RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella

Authors: Fabrick, Jeffrey A., Kanost, Michael R., and Baker, James E. Source: Journal of Insect Science, 4(15) : 1-9
Published By: Entomological Society of America
URL: https://doi.org/10.1673/031.004.1501

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Journal

RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella

Jeffrey A. Fabrick ${ }^{1,2,3}$, Michael R. Kanost ${ }^{1}$, and James E. Baker ${ }^{2}$
${ }^{1}$ Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
${ }^{2}$ USDA, ARS, Grain Marketing and Production Research Center, 1515 College Avenue, Manhattan, KS 66502, USA.
${ }^{3}$ Current address: Department of Entomology, University of Arizona, Tucson, AZ 85721 USA
baker@gmprc.ksu.edu

Received 27 October 2003, Accepted 16 February 2004, Published 17 May 2005

Abstract

Gene silencing through the introduction of double-stranded RNA (RNA interference, RNAi) provides a powerful tool for the elucidation of gene function in many systems, including those where genomics and proteomics are incomplete. The use of RNAi technology for gene silencing in Lepidoptera has lacked significant attention compared to other systems. To demonstrate that RNAi can be utilized in the lepidopteran, Plodia interpunctella, we cloned a cDNA for tryptophan oxygenase, and showed that silencing of tryptophan oxygenase through RNAi during embryonic development resulted in loss of eye-color pigmentation. The complete amino acid sequence of Plodia tryptophan oxygenase can be accessed through NCBI Protein Database under NCBI Accession \# AY427951.

Keywords: Insect; Lepidoptera, double-stranded RNA; eye pigmentation; ommochrome; Indianmeal moth
Abbreviation:
RNAi RNA interference
PCR polymerase chain reaction
RT-PCR reverse transcription-PCR

Introduction

Eye-color mutations in insects provide convenient and reliable genetic markers, and the genes responsible for eye pigmentation are frequently utilized as transgenic markers. Mutations that effect insect eye-color involve either the biosynthesis or transport of ommochrome (brown) or pteridine (red) screening pigments. Dark eye-color in insects has been attributed to the ommochrome pigment pathway, in which the initial step involves the conversion of tryptophan to N -formylkynurenine by tryptophan oxygenase (EC 1.13.1.11). The vermilion gene encodes tryptophan oxygenase in Drosophila sp. (Walker et al., 1986; Searles and Voelker, 1986; Searles et al., 1990; Begun and Aquadro, 1995; Stephan et al., 1998; Begun and Whitley, 2000) and in Tribolium castaneum (Lorenzen et al., 2002). Tryptophan oxygenases have also been cloned from mosquitoes, including Anopheles gambiae (Mukabayire et al., 1996) and Aedes aegypti (Fang and Li, 2001).

Silencing of genes by RNA interference (RNAi) through the delivery of a specific double-stranded RNA is a powerful method for the functional analysis of specific gene products in an impressive array of organisms, including several orders of insects. However to date, RNAi has only been successfully demonstrated in a small number of Lepidoptera, including Spodoptera litura (Rajagopal et Downloaded From: https://complete.bioone.org/fournals/Journal-of-Insect-Science on 17 Apr 2024 Terms of Use: https://complete.bioone.org/terms-of-use
al., 2002), Hyalophora cecropia (Bettencourt et al., 2002), Bombyx mori (Quan et al., 2002), and in cultured Manduca sexta neuronal cells (Vermehren et al., 2001). In this work, we obtained a cDNA encoding the first tryptophan oxygenase from a lepidopteran insect, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), and demonstrated that a phenotype lacking larval eyespots can be obtained upon delivery of tryptophan oxygenase double-stranded RNA into preblastoderm embryos.

Materials and Methods

Insects

A strain of P. interpunctella was collected from shelled corn in El Paso, Illinois, in November of 1998 and has been reared in the laboratory on a diet of cracked wheat, wheat shorts, wheat germ, Brewer's yeast, honey, glycerin, and water. Cultures are maintained at $27^{\circ} \mathrm{C}$ and $50-55 \%$ relative humidity in a 12 h photophase. Mated Plodia adults were aspirated into a pint jar containing a piece of corrugated filter paper and eggs were collected after 30 minutes.

Preparation of P. interpunctella Genomic DNA

Genomic DNA was obtained from single $5^{\text {th }}$ instar
wandering stage P. interpunctella larvae by homogenization in 0.6 ml of Nuclei Lysis Solution (Promega, www.promega.com) with a Kontes homogenization pestle and tube. After the homogenate was incubated at $65^{\circ} \mathrm{C}$ for 30 minutes, $12 \mu \mathrm{~g}$ of RNase A was added, mixed, and incubated at $37^{\circ} \mathrm{C}$ for 30 minutes. Lysates were cooled to room temperature and 0.2 ml of Protein Precipitation Solution (Promega) was added to each tube. Samples were chilled on ice for 5 minutes and centrifuged at $13,000 \mathrm{xg}$ for 1 minute. Supernatants were placed into sterile microtubes and the DNA was precipitated with isopropanol and washed with ethanol. DNA pellets were allowed to briefly air dry and were resuspended in $100 \mu \mathrm{l}$ of sterile water. Genomic DNA samples were quantified from A_{260} values.

Partial Cloning of Tryptophan Oxygenase by PCR

Fully-nested PCR was used to obtain a partial clone encoding the vermilion gene (tryptophan oxygenase) from P. interpunctella. First-round PCR was conducted from $\sim 100 \mathrm{ng}$ of genomic DNA template with the degenerate PCR primers VerF (5^{\prime} TAYGARYTNTGGTTYAARCA 3') and VerR4 (5' CATTKCKTTGCACCATSAWMACRTGATTRT 3^{\prime} ') in a Biometra (www.biometra.de)T Gradient thermocycler. Touchdown PCR was performed by using TaKaRa ExTaq DNA polymerase with cycles of denaturation (30 seconds at 94° C), followed by the first of fifteen cycles beginning $15^{\circ} \mathrm{C}$ above the Tm of the primer set and dropping $1^{\circ} \mathrm{C}$ for each annealing step, and extension (1 minute at $72^{\circ} \mathrm{C}$). Following the first fifteen cycles, 25 cycles of denaturation (30 seconds at $94^{\circ} \mathrm{C}$), annealing (30 seconds at primer set Tm), and extension (1 minute at $72^{\circ} \mathrm{C}$) completed the first round of PCR. A second round of PCR was conducted on $1 \mu \mathrm{l}$ of template from the first round of PCR by using fully-nested PCR primers, VerF3 (5' TGCAGTTCCGKYTSHTSGAGAACA 3') and VerR (5 ' CCNGGNGTNCKYTCNARCC 3 ') and a total of 45 cycles. Control PCR reactions containing sterile water in place of template were conducted for both rounds of PCR. PCR products were separated on 1% agarose gels in $1 \times$ TBE containing $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide and analyzed over UV light. PCR-generated bands were gel-purified by using the Quantum Prep Freeze-N-Squeeze DNA Gel Extraction kit (BioRad, www.bio-rad.com) and cloned into the pCR4-TOPO vector (Invitrogen) following the manufacturers instructions. TOP10 OneShot E. coli (Invitrogen, www.invitrogen.com) were transformed and plasmid DNA was recovered by using a QIAprep Spin Mini Prep kit (Qiagen, www.qiagen.com). An aliquot of plasmid DNA was digested with EcoRI (Stratagene, www.stratagene.com) to confirm size of insertion and then plasmid DNA was sequenced at the Kansas State University DNA Sequencing and Genotyping Facility by using a T7 vector primer.

Cloning of Full-length Plodia tryptophan oxygenase by RACE

The missing 5 '- and 3 ' ends of P. interpunctella tryptophan oxygenase were obtained by using the GeneRacer ${ }^{\mathrm{TM}} \mathrm{kit}$ (Invitrogen). Total RNA from ten larvae was obtained as described previously (Fabrick et al., 2003). RNA was ligated to the GeneRacer ${ }^{\text {TM }}$ RNA oligo as described by the manufacturer and reverse transcription was performed by using Avian Myeloblastosis Virus Reverse Transcriptase with the GeneRacer ${ }^{\mathrm{TM}}$ oligo-dT primer. The 5' end of P. interpunctella tryptophan oxygenase was obtained through
two-rounds of PCR using semi-nested primers with the first round conducted using the GeneRacer ${ }^{\text {TM }}$ 5' Primer and VerR5 (5' GCGCAACGCCTGTTTTAGCCCCAA 3'). The first round of PCR consisted of a total of 40 cycles and the annealing temperature was $5^{\circ} \mathrm{C}$ below the Tm of the primer pair. The second round of PCR was conducted over 40 cycles by using the template from first round PCR with the 5' GeneRacer ${ }^{\text {TM }}$ Nested primer and VerR5. The 3' end of P. interpunctella tryptophan oxygenase was obtained from two rounds of fully-nested PCR with the first round of PCR conducted using VerF7 (5' GCAGCTATGGACGCCTTGCACAAATCA 3^{\prime}) and the GeneRacer ${ }^{\mathrm{TM}} 3^{\prime}$ Primer over a total of 40 cycles. The first 15 cycles were performed with decreasing annealing temperatures (as outlined above for touchdown PCR). The second round of PCR was conducted using VerF6 (5 ' GGCGCTGATCGAGCGGTGGCTAGAACGAA 3^{\prime}) and the GeneRacer ${ }^{\text {TM }} 3^{\prime}$ Nested Primer over a total of 25 cycles. Both first and second rounds of PCR were conducted under gradient temperature conditions to empirically determine optimum annealing temperatures. PCR products from 5^{\prime} - and 3^{\prime}-RACE were inserted into cloning vectors as outlined previously and both strands of DNA was sequenced using T3 and T7 vector primers.

A full-length cDNA encoding the open reading frame (ORF) of Plodia tryptophan oxygenase was obtained by PCR from $1^{\text {st }}$ strand cDNA template by using the PCR primers VerF8 (5' ATGGCCTGTCCTATGAGGTCAATG 3') and VerR6 (5' AGCCAACTCCAATTTCAACATGCAGTT 3^{\prime} '). The $1.2-\mathrm{kb}$ PCR product was gel-purified and cloned as described above. Purified plasmid DNA was digested with EcoRI to confirm insert size and plasmid DNA was sequenced as above.

Computer Analysis of Sequence Data

Comparison of the P. interpunctella tryptophan oxygenase cDNA sequence against the non-redundant public sequence database was made using BLASTX (Altschul et al., 1990). Sequence analysis tools of the ExPASy (www.expasy.ch) Molecular Biology Server of Swiss Institute of Bioinformatics, including Translate, Compute pI/MW and SignalP were used to analyze the deduced tryptophan oxygenase protein sequence. Similar protein sequences were aligned using PRETTY with the BLOSUM90 scoring matrix and sequence identities and similarities were calculated using BESTFIT from SeqWeb (Version 2) (Accelrys, www.accelrys.com). A phylogenetic tree was generated from TreeView (http:// taxonomy.zoology.gla.ac.uk/rod/rod.html) (version 1.6.6) with SeqWeb's GrowTree data (Accelrys) by using Kimura distance correction method, Neighbor joining tree construction, and the BLOSUM90 scoring matrix.

Synthesis of double-stranded RNA

The MEGAscript ${ }^{\mathrm{TM}}$ RNAi kit (Ambion, www.ambion.com) was used to generate double-stranded RNA corresponding to nucleotides 680 to 1,336 of the Plodia tryptophan oxygenase. T7 promoter sites were added to the PCR primers VerF5 (5' CTGGCGCTGATCGAGCGGTGG 3') and VerR6 to generate the primers T7VerF5 (5' TAATACGACTCACTATAGGGACTGGCGCTGATCGAGCGGTGG 3') and

T7VerR6
ATTATGCTGAGTGATATCCCTAGCCAACTCCAATTTCAACATGCA

3'). Two separate PCR reactions were conducted to generate complementary templates with a single T7 promoter site (T7VerF5+VerR6 and VerF5+T7VerR6). T7 RNA polymerase was used to transcribe single-stranded RNA from each DNA template over 4 h at $37^{\circ} \mathrm{C}$. double-stranded RNA was produced by mixing solutions containing equivalent amounts of complementary ssRNA, incubating at $75^{\circ} \mathrm{C}$ for 5 minutes, and allowing the solution to cool to room temperature. DNA and single-stranded RNA were removed from the solution by digestion with DNase I and RNase at $37^{\circ} \mathrm{C}$ for 1 h . The double-stranded RNA was purified using provided purification cartridges as per the manufacturer's instructions. Double-stranded RNA was eluted with two successive $50 \mu 1$ washes of $95^{\circ} \mathrm{C}$ pre-heated 10 mM Tris- HCl pH 7 containing 1 mM EDTA (ethylenediamine tetraacetate). Total double-stranded RNA was quantified from A_{260}.

RNA Interference

P. interpunctella eggs were collected into a $100 \mu \mathrm{~m}$ nylon cell strainer (Falcon 2360) and washed for 10 seconds in 2.5% bleach solution followed by distilled water for 1 minute. A fine brush dipped in water was used to position eggs (~ 100 per slide) onto double-sided tape attached to a glass microscope cover slip. Controls included observations of late stage embryos and newly hatched larvae from eggs that were not injected, and presence or absence of eyespots in eggs injected with water or buffer. Plodia tryptophan oxygenase double-stranded RNA ($\sim 1 \mathrm{mg} \mathrm{ml}^{-1}$) was injected into 1 - to 3 -h old embryos (injection volume $\sim 100 \mathrm{pl} /$ embryo) using a pulled glass needle beveled at a 45° angle. Embryos were covered with Halocarbon oil (series 700) and incubated at 30° C in a humidified, oxygenated chamber (Billups-Rothenberg, www.brincubator.com). Late-stage embryos or newly hatched 1stinstar larvae were checked daily for development and eyespot pigmentation.

RT-PCR

Relative tryptophan oxygenase RNA transcript levels were measured following RT-PCR from single newly hatched P. interpuntella larvae using Ambion's Cells-to-cDNA II kit. Individual larvae were collected into sterile, nuclease-free Kontes homogenization tubes and washed with $100 \mu \mathrm{l}$ ice-cold phosphate buffered saline. The buffer was replaced with 100μ L Lysis Buffer (Ambion) and each larva was briefly homogenized on ice with Kontes homogenization pestles. Following heating at $75^{\circ} \mathrm{C}$ for 10 minutes, $2 \mu \mathrm{l}$ of DNase I was added to homogenates and allowed to incubate at $37^{\circ} \mathrm{C}$ for 15 minutes. DNase I was inactivated by heattreatment at $75^{\circ} \mathrm{C}$ for 5 minutes. Reverse transcription of RNA was carried out on $10 \mu \mathrm{l}$ of each homogenate using random decamer primers (provided in kit from Ambion) and M-MLV reverse transcriptase at $42^{\circ} \mathrm{C}$ for 50 minutes. Semi-nested PCR was conducted on cDNA templates by using the primer pairs VerF8+VerR6 and VerF7+VerR6 in first and second rounds of PCR, respectively. First-round PCR consisted of an initial 2 minutes at $94^{\circ} \mathrm{C}$ followed by 35 cycles of 30 seconds at $94^{\circ} \mathrm{C}, 30$ seconds at $55^{\circ} \mathrm{C}$, and 30 seconds at $72^{\circ} \mathrm{C}$, with a final extension of 5 minutes at $72^{\circ} \mathrm{C}$. Semi-nested PCR was conducted on first-round templates over 15,23 , or 40 cycles and consisted of an initial 2 minutes at $94^{\circ} \mathrm{C}$, followed by cycles of 30 seconds at $94^{\circ} \mathrm{C}, 30$ seconds at 57°

C, and 60 seconds at $72^{\circ} \mathrm{C}$, and a final 10 minute extension at 72° C. Controls included a negative reverse transcription reaction that lacked reverse transcriptase and PCR without template. RT-PCR control reactions for ribosomal protein S7 (RPS7) (Fabrick et al. 2003) were performed on the P. interpunctella RNA extracts with 35 cycles as outlined above.

Results

Plodia tryptophan oxygenase cDNA

Members of the tryptophan oxygenase family are highly conserved, which allowed for the design of degenerate primers successfully used in PCR. A partial genomic clone of 179 bp encoding a tryptophan oxygenase from P. interpunctella was obtained from fully-nested PCR by using two sets of degenerate primers. By using RACE, we determined the 5 '- and 3 'sequences and a full-length cDNA consisting of $1,474 \mathrm{bp}$ was obtained by RT-PCR. The 179 bp genomic clone did not span any intron sequence, as determined by comparison with the full-length cDNA (and which was predicted by comparison with genomic sequences from Drosophila melanogaster, A. gambiae, and T. castaneum). The $1,474 \mathrm{bp}$ cDNA contains an open reading frame of $1,212 \mathrm{bp}$ that encodes 404 amino acid residues and contains a 124 nucleotide 5' double-stranded RNA and a 138 nucleotide 3' double-stranded RNA (Fig. 1).

BLASTX, multiple sequence alignment, and phylogenetic tree analysis of the cDNA indicate that the deduced protein is closely related to other tryptophan oxygenases (Fig. 2A, B). P. interpunctella tryptophan oxygenase shares high sequence identity ($>72 \%$) and similarity ($>76 \%$) with all other insect tryptophan oxygenases currently available in the public database. The P. interpunctella tryptophan oxygenase is also very similar to tryptophan oxygenases from Caenorhabditis elegans (56.6\% identical, 60.4% similarity) and mammals ($>55 \%$ identity, $>61 \%$ similarity). The predicted molecular weight and pI of P. interpunctella tryptophan oxygenase are $46,587 \mathrm{Da}$ and 6.0 , respectively. P. interpunctella tryptophan oxygenase was not predicted to be a secreted protein as determined by SignalP.

RNAi

Wild-type P. interpunctella larvae normally possess six dark brown eyespots (stemmata) on each side of the head. Often the individual eyespots are so darkly pigmented that it is difficult to visualize the individual stemmata and they therefore appear as a smeared concave crescent at the lower proximal portion of the head capsule (Fig. 3A). An eyespot in the P. interpunctella embryo is typically the only dark coloration visible inside the egg (other than the head capsule itself) and is normally visible through the chorion approximately one day prior to hatching.

Both newly hatched larvae and fully-developed embryos were examined from the uninjected controls for eyespots. Of 2,270 $1^{\text {st }}$ instar larvae examined from batches of eggs laid by 8 different cohorts of P. interpunctella, all had the wildtype phenotype. However, when we checked egg hatch of the El Paso strain used in this study, only 38% or 415/1083 embryos developed when no injection was performed. This hatch rate is compared with a hatch rate of 98% for a laboratory strain of P. interpunctella (McGaughey

Fabrick JA, Kanost MR, Baker JE. 2004. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. 9pp. Journal of Insect Science, 4:15, Available online: insectscience.org/4.15

1 GGACACTGACATGGACTGAAGGAGTAGAAAGTATCGAGTGACCACGCGCCCGGCAAGTGCGCGCGCGTCCTAATTCGAAA 80
TTCAAACTTTATTTATTTTTTAGTGTTTAACTTAGAACTACAAAATGGCCTGTCCTATGAGGTCAATGAACGACTCGTCG 160

TGACGGAACCCAACGAAACAGTCCGTCGTCACAGGCTGCAGGACGCGGAAAACCGACGCGAGATCTACCGGTCTATCTTC 880

GATCCAGCCGTGCACGATGCCCTCAGATCCAGGGGGGAAAGGAGACTGTCGCACCGCGCGCTGCAAGGCGCCATCATGAT 960

Figure 1. Nucleotide and deduced amino acid sequence of Plodia interpunctella tryptophane oxygenase.
The cDNA nucleotide sequence ($1-1474$) is shown above the deduced amino acid sequence ($1-404$). A putative polyadenylation sequence, AATAAA, is double underlined, and the termination codon TGA is marked with an asterisk. PCR primer positions are indicated with colored arrows and direction of arrows indicates sense/antisense orientation. The complete amino acid sequence of P. interpunctella tryptophane oxygenase can be accessed through NCBI Protein Database under NCBI Accession \# AY427951.
Downloaded From: https://complete.bioone.org/journals/Journal-of-Insect-Science on 17 Apr 2024 Terms of Use: https://complete.bioone.org/terms-of-use

Fabrick JA，Kanost MR，Baker JE．2004．RNAi－induced silencing of embryonic tryptophan oxygenase in the Pyralid moth，Plodia interpunctella．9pp．

忽

Q 思 $_{2}$
思思
思 Q
思
号 4
\vdots
\vdots $Q \dot{Q} \dot{Q}$
$\dot{u} \dot{\square}$

10
0
0
10
10
10
0
10
10
10
0
宛

 Q $Q \dot{Q} \dot{Q}$

${ }^{010} 1$

1		
1		
1		
0		

Figure 2a．Multiple sequence alignment and phylogenetic tree of Plodia interpunctella tryptophan oxygenase with other family members．
The deduced P ．interpunctella tryptophan oxygenase protein sequence was aligned with tryptophan oxygenases from Mus musculus（ $1, \mathrm{P} 48776$ and $2, \mathrm{NP}$＿064295）， Rattus norvegicus（P21643），Homo sapiens（P48775），Drosophila ananassae（AAC24239），Drosophila pallidosa（AAC24240），Drosophila melanogaster （A34780），Drosophila simulans（AAA81532），Drosphila yakuba（AAF68620），Aedes aegypti（AAL37360），Anopheles gambiae（AAC27659），Tribolium castaneum（AAL15464），and Caenorhabditis elegans（AAA6299）．A consensus sequence generated for residues conserved in all 14 proteins is shown below the alignment．Percent identities and similarities are indicated following alignment．
Downloaded From：https：／／complete．bioone．org／journals／Journal－of－Insect－Science on 17 Apr 2024
Terms of Use：https：／／complete．bioone．org／terms－of－use

Figure 2b. Multiple sequence alignment and phylogenetic tree of Plodia interpunctella tryptophan oxygenase with other family members.
Phylogenetic distances were obtained from GrowTree data for the aligned sequences and a rooted tree was constructed using TreeView.
1978). Reasons for the poor hatch rate in the El Paso strain are unknown but it undoubtedly compounded the mortality produced by the invasive injection procedure. Despite the low hatch rate, all fully-developed embryos in the uninjected controls that did hatch had the wild-type phenotype.

Less than 5\% (103/2488) of embryos injected with doublestranded RNA developed such that a knockdown or knockout phenotype could be determined. Of these 103 embryos, 3 displayed knockdown phenotypes and 2 displayed the knockout phenotype of complete loss of eye color pigmentation (Fig. 3B-3D). The remainder were wildtype. Figure 3D, which is an enlarged image of that found in Fig. 3C, illustrates an example of the knockout phenotype in which the individual stemmata appear as white or clear spots. The complete knockout phenotypes are compared to the dark stemmata in the wild-type phenotype (Fig. 3F). Interestingly, the 2 knockout embryos died shortly after hatching. Embryos injected with water alone also suffered high mortality, with only 7% hatching (44/ 600), again illustrating the difficulty of successfully injecting the small eggs. It should be noted, that in no case, during these and other studies, were any fully-developed embryos or newly hatched larvae observed that did not have the dark eyespots. As a result, we are confident that even though only 2 knockout phenotypes were observed among those treated, they were a direct result of the doublestranded RNA they received upon injection.

RT-PCR

Ambion's Cells-to-cDNA kit was used to extract RNA and generate semi-nested RT-PCR products with one of the embryos with the knockout phenotype. The tryptophan oxygenase transcript
was not present in this larva (Fig. 4) indicating gene silencing, whereas RT-PCR products were clearly visible in three wild-type individuals. RT-RCR did not detect reduced levels of tryptophan oxygenase RNA from knockdown individuals. Although reduced levels of the tryptophan oxygenase transcript might have been present in these larvae, the corresponding PCR products were most likely saturated during the two rounds of semi-nested PCR. Control RPS7 RT-PCR products were detected in all larvae tested, indicating that the RNA was intact.

Discussion

Screening pigments in the insect eye function to prevent stray light from penetrating light-sensitive regions and thus preventing unwanted activation of photoreceptors (Linzen, 1974). The primary screening pigments in insects are the ommochromes and pteridines. They are responsible for the dark or red eye coloration, respectively. Tryptophan oxygenases have been identified and cloned from a number of non-lepidopteran insects and have long been known to play a key role in the ommochrome eye pigmentation (Summers et al., 1982). In addition to the synthesis of pigment, the primary function of tryptophan oxygenase may actually be to degrade excess tryptophan that occurs during times of high protein turnover (Sullivan and Kitos, 1976). The importance of tryptophan oxygenase for survival in P. interpunctella, as with many other insects (including those with known vermilion mutations), is unknown.

In this study, a cDNA encoding the first tryptophan oxygenase from a lepidopteran insect was obtained from the Indianmeal moth, P. interpunctella. P. interpunctella tryptophan oxygenase is an ortholog to the eye-color gene vermilion identified and characterized from Drosophila, Tribolium, and Anopheles. Pairwise sequence comparisons of the P. interpunctella tryptophan oxygenase with other sequences revealed very high conservation with $>55 \%$ identity and $>61 \%$ similarity with a nematode tryptophan oxygenase and mammalian tryptophan oxygenases.

To document gene silencing, we injected double-stranded RNA corresponding to tryptophan oxygenase into P. interpunctella embryos and screened embryos/larvae for eye pigmentation, an easily discernible loss-of-function phenotype. We observed several double-stranded RNA-injected individuals that lacked obvious eye coloration or had significantly reduced eye coloration. RT-PCR confirmed that tryptophan oxygenase RNA had in fact been completely silenced in an individual displaying a knockout phenotype. Thus, despite the low hatch rate in the El Paso strain of P. interpunctella and the invasive microinjection procedure, we demonstrated that RNAi can be utilized to decipher gene function in this moth species. Nevertheless, even though RNAi itself is not completely efficient, it is clear that the methodology for application of RNAi for this species needs to be optimized, including injection volumes, concentration of double-stranded RNA injected, age of embryo when injected, and in particular, selection of the moth strain used. Optimization of techniques will be especially required for functional analysis of genes not involved in synthesis of visible markers.

The complete knockout of eye pigmentation from our results suggests that synthesis of ommochromes via tryptophan oxygenase

Figure 3. Effect of RNA interference on eyespot pigmentation in Plodia interpunctella.
(A) Dark, pigmented stemmata are visible (white arrow) through the egg chorion on the head capsule of a late-stage wild-type embryo. The blue arrow indicates the outer edge of the oval-shaped egg. The pigmented eyespots are reduced or are absent in the tryptophan oxygenase double-stranded RNA-injected embryos (B-D). An embryo with reduced eye pigmentation (knockdown phenotype) is shown in (B), whereas the embryo in (C) is completely lacking eyespot pigmentation (knockout). An enlarged image of the head capsule for the knockout embryo from (C) is shown (D), clearly illustrating the six white, unpigmented stemmata (as marked by white arrows). (E) and (F) illustrate newly hatched first-instar larvae with wild-type and knockout phenotypes, respectively. The blue asterisk shown in (C) denotes the double-stranded RNA injection site, and most likely represents a melanization wounding response.

Figure 4. RT-PCR of double-stranded RNA-injected Plodia interpunctella Relative transcript levels of tryptophan oxygenase (top gel) and RPS7 (bottom gel) were determined through semi-nested RT-PCR. RT-PCR products from single P. interpunctella larva extracts that exhibited knockout or knockdown phenotypes following double-stranded RNA injection are shown in doublestranded RNA lanes 1 and 2, respectively. RT-PCR products obtained from three wild-type individuals (without injection) are shown in wild-type lanes 1-3. A PCR negative control is shown as "-". DNA marker is shown in Lane M with indicated sizes (in bp).
is the primary eye-color pigment pathway in P. interpunctella. Similarly, Beard et al. (1995) and Lorenzen et al. (2002) demonstrated that only the ommochromes contribute to eye coloration in mosquitoes and beetles, respectively.

In summary, we demonstrated that P. interpunctella, an economically important insect pest, utilizes tryptophan oxygenase to produce eye pigmentation in developing larvae. With both somatic and germline transformation in P. interpunctella currently being explored for the purpose of controlled production of double-stranded RNAs (P. Shirk, personal communication), the use of tryptophan oxygenase from this study and other eye-color genetic markers may provide an effective and convenient means to monitor the efficacy of the system.

Acknowledgements

We thank Marcé Lorenzen for thoughtful advice, technical assistance with RNAi, and critical review of this work. We also thank Maureen Gorman for critical reading of a previous version of this manuscript. This is contribution (04-125-J) from the Kansas Agricultural Experimental Station and a cooperative investigation between USDA-ARS and KSU.

Disclaimer

Mention of a commercial or proprietary product does not constitute a recommendation by the USDA.

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.
Beard CB, Benedict MQ, Primus JP, Finnerty V, Collins FH. 1995. Eye pigments in wild-type and eye-color mutant strains of the African malaria vector Anopheles gambiae. Journal of Heredity 86: 375-380.
Begun DJ, Aquadro CF. 1995. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics 140: 1019-1032.
Begun DJ, Whitley P. 2000. Reduced X-linked nucleotide polymorphism in Drosophila simulans. Proceedings of the National Academy of Sciences USA 97: 5960-5965.
Bettencourt R, Terenius O, Faye I. 2002. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Molecular Biology 11: 267271.

Fabrick JA, Baker JE, Kanost, MR. 2003. cDNA cloning, purification, properties, and function of a $\beta-1,3$-glucan recognition protein from a pyralid moth, Plodia interpunctella. Insect Biochemistry and Molecular Biology 33: 579-594.
Fang J, Li J. 2001. Isolation and characterization of tryptophan oxygenase gene of Aedes aegypti. Direct sequence submission to database (AF325458).
Linzen B. 1974. The tryptophan to ommochrome pathway in insects. Advances in Insect Physiology 10: 117-246.
Lorenzen MD, Brown SJ, Denell RE, Beeman RW. 2002. Cloning and characterization of the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 3monoxygenase. Genetics 160: 225-234.
McGaughey WmH. 1978. Effects of larval age on the susceptibility of almond moths and Indianmeal moths to Bacillus thuringiensis. Journal of Economic Entomology 71: 923925.

Mukabayire O, Cornel AJ, Dotson, EM, Collins FH, Basansky NJ. 1996. The tryptophan oxygenase gene of Anopheles gambiae. Insect Biochemistry and Molecular Biology 26: 525-528.
Quan GX, Kanda T, Tamura T. 2002. Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Molecular Biology 11: 217-222.
Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK. 2002. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. The Journal of Biological Chemistry 277: 46849-46851.
Searles LL, Ruth RS, Pret AM, Fridell RA, Ali AJ. 1990. Structure and transcription of the Drosophila vermilion gene and several mutant alleles. Molecular and Cellular Biology 10: 1423-1431.
Searles LL, Voelker RA. 1986. Molecular characterization of the Drosophila vermilion locus and its suppressible alleles. Proceedings of the National Academy of Sciences USA 83:

404-408.
Stephan W, Xing L, Kirby DA, Braverman JM. 1998. A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proceedings of the National Academy of Sciences USA 95: 5649-5654.
Sullivan DT, Kitos RJ. 1976. Developmental regulation of tryptophan catabolism in Drosophila [melanogaster]. Insect Biochemistry 6: 649-655.
Summers KM, Howells AJ, Pyliotis NA. 1982. Biology of eye pigmentation in insects. Advances in Insect Physiology 16:

119-166.
Vermehren A, Qazi S, Trimmer BA. 2001. The nicotinic α subunit MARA1 is necessary for cholinergic evoked calcium transients in Manduca neurons. Neuroscience Letters 313: 113-116.
Walker AR, Howells AJ, Tearle RG. 1986. Cloning and characterization of the vermilion gene of Drosophila melanogaster. Molecular and General Genetics 202: 102107.

