9. Supplementary table S-10 shows how
likelihood ratio test statistics tend to converge as regression
sample size is artificially increased (for 2-slope spline fits).
Supplementary table S-11 compares false positive rates
when data were analyzed either individually or grouped.
Supplementary figs. S-1–S-4 are flowcharts for the
calculations. Supplementary fig. S-5 provides a panel of
dose response curves for four replicates of the 2017 dataset
smoothed by loess fitting. Supplementary figs. S-6 and S-7
show profile likelihood graphs for 2-slope spline and
threshold parameters, respectively. Supplementary figs. S-8
and S-9 show the distribution of the likelihood ratio test for
2-slope spline fits as the regression sample size is artificially
increased for the Techa River mortality and LSS2017
datasets. A profile likelihood graph for curvature is shown
in Supplementary fig. S-10. Supplementary fig. S-11 shows
graphs of threshold dose response and profile likelihood for
a single replicate of the fits to simulations of individualized
Techa River mortality data. Supplementary fig. S-12 gives a
flowchart for the simulation of individualized data (embed-
ded in Supplementary text S-1). Supplementary fig. S-13
shows a toy threshold-dose-response function (embedded in
Supplementary text S-4).

Supplementary text S-1 provides more details on
simulation of individualized data. Supplementary text S-2
addresses the insensitivity of results to standardization.
Supplementary text S-3 gives details of loess smoothing.
Supplementary text S-4 describes the toy threshold-dose-
response model. Supplementary text S-5 collects the results
of sensitivity tests. Supplementary text S-6 describes a way
to linearize case-control data.
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66. Hafner L, Walsh L, Rühm W, Assessing the impact of different
neutron RBEs on the all solid cancer radiation risks obtained from
the Japanese A-bomb survivors data. Int J Radiat Biol 2022, 1-15.

67. Linet MS, Schubauer-Berigan MK, Berrington de González A,
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