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The cytokinesis-block micronucleus (CBMN) assay in
cytogenetic biodosimetry uses micronucleus (MN) frequency
scored in binucleated cells (BNCs) to estimate ionizing
radiation dose exposed. Despite the faster and simpler MN
scoring, CBMN assay is not commonly recommended in
radiation mass-casualty triage as human peripheral blood is
typically cultured for 72 h. Furthermore, CBMN assay
evaluation in triage often uses high-throughput scoring with
expensive and specialized equipment. In this study, we
evaluated the feasibility of a low-cost method of manual
MN scoring on Giemsa-stained slides in shortened 48 h
cultures for triage. Both whole blood and human peripheral
blood mononuclear cell cultures were compared for different
culture periods and Cyt-B treatment [48 h (24 h at Cyt-B); 72
h (24 h at Cyt-B); 72 h (44 h at Cyt-B)]. Three donors (26-
year-old female, 25-year-old male, 29-year-old male) were
used for dose-response curve construction with radiation-
induced MN/BNC. Another 3 donors (23-year-old female, 34-
year-old male, 51-year-old male) were used for triage and
conventional dose estimation comparison after 0, 2 and 4 Gy
X-ray exposure. Our results showed that despite lower
percentage of BNC in 48 h than 72 h cultures, sufficient
BNCs were obtained for MN scoring. Triage dose estimates of
48 h cultures were obtained in 8 min in non-exposed donors,
and 20 min in 2 or 4 Gy exposed donors with manual MN
scoring. One hundred BNCs could be scored for high doses
instead of 200 BNCs for triage. Furthermore, observed triage
MN distribution could be preliminarily used to differentiate 2
and 4 Gy samples. The number of BNCs scored (triage or
conventional) also did not affect dose estimation. Dose
estimates in 48 h cultures were also mostly within 60.5 Gy

of actual doses, thus showing the feasibility of manual MN
scoring in the shortened CBMN assay for radiological triage
applications. � 2023 by Radiation Research Society

INTRODUCTION

In a radiological mass-casualty accident, fast and reliable
triage identification of individuals exposed to �2 Gy acute
whole-body equivalent dose of radiation from the worried
well is essential for immediate medical treatment, as
recommended by the U.S. Department of Health and
Human Services Radiation Emergency Medical Manage-
ment (1). Multiple biomarkers assessed in human peripheral
blood such as cH2AX (2, 3), proteins (4, 5), gene
expression (6–8) and miRNA (9) have been evaluated for
triage as these biomarkers bypass the need for peripheral
blood lymphocyte culture to evaluate DNA damage.
However, standardized radiological triage guidelines by
the International Organization for Standardization (ISO) are
currently only available for cytogenetic endpoints scored in
cultured peripheral blood lymphocytes. Both dicentric
chromosomes and micronuclei (MN) can be used for
cytogenetic triage, as seen in ISO 21243 (10) and ISO
17099 (11), respectively.

For triage assessment, 50 metaphases/30 dicentrics are
scored for dicentric chromosome assay (DCA) (10), while
200 binucleated cells (BNCs) are scored for cytokinesis-
block micronucleus (CBMN) assay (11, 12). In contrast,
conventional dose assessment requires at least 500 meta-
phases/100 dicentrics to be scored for DCA (13), and 1,000
BNCs to be scored for CBMN assay (11) for reliable dose
estimation. In manual dicentric scoring for one individual
by experienced scorers, conventional triage assessment can
take up to 150 min (10) or 30 min with the QUICKScan
method (14). However, MN scoring is much quicker than
dicentric scoring as the criteria for MN scoring is much
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simpler than dicentrics and requires no prior knowledge of
chromosome aberrations and karyotypes (15). Despite the
much longer scoring time, DCA is usually preferred over
CBMN assay for dose estimation as DCA is the
international ‘‘gold standard’’ for cytogenetic biodosimetry
due to dicentrics being highly radiation specific with a low
background frequency (13, 16). In contrast, background
MN frequency is affected by a variety of factors, including
age, sex and lifestyle (17). Furthermore, cell culture for
DCA can be completed in 48 h, much faster than the
conventional CBMN assay culture of 72 h.

To increase the feasibility of CBMN assay over DCA in
radiological triage, previous efforts were made to reduce
CBMN assay culture time to 70 h (18), 64 h (18, 19), 60 h
(20), 54 h (18, 20, 21), 48 h (20, 22) and 36 h (20). Similarly,
technological advancements for high-throughput assessment
of MN were also developed for faster scoring and multiple
samples. Semi-automated and automated MN scoring
systems were developed for Giemsa (23, 24), DAPI (25–
27), DAPI/Fast Green (28) and PI (24)-stained cells on
microscope slides. For direct imaging with fixed cell
solutions, imaging flow cytometry coupled with Rapid
Automated Biodosimetry Technology (RABiT) was also
developed to handle multiple low volume blood samples
(29). The RABiT system can also be used for direct cell
culture and fixation, cell imaging and automated MN scoring
of cells from multiple donors on glass-bottomed microplates
(21). However, these reagents and equipment used are highly
specialized, relatively expensive and may not be commonly
found in all cytogenetic laboratories. As such, we assessed
the feasibility of the low-cost method of manual MN scoring
with light microscopy on Giemsa-stained slides in 48 h
CBMN cultures for triage in this study.

Furthermore, triage MN scoring is often performed only
in whole blood (WB) cultures (12, 18, 19, 21–27, 29).
Despite ISO recommending both cultures of WB and
peripheral blood mononuclear cells (PBMCs) isolated from
WB for CBMN assay as the target cells analyzed are
assumed to be phytohemagglutinin (PHA)-stimulated T
lymphocytes, plasma and other cellular components present
in WB but absent in PBMCs could influence DNA damage
induction and repair. As reported in our previous studies
(30, 31) and other studies (32, 33), differences in CBMN
parameters were seen between WB and PBMC cultures. To
the best of our knowledge, this study is the first to compare
triage MN scoring for WB and PBMC cultures. In addition,
as PBMC separation from WB is preferred for cH2AX (3),
a multi-parametric approach for triage assessment with
cH2AX and CBMN assay could also be performed with
PBMCs directly isolated with density centrifugation.

In this study, we shortened the culture period of CBMN
assay from 72 h to 48 h and evaluated various parameters
with manual scoring of Giemsa-stained cells as a low-cost
alternative. In the first part, cell proliferation indicators of
nuclear division index (NDI) and percentage of BNC in all
cells (%BNC), conventional and triage MN frequency (MN

in 500/1,000 BNCs, MN in 100/200 BNCs) and time taken
for triage MN scoring were compared in 0, 2 and 4 Gy WB
and PBMC cultures from 3 donors in three conditions,
varying in culture period and time of cytochalasin B (Cyt-B)
addition [48 h culture (24 h at Cyt-B), 72 h culture (24 h at
Cyt-B), 72 h culture (44 h at Cyt-B)]. In the second part,
dose-response curves (DRCs) using radiation-induced MN/
BNC from another 3 donors were constructed for WB and
PBMCs in the shortened [48 h culture (24 h at Cyt-B)] and
conventional [72 h culture (44 h at Cyt-B)] CBMN assay.
Dose estimation was performed using radiation-induced
MN frequencies after triage and conventional scoring from
the first part of the study.

MATERIALS AND METHODS

Blood Collection and Irradiation Conditions

Three healthy donors (26-year-old female, 34-year-old male, 51-
year-old male) were used for 48 and 72 h CBMN assays in the first
part, while another 3 healthy donors (23-year-old female, 25-year-old
male, 29-year-old male) were used for DRC construction in the second
part of the study. Peripheral blood was collected in 6 ml lithium-
heparin tubes (BD, Franklin Lakes, NJ) with their informed consent.
The informed consent form was approved by the Committee of
Medical Ethics in Hirosaki University Graduate School of Health
Sciences (Approval number: 2012-278). Among all the donors, only
the 51M donor is a smoker.

X-ray dose-rate was first calibrated with either 6 ml lithium-heparin
tubes or 5 ml round-bottom polystyrene tubes containing water in an
angled tube rack. Blood in lithium-heparin tubes was then directly
irradiated with 1 Gy/min X ray for respective doses (150 kVp, 20 mA,
0.5 mm Al þ 0.3 mm Cu filter; MBR-1520R-3, Hitachi Power
Solutions, Tokyo, Japan). For 0 Gy blood, tubes were placed in the X-
ray generator without irradiation. Monitoring of cumulative radiation
dose was performed with a 0.3 cm3 semiflex ionization chamber
(TN31013, PTW, Freiburg, Germany) connected to a dosimeter (MZ-
BD-3, Type 153, Hitachi Medical Corporation, Tokyo, Japan). The
thimble chamber and dosimeter were calibrated annually by the Japan
Quality Assurance Organization, satisfying national standard trace-
ability and ISO/IEC 17025 requirements

Blood was then incubated in a 378C water bath for 2 h
postirradiation for DNA repair. In WB cultures, blood was directly
used. In PBMC cultures, PBMCs were first isolated with Histopaque
1077 (Sigma-Aldrich, St. Louis, MO) before use, according to our
previously published protocol (30, 31).

CBMN Culture, Harvest and Fixation for WB and PBMCs

Complete medium (CM), used in WB and PBMC cultures, was
prepared with RPMI 1640 (Thermo Fisher Scientific, Waltham, MA),
20% heat-inactivated FBS (Sigma-Aldrich) and 13 kanamycin sulfate
(Thermo Fisher Scientific). 1:10 WB: CM (0.5 ml WB, 4.5 ml CM)
and 1:5 PBMCs: CM (1 ml WB-equivalent PBMCs, 4 ml CM) were
cultured in loosely capped 15 ml conical centrifuge tubes. A final
concentration of 180 lg/ml PHA HA-15 (Remel Europe, Dartford,
UK) was added to stimulate T lymphocyte proliferation. Duplicate
cultures were prepared only for the first part of the study.

In the first part, 0, 2 and 4 Gy WB and PBMCs from 3 donors were
cultured in three different conditions, differing in culture period and
time of Cyt-B addition (48 h culture [Cyt-B at 24 h], 72 h culture [Cyt-
B at 24 h], 72 h culture [Cyt-B at 44 h]). A final concentration of 4.5
or 6 lg/ml Cyt-B (Sigma-Aldrich) was added to PBMC and WB
cultures, respectively, as the different Cyt-B concentrations are
required to obtain optimal BNCs in each type of cell culture (34).
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In the second part, DRCs were constructed with peripheral blood
from another 3 donors irradiated with X rays at 1 Gy/min, at ten doses
of 0, 0.15, 0.3, 0.5, 0.75, 1, 1.5, 2, 3, 4 Gy. Due to a high number of
dose points, blood initially collected in lithium-heparin tubes was
distributed to smaller volumes in 5 ml polystyrene tubes for
irradiation. The type of cell culture (WB vs. PBMC) and type of
CBMN assay (shortened 48 h culture [24 h at Cyt-B] vs. conventional
72 h culture [44 h at Cyt-B]) were compared.

After the end of cell culture, WB was harvested with the modified
IAEA 2011 þ 1% formaldehyde (Sigma-Aldrich) protocol while
PBMCs were harvested with the protocol developed by the
Chromosome Research Group in Hirosaki University, as described
previously (30, 31). In WB harvest, cells were treated with cold 75
mM KCl, one round of 11:10:1 Ringer’s solution: methanol: acetic
acid þ 1% formaldehyde and two rounds of 10:1 methanol: acetic
acid, and centrifuged at 180 g, 10 min. Ringer’s solution was prepared
by dissolving 4.5 g NaCl, 0.21 g KCl and 0.12 g CaCl2 in 500 ml
distilled water (13). In PBMC harvest, cells were treated with cold 125
mM KCl þ 1% formaldehyde, one round of 13:12:6 0.9% NaCl:
methanol: acetic acid and two rounds of 4:1 methanol: acetic acid, and
centrifuged at 800g, 25s.

CBMN Cell Spreading and Giemsa Staining for WB and PBMCs

High humidity spreading was performed with cells from PBMC
cultures on microscope slides placed on a moist Kimwipee. Cells
from WB cultures were spread directly on benchtop as fixed WB cells
were more susceptible to cell rupture in higher humidity (30). A
minimum of 2 two-spot slides were prepared for each culture.

PBMCs were diluted in 300 and 500 ll fixative in 48 and 72 h
cultures, respectively, while WB were diluted in 500 and 800 ll
fixative for 48 and 72 h cultures, respectively. Cells were diluted
differently as the cell pellet was larger in longer cultures and in WB
cultures. Final cell volume was the same among all doses in the same
culture condition. 15 ll was dropped in each spot.

After drying, slides were stained with 5% Giemsa (Merck Millipore,
Burlington, MA) in pH 6.8 Gurr Buffer (Thermo Fisher Scientific) for
12 min and mounted with malinol (Muto Pure Chemicals, Tokyo,
Japan).

Analysis of CBMN Endpoints (NDI, %BNC, Conventional and Triage
MN Scoring)

CBMN endpoint analysis was manually performed by a single
experienced scorer. Cells were scored with Olympus CX31 and CX33
(Olympus Co., Tokyo, Japan) at 4003 magnification for NDI, %BNC
and MN frequency. For NDI and %BNC, a minimum of 125 cells with
intact cytoplasmic and nuclear membrane were scored per spot for a
total of 500 cells. Equations for NDI (35) and %BNC are provided
below. M1, M2, M3, and M4 indicate the number of cells with one, two,
three or four daughter nuclei, respectively, and N is the total number
of cells analyzed.

NDI ¼ M1 þ 2M2 þ 3M3 þ 4M4

N

%BNC in all cells ¼ M2

N
3 100%

BNC identification and MN scoring were performed in accordance
with the standardized criteria compiled by the Human MicroNucleus
project (15). In conventional MN scoring for 0 and 2 Gy samples, a
minimum of 250 BNCs was scored per spot per slide, for a total of
1,000 BNCs. In conventional MN scoring for 4 Gy samples, a
minimum of 125 BNCs was scored per spot per slide, for a total of 500
BNCs. In triage MN scoring for 0 and 2 Gy samples, a minimum of
200 BNCs was scored per spot. In triage MN scoring for 4 Gy
samples, a minimum of 100 BNCs was scored per spot. Detailed

information on conventional and triage MN scores and time can be
found in Supplementary Tables S1, S2 and S3 (https://doi.org/10.
1667/RADE-00191.1.S1; https://doi.org/10.1667/RADE-00191.1.S2;
https://doi.org/10.1667/RADE-00191.1.S3, respectively).

DRC Construction with Shortened 48 h and Conventional 72 h CBMN
Assay

Due to a limited number of donors available for DRC construction,
a modified approach was used instead of the recommended approach
of multiple DRCs constructed for 3 age groups separately for males
and females by ISO 17099 (11). In our DRC construction, radiation-
induced MN/BNC (MN/BNC at irradiated doses – MN/BNC at 0 Gy)
was used instead of observed MN/BNC to account for the donor-
specific background MN frequency in males and females of different
ages. To reduce the risk of upper and lower dose over-estimation in
the 95% confidence limit, a pooled induced MN/BNC from the 3
donors was used for DRC construction (36).

For increased statistical reliability, a minimum of 10,000 BNCs for
0, 0.15 and 0.3 Gy, 5,000 BNCs for 0.5 and 0.75 Gy, 3,000 BNCs for
1, 1.5, 2 Gy, 1,500 BNCs for 3 Gy and 1,000 BNCs for 4 Gy were
manually scored in Giemsa-stained slides per donor and condition at
4003 magnification.

Poisson distribution was first verified in observed MN distributions
with GOF Poisson R files kindly provided by M. Higueras. The R files
are based on the same Shiny R application developed by Fernández-
Fontelo et al. and Higueras et al. (37, 38). The dispersion index and
results from over-dispersion (u test), zero-inflated Poisson (ZIP) (Z-
test) and Bayesian (ZIP versus Poisson) tests were reported (39–42).

As the observed MN distributions showed mixed conclusions after
Poisson validation (Supplementary Table S4; https://doi.org/10.1667/
RADE-22-00191.1.S4), with lower doses often showing over-
dispersion, a Quasipoisson model was used for generalized linear
modelling. DRCs were constructed using BiodoseTools (43) with
iteratively reweighted least squares. Linear-quadratic DRC coeffi-
cients (C, a, b), their standard errors and P values calculated with F
test were reported.

Dose Estimation

Dose estimation was performed in WB and PBMC cultures of 48 h
culture (24 h at Cyt-B) and 72 h culture (44 h at Cyt-B), using
conventional radiation-induced MN frequency scored in 500/1,000
BNCs and triage radiation-induced MN frequency scored in 100/200
BNCs and their respective DRCs with Dose Estimate v 5.2 (44).

Other Statistical Analysis

Average values of NDI, percentage of BNC and MN frequency
from duplicate cultures of the first part of the study were used in the
figures. Raw data of duplicate cultures can be found in Supplementary
Table S5 (https://doi.org/10.1667/RADE-22-00191.1.S5). Moreover,
the coefficient of variance (CV) was within 20% (11) in 2 and 4 Gy
MN frequency in 500/1,000 BNCs (Supplementary Table S1; https://
doi.org/10.1667/RADE-22-00191.1.S6). Graphical representation and
statistical analyses were carried out with R ver 4.2.2 (45), RStudio v
2022.07.2 Build 576 (46) and the ‘‘tidyverse’’ package (47).
Parametric statistics of t-tests and one-way ANOVA were carried
out in GraphPad Prism 9.5.0 after verification of both normality and
equal variance assumptions. P values , 0.05 were significant.

RESULTS

Cell-Cycle Progression Parameters in 48 h (24 h at Cyt-B),
72 h (24 h at Cyt-B) and 72 h (44 h at Cyt-B)

NDI and %BNC were first compared in the three culture
conditions (Fig. 1A). NDI and %BNC were significantly
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lower in 48 h than 72 h cultures for 0, 2 and 4 Gy cells. In

72 h cultures, length of Cyt-B addition did not greatly affect

cell-cycle progression as mostly similar NDI and %BNC

were seen for 24 h at Cyt-B and 44 h at Cyt-B. Likewise, as

seen in representative images at 0 Gy (Fig. 1B), 48 h

cultures showed many mono- and binucleated cells while 72

h cultures showed many multi-nucleated cells.

Conventional MN Frequency and Observed Triage MN
Distribution in 48 h (24 h at Cyt-B), 72 h (24 h at Cyt-B)
and 72 h (44 h at Cyt-B)

In Fig. 2, conventional MN frequencies in both WB and

PBMCs were compared in the three culture conditions.

Similar, but not significantly different, MN frequencies

between WB and PBMCs were seen in 0, 2 and 4 Gy cells

for all conditions except for 4 Gy 48 h (24 h at Cyt-B).

Variations of MN frequencies in PBMC cultures were wider

than WB cultures.

Next, Fig. 3 shows the observed triage MN distributions

in 2 and 4 Gy WB and PBMC cultures. Triage MN

distributions were adjusted to 200 BNCs for 2 Gy and 100

BNCs for 4 Gy samples. As seen from the line graphs, MN

distribution patterns were distinct between 2 and 4 Gy

cultures regardless of culture type and condition.

DRCs of Shortened 48 h (24 h at Cyt-B) and Conventional
72 h (44 h at Cyt-B) CBMN Assay

As culture period and length of Cyt-B treatment had some

effect on cell-cycle progression and MN frequency, we

focused on subsequent comparisons between the shortened

48 h culture (24 h at Cyt-B) and the more frequently used

conventional 72 h culture (44 h at Cyt-B). For both WB and

PBMCs, DRCs were constructed with pooled radiation-

induced MN/BNC to account for the different age and

gender of the three donors (Fig. 4). DRC coefficients and

SE, and their F test P values were shown in Table 1.

FIG. 1. Panel A: NDI and percentage of BNC (%BNC) in all culture conditions for 0, 2 and 4 Gy WB and PBMCs. The 500 cells with intact
cytoplasmic and nuclear membrane were scored. Average values from duplicate cultures are shown. Cross bars represent Mean 6 SD. One-way
ANOVA with Tukey’s post hoc test was performed. *P , 0.05, **P , 0.01, ***P , 0.0001. Panel B: Representative images of 0 Gy 48 and 72 h
WB and PBMC cultures under a light microscope. Scale bars represent 50 lm.
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Despite differences in DRCs seen in each donor

(Supplementary Fig. S1, Table S6; https://doi.org/10.1667/

RADE-22-00191.1.S6), pooled DRCs were very similar for

WB and PBMC cultures of 48 h, while DRCs differed

between WB and PBMC cultures of 72 h.

Time Taken for Triage MN Scoring

In Table 2, the average time taken for triage MN scoring

for 0, 2 and 4 Gy was shown. For 48 h cultures of both WB

and PBMCs, scoring time was within 8 min for 0 Gy, and

20 min for 2 and 4 Gy. For 72 h cultures of both WB and

FIG. 2. Conventional MN frequencies of WB and PBMCs cultured in 48/72 h and Cyt-B added at 24/44 h. Average values from duplicate
cultures are shown. Cross bars represent Mean 6 SD. Unpaired two-tailed t test was performed. **P , 0.01.

FIG. 3. Observed triage MN distributions for 2 and 4 Gy WB and PBMCs in three culture conditions. As shown by the line graph, MN
distribution patterns were distinct between 2 and 4 Gy samples regardless of culture type and conditions. MN distributions were adjusted to 200
BNCs for 2 Gy and 100 BNCs for 4 Gy. Bar chart represents the mean while error bars show SD of three donors.
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PBMCs, scoring time was within 4 min for 0 Gy, 9 min for

2 Gy and 12 min for 4 Gy.

Dose Estimations Compared with the Number of BNCs
Scored and Culture Period

In Fig. 5, both triage and conventional dose estimations

were compared based on the number of BNCs scored (i.e.,

triage MN scoring in 100/200 BNCs vs. conventional MN

scoring in 500/1,000 BNCs) and culture period (i.e.,

shortened 48 h vs. conventional 72 h culture). For triage

dose estimates, error bars depicted the minimum and

maximum estimated doses if dose estimations were reported

based on the first 100/200 BNCs for triage in a realistic

emergency triage situation, while the mean was the dose

estimated from the averaged MN scores. The number of

BNCs scored for MN did not affect dose estimation as doses

were within 60.2 Gy. Estimated doses from averaged MN

scores were mostly within 60.5 Gy of the actual doses and

were generally higher in 48 than 72 h cultures.

DISCUSSION

Triage scoring and dose estimation with cytogenetic

markers during a radiation mass-casualty should be efficient

and reliable, such that individuals exposed to whole-body

equivalent �2 Gy can be quickly distinguished from the

worried well for immediate medical treatment. The current

‘‘gold standard’’ of DCA requires only 48 h for cell culture,

but is limited by the long scoring time and prior knowledge

FIG. 4. Pooled DRCs of shortened 48 h (24 h at Cyt-B) and conventional 72 h (44 h at Cyt-B) WB and PBMC cultures with radiation-induced
MN/BNC.

TABLE 1
Coefficients and Statistical Results of Pooled CBMN DRCs

Culture condition
Culture

type C (6 SEC)
P value

(C) a (6 SEa)
P value

(a) b (6 SEb)
P value

(b)

48 h (24 h at Cyt-B) WB 8.14E-08 6 4.92E-03 - 1.08E-01 6 1.66E-02 6.77E-04 5.59E-02 6 6.72E-03 1.42E-04
PBMC 8.26E-08 6 4.57E-03 - 8.08E-02 6 1.63E-02 3.24E-03 6.38E-02 6 7.01E-03 7.93E-05

72 h (44 h at Cyt-B) WB 8.12E-08 6 5.29E-03 - 9.41E-02 6 1.90E-02 3.34E-03 7.80E-02 6 8.04E-03 5.20E-05
PBMC 7.86E-08 6 2.81E-03 - 5.45E-02 6 1.05E-02 2.59E-03 6.53E-02 6 4.63E-03 4.28E-06

Notes. Linear-quadratic DRC equation is represented as Y¼ C þ aD þ b D2, where C, a, b are coefficients, Y is the radiation-induced MN/
BNC and D is the dose. Curve fitting was performed with Biodose Tools. P values of C were excluded as radiation-induced MN frequencies at 0
Gy were adjusted to 0.
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TABLE 2
Time Taken for Triage MN Scoring in Three Culture Conditions

Culture period Dose Culture type

Scoring time (min:s)

26-year-old female 34-year-old male 51-year-old male

48h (24h at Cyt-B) 0 Gy WB 6:32 6 0:37 3:48 6 0:17 7:45 6 0:28
PBMC 5:39 6 0:40 4:37 6 0:28 8:04 6 1:24

2 Gy WB 12:59 6 0:48 7:43 6 0:38 18:34 6 2:01
PBMC 9:49 6 0:46 10:19 6 0:28 ;25 min*

4 Gy WB 14:18 6 1:49 10:42 6 0:59 ;20 min*
PBMC 14:27 6 1:41* 9:23 6 1:15 ;20 min*

72h (44h at Cyt-B) 0 Gy WB 3:34 6 0:14 2:16 6 0:09 2:51 6 0:12
PBMC 2:40 6 0:21 2:50 6 0:16 3:33 6 0:22

2 Gy WB 8:53 6 0:34 5:33 6 0:30 5:50 6 0:30
PBMC 4:51 6 0:34 6:21 6 0:53 7:34 6 0:48

4 Gy WB 11:34 6 0:55 3:53 6 0:21 4:41 6 0:41
PBMC 7:39 6 0:24 5:20 6 0:28 7:43 6 0:52

Notes. Time taken to score 200 BNCs were recorded for 0 and 2 Gy. Time taken to score 100 BNCs were recorded
for 4 Gy. Time taken was expressed as Mean 6 SD.

* As insufficient cells were scored, estimated time taken to scan the whole drop was recorded.

FIG. 5. Estimated doses from triage and conventional MN scoring of actual doses of 2 and 4 Gy. Bar chart height shows the dose averaged from
eight 15 ll spots for triage MN score and dose averaged from duplicate cultures for conventional MN score. Error bar shows the minimum and
maximum estimated doses. *Dose estimates with extrapolated MN frequency due to insufficient cells scored. Panel A: 48 h (24 h at Cyt-B) WB
and PBMC cultures. Panel B: 72 h (44 h at Cyt-B) WB and PBMC cultures.
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of chromosome karyotypes for scoring. On the other hand,
CBMN assay is conventionally cultured for 72 h, but
scoring is much faster as it involves visually identifying MN
with a ‘‘mean diameter within 1/16th to 1/3rd of the main
nuclei’’ (15, 34).

Recent attempts in reducing reporting time for estimated
doses involve automated scoring and robotics for high-
throughput analysis, but they can be very costly. In our
study, we showed that a shortened 48 h CBMN culture is
feasible for triage assessment for both WB and PBMC
cultures up to 4 Gy. For individuals with low mitogen
response to PHA stimulation, more slides can be made for
scoring. Acute radiation syndrome symptoms such as skin
erythema, nausea, diarrhea and low blood cell counts can
also be used simultaneously to identify individuals exposed
to higher doses up to 4 Gy (48). Furthermore, dose
estimates were within 60.5 Gy of actual doses and triage
MN scoring in 100/200 BNCs was sufficient for accurate
dose estimations. Using manual triage scoring with light
microscopy, 0 Gy samples can be identified within 8 min
while 2 and 4 Gy samples can be scored within 20 min, in
slides with appropriate cell concentrations.

The 72 h (44 h at Cyt-B) CBMN culture is the most
commonly used (49) as it was shown to obtain an optimal
BNC frequency for both WB and PBMC cultures (13, 34),
although 68–70 h cultures were also used by multiple
laboratories (50). Our results showed that the length of Cyt-
B treatment did not significantly affect NDI and percentage
of BNC for 72 h cultures. In addition, while our results
showed PBMCs with higher NDI and percentage of BNC
than WB cultures, the opposite was instead seen in Ellard
and Parry’s study (32). It is thus important to evaluate the
optimal CBMN culture conditions in WB and PBMCs for
multiple individuals in each population as differences in
individual susceptibility to Cyt-B had been shown even
within the same age group (51).

Moreover, in Köksal et al.’s study, reducing CBMN
culture time from 72 h to 48 h led to a conclusion that 48 h
was too short to obtain desirable BNC frequencies for MN
scoring (52). While this is undeniably true as a much lower
percentage of BNC was seen in our 48 h cells (0 Gy: 15–
32%, 2 Gy: 6–20%, 4 Gy: 2–9%), a sufficient number of
BNCs was still able to be obtained for MN scoring of .

10,000 BNCs in 0 Gy and .1,500 BNCs in 4 Gy for a 5 ml
culture (500 ll WB) in the three donors used in DRC
construction. Likewise, as shown by Rodrigues et al. (22)
for 48 h cultures of 2 ml (200 ll WB), an approximate
average of 1,400 and 800 BNCs scored in 0 and 4 Gy with
imaging flow cytometry, respectively. Even though more
time is needed to score MN in cultures showing low
percentage of BNC, a shorter CBMN culture is highly
applicable for triage as a reduced number of BNCs is scored
to account for the lower percentage of BNC. In addition, by
personal observation, it was easier to locate BNCs for MN
scoring in 48 h cultures as cells were mostly mono- and bi-
nucleated.

Some differences in MN frequency between shortened 48
h culture and conventional 72 h cultures were seen in our
experiments in Figs. 2 and 4, though no strong conclusions
can be drawn due to a low number of donors analyzed. In
Rodrigues et al.’s study, a much lower MN frequency in 48
h (24 h at Cyt-B) than 72 h (24 h at Cyt-B) WB cultures in
automatically scored cells with imaging flow cytometry
(22), which could be due to damaged cells dividing slower
than healthy cells (53). In Köksal et al.’s study comparing
48 h (24 h at Cyt-B) and 72 h (44 h at Cyt-B) CBMN assay,
a lower MN frequency was also seen in 48 than 72 h WB
cultures in manually scored cells (52). This finding was also
supported other studies by Lee et al. (20) and Almássy et al.
(54), where an increasing MN frequency was seen in
elongated culture periods. However, differences in donor
population could have also contributed to MN frequency
variability (55). Nevertheless, a 48 h CBMN culture period
was able to easily distinguish irradiated from unirradiated
samples, thus supporting the use of a shortened CBMN
assay for radiation triage as results are able to be reported at
a much quicker time. It also reinforces the recommendation
that the same culture protocols should be used for CBMN
DRC construction and dose estimation.

Likewise, Cyt-B addition at 24 h or 44 h for conventional
72 h cultures could affect MN frequency and estimated
doses. Our observation of a slightly higher MN frequency in
72 h (24 h at Cyt-B) than 72 h (44 h at Cyt-B) culture was
also seen by Lee et al. (20) and Köksal et al. (52). When
Cyt-B was added at 24 h in 72 h cultures, MN were likely
scored in BNCs arrested after the first cell division. When
Cyt-B was added at 44 h instead, MN were likely scored in
BNCs arrested after the first cell division, if mitosis was
delayed, and after the second cell division. As MN contains
unstable aberrations such as acentric fragments or whole
chromosomes (34), MN frequency could decrease with
multiple cell divisions. As stated in EPR-Biodosimetry,
Cyt-B should be preferably added at 24 h for ‘‘biological
dosimetry to ensure only first division cells are captured’’
(13). As supported in Duthoo et al.’s study (53) of PHA-
stimulated non-irradiated and irradiated T cell cycles, the
estimated total cell division time was 16.6 h in non-
irradiated cells. First-cycle divisions were completed in 48–
72 h and unaffected by irradiation of up to 2 Gy after PHA
stimulation. Furthermore, prolonged G2/M arrest was
observed with increasing dose up to 4 Gy. The length of
Cyt-B treatment is thus an important factor affecting MN
frequency and hence, consistency in protocols for CBMN
DRC construction and dose estimation is important.

Furthermore, to the best of our knowledge, this is the first
time CBMN DRCs were constructed for the same donors
comparing WB and PBMC cultures of 48 h (24 h at Cyt-B)
and 72 h (44 h at Cyt-B). The 48 h cultures showed similar
DRCs for WB and PBMCs, while a higher DRC was seen in
72 h cultures of WB than PBMCs. Similarly seen in
Rodrigues et al.’s study, a much higher DRC was seen in 72
h than 48 h WB cultures for Cyt-B added at 24 h (22).
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Likewise, Sioen et al. also showed a higher DRC in 70 h (23
h at Cyt-B) WB than fresh PBMC cultures of up to 2 Gy
(53). On the contrary, in Lue et al.’s study comparing 70 h
(44 h at Cyt-B) 50 ll WB and 500 ll PBMC cultures, DRCs
in both types of cultures were very similar up to 6 Gy (56).
Further study is required to better understand the differences
in DNA repair mechanics and MN induction after
irradiation in WB and PBMCs. Once again, population
differences could have influenced the dose-response
relationships observed, and hence CBMN assays of multiple
conditions should be separately evaluated in each labora-
tory. Despite the differences in DRCs seen, our dose
estimations of 48 and 72 h WB and PBMC cultures were
mostly within 60.5 Gy of actual doses.

MN scoring in 200 BNCs was shown by McNamee et al.
to reliably identify individuals exposed to �1 Gy gamma
irradiation with manual scoring on acridine orange-stained
cells (12), and thus 200 BNCs is recommended by ISO
17099 (11) for initial triage assessment. For higher doses,
200 total MN can also be scored (12). We also showed that
100/200 BNCs were sufficient for triage dose estimates as
doses were within 60.2 Gy as compared to conventional
MN scoring. Furthermore, for higher doses, 100 BNCs
could be scored instead of 200 BNCs. As our paper’s focus
was on manual MN scoring with a multiple unit mechanical
tally counter, the direct data output was the number of cells
with 0 to 6 MN (i.e., MN distribution). However, additional
calculations were required to obtain total cells scored and
total MN. To quicken triage identification in different dose
categories, we have shown that observed triage MN
distribution can be directly used to distinguish 2 and 4 Gy
WB and PBMC cultures for both 48 and 72 h cultures.

However, depending on the 15 ll spot analyzed by the
same scorer, triage MN of 48 h cultures in 8 spots scored
showed differences of up to 60 MN in 200 BNCs (CV: 7–
17%, 60.8 Gy) in 2 Gy and 50 MN in 100 BNCs (CV: 5–
12%, 60.8 Gy) in 4 Gy. In an international inter-laboratory
MN scoring exercise (57), the median intra-scorer CV of 2
spots for 1 and 2 Gy for 1,000 BNCs was 14 and 11%,
respectively. Our previous study also showed differences of
up to 60 MN in 1,000 BNCs and inter-scorer CV of 1–10%
in 2 Gy (31). As manual MN scoring is highly dependent on
visual interpretation, doses estimated could result in the
false-negative rejection for the triage threshold dose of 2
Gy. Some donors also showed low percentage of BNC as
insufficient BNCs were scored for triage analysis on 2 and 4
Gy PBMC for a 15 ll spot after 48 h CBMN culture. As
such, if irradiated individuals were identified with 48 h
CBMN triage, we highly recommend multiple scorers to
score the same 2-spot slide(s). If the CV is within 20%, the
average MN frequency can be used for more reliable dose
estimation.

Our study, however, has several limitations. First, only
one scorer was used in this study as many slides needed to
be analyzed for two experiments and six donors. Second,
we did not compare the time taken from culture to dose

estimate report production between manual and automated
MN scoring. Third, duplicate cultures were not performed
in DRC construction. As 30 ml peripheral blood from each
donor was required for culture set-up of 4 conditions,
duplicate cultures were not feasible due to lack of
manpower and blood sample volume restrictions according
to ethical guidelines in our study. Fourth, only three donors
of similar age were used for DRCs. According to the ISO
standard, at least three donors in different age groups and
gender should be used for CBMN DRCs (11). Fifth, this
study focused on the ideal radiation scenario of a
homogenous whole-body irradiation. Accidental heteroge-
neous high dose exposures account for more than 95% of
the cases (58). As this study serves as an initial evaluation
on the feasibility of manual MN scoring in 48 h cultures for
triage, the above limitations will be addressed in the next
study. Lastly, individual donor variations were seen in both
parts of the study and could affect dose estimation
reliability. It was to be expected as MN is not as radiation
specific as dicentrics and many factors such as age, gender
and smoking history could have contributed to the
variations. Increased sensitivity, especially in the lower
doses, could be achieved by combining MN scoring with
centromere staining to distinguish MN containing acentric
fragments or whole chromosomes (59). However, at the
higher doses of 0.75–2 Gy, similar dose estimates and their
confidence limits were obtained in MN frequencies with or
without centromere staining (60). From the triage point-of-
view, conventional MN scoring is sufficient for high dose
identification, though estimated dose differences caused by
donor or scorer variation prove difficult to resolve.

In conclusion, our study showed that with a low-cost
method of manual MN scoring on Giemsa-stained cells and
shortened CBMN assay to 48 h (24 h at Cyt-B) for both WB
and PBMCs, radiation triage identification of individuals
exposed to a whole-body equivalent dose of �2 Gy can be
easily performed. In our donor population, triage MN
scoring was completed in 8 min for 0 Gy and in 20 min for
2 and 4 Gy samples. Discrimination between 2 or 4 Gy
exposure was feasible based on observed MN distribution
patterns. Triage dose estimates were also mostly within
60.5 Gy of actual doses. We thus highly recommend the 48
h CBMN assay for initial triage in a radiation mass-casualty
accident. If more reliable dose estimates are required, dose
estimation with 1,000 BNCs in CBMN assay or 500
metaphases in DCA can be additionally performed on
selected individuals.

SUPPLEMENTARY MATERIALS

Supplementary Table S1. Coefficient of variance (CV) for
conventional MN frequency in duplicate cultures (Expt 1)

Supplementary Table S2. Scoring time (min:s) in (a) 48 h
(24 h at Cyt-B) WB and (b) PBMC cultures; (c) 72 h (24 h
at Cyt-B) WB and (d) PBMC cultures; (e) 72 h (44 h at Cyt-
B) WB and (f) PBMC cultures.
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Supplementary Table S3. Observed triage MN frequency
in (a) 48 h (24 h at Cyt-B) WB and (b) PBMC cultures; (c)
72 h (24 h at Cyt-B) WB and (d) PBMC cultures; (e) 72 h
(44 h at Cyt-B) WB and (f) PBMC cultures.

Supplementary Table S4. Raw data and Poisson test
results for DRC construction for (a) 48 h (24 h at Cyt-B)
WB and (b) PBMC cultures; (c) 72 h (44 h at Cyt-B) WB
and (d) PBMC cultures.

Supplementary Table S5. Raw data of (a) NDI and (b)
percentage of BNC in duplicate cultures (Expt 1)

Supplementary Fig. S1. CBMN DRCs of (a) each donor
and (b) each culture condition.

Supplementary Table S6. Coefficients and statistical
results of each donor’s CBMN DRCs in 4 culture
conditions.
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