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2017 Michael Fry Award Lecture
When DNA is Actually Not a Target: Radiation Epigenetics as a Tool to

Understand and Control Cellular Response to Ionizing Radiation

Igor Koturbash1

Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences,
Little Rock, Arkansas

Koturbash, I. When DNA is Actually Not a Target:
Radiation Epigenetics as a Tool to Understand and Control
Cellular Response to Ionizing Radiation. Radiat. Res. 190, 5–
11 (2018).

Aside from the generally accepted potential to cause DNA
damage, it is becoming increasingly recognized that ionizing
radiation has the capability to target the cellular epigenome.
Epigenetics unifies the chemical marks and molecules that
collectively facilitate the proper reading of genetic material.
Among the epigenetic mechanisms of regulation, methylation
of DNA is known to be the key player in the postirradiation
response by controlling the expression of genetic information
and activity of transposable elements. Radiation-induced
alterations to DNA methylation may lead to cellular
epigenetic reprogramming that, in turn, can substantially
compromise the genomic integrity and has been proposed as
one of the mechanisms of radiation-induced carcinogenesis.
DNA methylation is strongly dependent on the one-carbon
metabolism. This metabolic pathway is central to the support
of DNA methylation by means of providing the donor of
methyl groups, as well as for the synthesis of amino acids. To
better understand the mechanisms of radiation-induced
health effects, we study how exposure to radiation affects
DNA methylation and one-carbon metabolism. Also, a tight
interaction that exists between DNA methylation and one-
carbon metabolism allows us to simultaneously manipulate
both cellular epigenetic and metabolic profiles to modulate
the normal and cancerous tissue response to radiothera-
py. � 2018 by Radiation Research Society

It is both a privilege and pleasure to speak here today as a
recipient of a Michael Fry Award. I am truly humbled by this
recognition and would like to thank the Award Committee
and the Radiation Research Society for this Award.

The genotoxic properties of ionizing radiation that are

exhibited as DNA strand breaks, the development of gene

mutations and chromosomal aberrations have been known

for many years. Subsequently, the damage to DNA has been

considered as a central dogma in radiobiology. However,

not all the effects of radiation can be attributed to DNA

damage; for instance, radiation-induced large-scale dynamic

changes in the expression of genes. Those changes are time-

and tissue-specific and determine the tissue response to

radiation. Furthermore, those differences in gene expression

between the stable and unstable clonally expanded survived

cells were also proposed to play the central role in the

development of genomic instability (1). Indeed, the

observed frequency of radiation-induced genetic instability

is considerably higher than that observed for gene mutations

at a similar dose; therefore, the latter was considered highly

unlikely to be the initiating mechanism (2–4).

Expression of genes is governed by epigenetic mecha-

nisms of regulation - the mechanisms that are not associated

with alterations in underlying DNA sequence but that are

rather exhibited as covalent DNA modifications. The latter

are represented as methylation of DNA, post-translational

histone modifications and nucleosome positioning along

DNA. These covalent marks ensure appropriate structure

and function of the epigenome and are applied by a number

of specific enzymes, i.e., DNA and histone methyltransfer-

ases (the so-called ‘‘writers’’). Then, the proteins that

recognize these marks, ‘‘the readers,’’ modulate the gene

expression at particular genomic loci. In turn, the

reversibility of the previously applied covalent marks is

guaranteed by the ‘‘erasures’’ (5). Methylation of DNA is

the most studied epigenetic modification; this is a covalent

addition of a methyl group to the fifth position of carbon,

enabled by a complex interplay between various enzymes,

DNA methyltransferases, methyl-CpG-binding proteins,

and associated with them, protein ubiquitin-like with PHD

and RING finger domains 1 (UHRF1). DNA methylation is
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considered a primary epigenetic mechanism of the expres-
sion of genetic information.

RADIATION EPIGENETICS: THE START

In 1989, groundbreaking work by Kalinich et al. set the
stage for studies in radiation epigenetics (6). In that work,
exposure to 60Ca gamma radiation was shown to cause dose-
dependent decreases in the levels of 5-methylcytosine (5-mC)
in four cultured cell lines. This work was followed by Tawa et
al., who reported decreases in 5-mC content from the livers of
C57BL/6NJcl mice after exposure to 4–10 Gy of X rays (7).

During my PhD studies in Olga Kovalchuk’s laboratory, in
parallel with Mark Plumb’s work, we demonstrated that
exposure to radiation at doses of 1 Gy and above causes
detectable and persistent loss of global DNA methylation in
vivo (8, 9). Importantly, DNA hypomethylation was observed
in the target tissues (thymus and bone marrow) and was
detectable without the presence of unrepaired DNA damage.

While the changes were observed on the whole genome
level, it is important to identify whether they are uniformly
distributed throughout the genome, or primarily stem from
the particular genomic loci. More than one-half of the
known eukaryotic genes and the vast majority of repetitive
elements (REs) contain so-called CpG-rich regions, also
known as CpG islands or CGIs. The differential regulatory
functions of DNA methylation are dependent on the
location of CGIs. For instance, methylation of DNA at
CGIs located within the gene promoter/transcription start
site is usually associated with gene silencing (10). DNA
methylation of gene bodies either leads to stimulated
elongation and splicing or prevention of initiation of
aberrant transcription from alternative transcription start
sites (11, 12).

Altered patterns of DNA methylation have been reported
in numerous pathological states and diseases, including
cancer. By today, virtually all human cancers have been
characterized by the loss of global DNA methylation, which
is one of the generally considered hallmarks of cancer (13).
Furthermore, accumulating evidence clearly indicates that
alterations in DNA methylation are not just the conse-
quences of neoplastic transformation or passive bystanders
in the process of carcinogenesis, but are the active players
that shape the tumor landscape (10, 14–16). Indeed, altered
DNA methylation can be detected very early during the
process of carcinogenesis and may influence numerous
biological processes. For instance, alterations in DNA
methylation of particular genes may result in their aberrant
transcriptional activity (in the case of oncogenes) or
silencing (in the case of tumor-suppressor genes).

REPETITIVE ELEMENTS AS A TOOL TO STUDY
RADIATION EPIGENETICS

Repetitive elements (REs) most likely represent the
largest methylated body of coding and noncoding sequences

in the genome. Indeed, REs shape about 50% of mammalian
genomes, with some computational studies estimating up to
two-thirds of the genome to be represented as REs (17, 18).
Since the REs are primarily transposons and retrotranspo-
sons by nature, during the evolutionary arm race with the
host, they were silenced by methylation of DNA to control
their expression and potential (retro)transposition (11, 17,
19).

Long interspersed nuclear element-1 (LINE-1), the most
abundant in mammalian genomes’ RE, attracted my
attention long ago. The DNA methylation capacity of this
retrotransposon is tremendous, as LINE-1 comprises ;20%
of mammalian genomes, roughly 10 times more than the
entire protein-coding genes (17, 20). The full-length LINE-1
is comprised of the two open reading frames (ORF-1 and
ORF-2), a 30 untranslated region (UTR) and a CpG-reach
50-UTR. The DNA methylation of LINE-1 50-UTR is
believed to be a critical mechanism in blocking transcription
factor binding and the initiation of transcription, therefore
playing a central role in silencing this retrotransposon (11,
20).

LINE-1 regulates the transcription by altering the
chromatin structure, as well as functioning as an enhancer
or promoter, and by generating new transcript isoforms
(42). The loss of the DNA methylation control over LINE-1
may lead to its transcriptional reactivation and subsequent
retrotransposition. The latter event can be associated with
the disruptive insertional mutagenesis when a LINE-1
fragment is introduced within an ORF of a functional gene.
DNA hypomethylation of LINE-1 and its retrotransposition
may result in genomic instability and development of cancer
(20); however, even without retrotransposition, aberrant
LINE-1 DNA methylation can affect the tumor landscape
by activating proto-oncogenes that have previously acquired
LINE-1 insertions (21, 22).

Ionizing radiation has been shown to affect global DNA
methylation, and DNA methylation of REs, in particular
(23). Radiation-induced loss of DNA methylation within the
REs, particularly LINE-1, have been shown to enhance their
transcriptional activity and reactivation of transposable
elements, leading to insertional mutagenesis and potentially
to the development of genomic instability (24–29). The
latter can also serve as a classic example of an epigenet-
ically-driven potentially carcinogenic mutation event.
Although the role of the RE-associated insertional muta-
genesis as an independent and individual mechanism in
carcinogenesis has not yet been proven, accumulating
evidence indicates the plausibility of this event (30, 31).

In our initial studies, we have convincingly demonstrated
that radiation-induced changes in DNA methylation stem
primarily from the REs. For instance, exposure to low mean
absorbed doses of heavy iron ions (56Fe) resulted in dose-
dependent DNA hypermethylation in the mouse lung (32).
While there were no changes in gene-specific DNA
methylation, including changes in the genes frequently
hypermethylated in lung cancer, dose-dependent DNA
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hypermethylation of REs was observed. Importantly, DNA
hypermethylation was associated with dose-dependent
decreases in the expression of those REs, suggesting
potentially protective effects against radiation-induced
reactivation of REs. Similar effects were observed in the
mouse hematopoietic stem and progenitor cells, where the
degree of the radiation-induced alterations in DNA
methylation correlated with the extent of DNA methylation
within the LINE-1 and another retrotransposon: short
interspersed nuclear element-B1 (SINE-B1) (25).

With a growing interest in radiation epigenetics, a number
of studies have shown that radiation-induced changes in
DNA methylation are not unidirectional; LINE-1 DNA
hypo- and hypermethylation can be observed, as well as an
absence of changes in DNA methylation, especially at doses
below 1 Gy (33–37). Those differences could be explained
by the different types of radiation and doses, models used,
as well as different methods of DNA methylation analysis.
However, we recently demonstrated that effects of radiation
on LINE-1 DNA methylation are dependent primarily on
the following two factors: the evolutionary age/type of the
LINE-1 promoter and the type of irradiated cell (38, 39).

Evolution of LINE-1 in mammals is characterized by the
existence of a single lineage of this retrotransposon: after
emergence and amplification to several hundreds to
thousands of copies, the family would then become extinct
and be replaced by a newly evolved one (40). Because both
ORFs of various LINE-1 elements that belong to different
families have a very high degree of homology, the lineages
differ mainly in their 5 0-UTRs. We have shown a
relationship between the age (in Myr) of the LINE-1

elements and their DNA methylation, wherein older LINE-1
elements exhibited lower DNA methylation levels within
their 50-UTRs (Fig. 1). Importantly, this effect was organ-
and cell-type independent as it was observed in the lung,
intestine and the bone marrow, and in the cells of various
lineages of the hematopoietic system (38, 39, 41). In
general, the radiation-induced loss of DNA methylation was
observed primarily from the evolutionary young LINE-1
elements that were enriched in methylated CGI sites. In
contrast, older LINE-1 elements, with a number demethyl-
ated during the evolution CGI sites, were able to acquire
additional methyl groups, leading to DNA hypermethyla-
tion in these loci. The DNA methylation status of the
evolutionary-oldest elements remained often unchanged due
to the initially hypomethylated phenotype on one hand and
the loss of a substantial fraction of potential CGI sites due to
spontaneous deamination on the other hand (38, 39).

We also demonstrated that even at doses as low as 0.1 Gy,
exposure to radiation results in persistent changes in the
DNA methylation of the selective LINE-1 elements in the
mouse hematopoietic system. The most pronounced re-
sponses were detected in hematopoietic stem cells, and
these effects were observed mostly in CBA/CaJ mice, the
strain of mice prone to radiation-induced leukemia (38).
Importantly, because hematopoietic stem cells reside at the
top of the hematopoietic system hierarchy, epigenetic
reprogramming of these cells may lead to epigenetic
reprogramming of their differentiated progeny. Similar
effects were also observed in the rat model as well, where
the cranial exposure to 20 Gy of X rays resulted in the loss
of LINE-1 DNA methylation in peripheral lymphocytes and

FIG. 1. The relationship between the age of LINE-1 elements (in Myr) and their DNA methylation. The age
of the most abundant 27 LINE-1 elements is strongly associated with their evolutionary age, wherein older
LINE-1 elements exhibit a higher degree of DNA demethylation within their 50-untranslated regions (UTRs).
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could be detected for at least 7 months after irradiation (26).
Altogether, these findings suggest that the DNA methyla-

tion status of particular LINE-1 elements in peripheral blood

may indicate previous exposures to radiation and may
potentially be used for biodosimetry purposes (23).

With advances in the field of radiation epigenetics, the

understanding of the mechanisms of those effects became

critical for a number of reasons. First, this knowledge will
certainly aid in preventing the radiation-induced epigenetic

alterations and negative consequences associated with them.

Second, understanding those mechanisms may also help in

modulating the tissue response to radiation. Currently,
normal tissue toxicity and cancerous cell radioresistance are

the main obstacles in the treatment of many cancers.

Therefore, modulation of the cellular epigenetic landscape
may provide new opportunities in radiation oncology.

In this regard, a number of theories have been proposed and

are being investigated to understand the epigenetic effects

caused by radiation, including the altered function of DNA
and histone methyltransferases, interference of DNA damage

with the ability of DNA methyltransferases to methylate

DNA, affected DNA damage and repair and radiation-induced

proliferation [reviewed in (19)]. We have recently proposed
another mechanism where the multifaceted interaction

between the cellular metabolism, one-carbon metabolism in

particular, and DNA methylation play an important role in the
cellular response to exposure to radiation (42).

INTERACTION BETWEEN THE CELLULAR
EPIGENOME AND METABOLOME

The one-carbon metabolism unifies a set of reactions
surrounding the transfer of the methyl group from the S-
adenosylmethionine (SAM) to acceptor molecules with the
subsequent regeneration of SAM. This pathway, critical for
nearly all cellular reactions, ties together the regulation of
gene expression, synthesis of purine and pyrimidine and
amino acids, and over a hundred biomethylation reactions.
SAM and S-adenosylhomocysteine (SAH) are intermediate
metabolites in one-carbon metabolism that coexist in a
metabolic relationship. This relationship is characterized by
the SAH-induced inhibition of SAM-dependent methyl-
transferases, where the former is accumulated in the
presence of homocysteine. Some methyltransferases are
much more susceptible to the inhibitory effects of SAH; for
instance, the values of kinetic constants for histone
methyltransferases determine their higher sensitivity to the
SAM/SAH ratio compared to DNA methyltransferases (43).
Accumulating evidence clearly indicates that SAM levels,
as well as the SAM/SAH ratio, play key roles in the
regulation of the chromatin state of the cell and can be
modulated through the metabolic flux of the methionine
cycle (44–46).

Methionine, the direct precursor of SAM, is the essential
amino acid required for normal growth and development.
Among its key functions is the regulation of stress
resistance (i.e., by involvement in the synthesis of cysteine
and glutathione), as well as its central role in the
maintenance of the normal patterns of DNA and histone
methylation by providing the donors of methyl groups.
Depletion of methionine leads to changes in DNA and
histone methylation (44, 45, 47). Exposure to radiation
depletes internal methionine resources, leading to postirra-
diation loss of DNA methylation, as well as impairs
synthesis of glutathione, needed to sustain overwhelming
oxidative damage to DNA. For instance, even exposure to a
relatively low 3 Gy dose of 137Cs causes substantial and
long-term intraintestinal methionine depletion in the mouse
model (Fig. 2). Therefore, it has been previously hypoth-
esized that prevention of the radiation-induced DNA
hypomethylation and increased tolerance of the normal
tissue to radiation may be achieved by modulation of the
methionine dietary intake (48, 49).

FUTURE PROSPECTS: FROM TYING THE HOST’S
EPIGENOME AND METABOLOME WITH THE GUT

MICROBIOME TO TARGETING THE CANCER CELL
METABOLOME

Radiation epigenetics, since it emerged as a separate field
several decades ago, cannot be considered an isolated

FIG. 2. Exposure to ionizing radiation causes substantial depletion
in the methionine tissue concentrations. Analysis of the methionine
tissue concentrations in the mouse jejunum after exposure to 3 and 8.5
Gy of 137Cs, as measured by HPLC on day 3.5 (panel A) and day 6
(panel B). *P , 0.05, **P , 0.01 compared to control.

8 IGOR KOTURBASH

Downloaded From: https://complete.bioone.org/journals/Radiation-Research on 19 May 2025
Terms of Use: https://complete.bioone.org/terms-of-use



discipline anymore. For instance, a very tight link exists
between the critical epigenetic mechanisms, such as DNA
and histone methylation, and cellular metabolism. Methio-
nine, a key molecule in one-carbon metabolism, is not only
important for the host’s protein synthesis and for providing
methyl (CH3) groups for DNA methylation but is also
indispensable for the gut microbiome. The latter itself
affects the host’s metabolome and epigenome, i.e., by
providing amino acids (including methionine) for the host’s
needs (50).

While methionine supplementation may potentially exert
some positive effects on the cellular epigenome, it must be
considered that methionine is by far the most toxic among
all the amino acids (51). As we have recently shown,
dietary methionine overload may negatively affect the
normal gut microbiome and the host’s one-carbon
metabolism, leading to the development of bacterial
overgrowth of the small intestine (BOSI) in the mouse
model (41). Furthermore, methionine overload causes
shifts in the gut microbiome, resulting in the increased
abundance of pathogenic bacterial species, decreased
expression of the intestinal transmembrane proteins, as
well as loss of crypt depth and mucosal surface (41). All
these effects may not only contribute to the pathogenesis
of intestinal inflammatory diseases but can sensitize the
gut to exposure to other stressors, like radiation. On the
other hand, dietary methionine deprivation has recently
been demonstrated to exert protective effects on the gut by
decreasing the inflammation and tightening epithelial
barriers (52). This is particularly important, because
Western populations consume 2-to-3.3-fold more methio-
nine than recommended due to high levels of meat and
dairy products in the diet, fortification of grains and a
spiking increase in the consumption of methionine-
containing dietary supplements (53–55). In the U.S. alone
there are over six million patients who have received
abdominal or pelvic radiotherapy and this number is
expected to double by 2025 (56). A considerable
proportion of the patients experience symptoms of acute
and/or chronic bowel toxicity, and therefore methionine
dietary modification during the course of radiotherapy may
aid in alleviating these side effects. However, studies
investigating the exact fate of dietary methionine in the
irradiated proximal jejunum, the section of the gut
specifically responsible for amino acid absorption, need
to be performed. Furthermore, the host-intestinal micro-
biome axis needs to be taken into consideration, given the
tight relationship that exists between the host’s and the
microbiome’s amino acid metabolism and the radiation-
induced changes in the gut microbiome (50, 57–59).
Moreover, it has been demonstrated that the host’s diet
influences the production of xenometabolites (60).

A remarkable difference in the needs for methionine
between normal cells and cancer cells exists, where the
rapidly proliferating cancer cells require much higher levels
of methionine to maintain their function. This difference is

underlined by the normal cell’s capacity for re-methylation
and further utilization of methionine from homocysteine,
and impaired ability of the cancer cell for the proper
synthesis and utilization of endogenous methionine. There-
fore, tumor cells were shown to be extremely sensitive to
methionine restriction. For instance, plating normal fibro-
blasts and aggressive cancer cells on the same plate under
the methionine-deficient/homocysteine-supplemented me-
dia conditions results in cell cycle arrest and death of tumor
cells with the abundant overgrowth of normal fibroblasts
(61). The potentiation of the chemotherapy effect by
methionine deprivation has been investigated in vitro (62),
in vivo (63, 64) and even in clinical trials (65, 66), while the
potential combination of methionine dietary deprivation
with radiotherapy has never been addressed before. At the
same time, accumulating evidence indicates that cancer cells
are radiosensitized by the deprivation of other methyl group
donors (67, 68), suggesting methionine deprivation com-
bined with radiotherapy may have beneficial effects for
cancer treatment.

During the preparation of this lecture transcript, we were
saddened to learn that Dr. Michael Fry passed away on
November 24, 2017. He will be remembered by colleagues
as a great scientist and a true gentleman. His life and his
immense contributions to science remain a unique example
for both current and new generations of radiation research-
ers to follow.
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