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INTRODUCTION

Animal opsins bind to retinal chromophores to form light-
sensitive pigments, most of which drive intracellular signaling 
by activating heterotrimeric G proteins in a light-dependent 
manner, leading to cellular responses. Animal opsins are cat-
egorized as members of G protein-coupled receptors 
(GPCRs). Thousands of opsins have been identified from a 
wide variety of animals, including chordates, arthropods, and 
cnidarians thus far and they are divided into eight groups 
(Terakita, 2005; Koyanagi and Terakita, 2014; Terakita and 
Nagata, 2014). Accumulated evidence suggests that mem-
bers belonging to different groups activate different types of 
G proteins; for example, members of the protostome visual 
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Most animals capture light through opsins, which are light-sensitive G protein-coupled receptors 
(GPCRs). Recent genome analyses of anthozoans, including corals and sea anemones, have identi-
fied novel opsins that are phylogenetically classified into two groups distinct from previously known 
opsin groups. Despite their significance in clarifying biological functions, the specific molecular 
properties of these opsins remain largely unknown. In this study, we investigated the G protein acti-
vations and biochemical responses light-dependently induced by two anthozoan opsins, Antho2a 
and Antho2d, obtained from the reef-building coral Acropora tenuis, in mammalian cultured cells. 
Using jumping spider Rh1 (SpiRh1), which belongs to a known Gq-type G protein (Gq)-coupled opsin 
group as a control, we observed that Antho2a and Antho2d elicited light-dependent increases in Ca2++ 
levels in cultured cells. This response was inhibited by a Gq inhibitor, indicating that these opsins 
activated Gq in a light-dependent manner. Interestingly, Antho2d also activated the Gi-type G protein 
(Gi), similar to SpiRh1, while Antho2a showed limited or negligible Gi activation. We also found that 
Gi activation additionally contributed to the Ca2++ elevation, suggesting it enhances Gq-dependent 
Ca2++ elevation in Antho2d- and SpiRh1-expressing cells. In contrast, Antho2a demonstrated a higher 
specificity for Gq activation compared to SpiRh1 and was nearly equivalent to hM3Dq, a GPCR known 
for its strong Gq specificity and widely used as a chemogenetic tool for manipulating Gq activation. 
Our results suggest that this new anthozoan opsin group consists of Gq-coupled opsins with varying 
levels of Gi activation, demonstrating their potential for optogenetic applications.
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opsin/deuterostome melanopsin group, Gs-coupled cnidar-
ian opsin group, and chordate visual/non-visual opsin group, 
couple to Gq-, Gs-, and Gi-type (transducin) G proteins, 
respectively (The heterotrimeric G protein composed of Gαx 
and βγ subunits is referred to as Gx.)

Recently, novel opsins have been discovered in antho-
zoan animals (under the phylum Cnidaria) such as corals 
and sea anemones. These opsins have been classified into 
two groups: anthozoan-specific opsin (ASO)-I and ASO-II, 
which are phylogenetically distinct from the eight known 
groups (Hering and Mayer, 2014; Gornik et al., 2021). In sea 
anemones and corals, both ASO-I and -II group members 
have been reported to be expressed in multiple tissues 
(Gornik et al., 2021; McCulloch et al., 2023; Shi et al., 2024). 
However, their physiological functions remain unknown, 
despite documented light-dependent behaviors and physi-
ologies in these organisms (Dubinsky and Falkowski, 2011; 
Sakai et al., 2020; Lilly et al., 2024). More recently, we suc-
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cessfully expressed a member of the ASO-II group, acropsin 
4, from the reef-building coral Acropora millepora in mam-
malian cultured cells. We observed a light-dependent 
increase in Ca2+  levels in acropsin 4–expressing cultured 
cells, suggesting that ASO-II group members may activate 
Gq (Mason et al., 2023).

It is widely accepted that the protostome visual opsin/
deuterostome melanopsin group is a large group of Gq-
coupled opsins (Koyanagi and Terakita, 2008), referred to as 
the bilaterian conventional Gq-coupled opsin group. Opsins 
in this group colocalize and/or functionally couple with Gq in 
the visual cells of various protostomes, including arthropods 
(Terakita et al., 1993; Lee et al., 1994; Nagata et al., 2012), 
as well as in intrinsically photosensitive retinal ganglion cells 
in mammals (Graham et al., 2008) and certain types of pho-
toreceptor cells in amphioxus (Koyanagi et al., 2005). Opsins 
from this group elevate intracellular Ca2+  via activating Gq 
and phospholipase Cs in mammalian cultured cells (Sun et 
al., 2014) and they activate Gq in vitro in a light-dependent 
manner (Terakita et al., 1993, 2008). Interestingly, jumping 
spider Rh1 (SpiRh1) (Koyanagi et al., 2008; Nagata et al., 
2012), which we propose using as a model for Gq-coupled 
opsins due to the availability of its crystal structure (Varma et 
al., 2019), mutant analysis (Nagata et al., 2019), and poten-
tial for optogenetic application (Hagio et al., 2023), has been 
reported to activate Gi as well as Gq in mammalian cultured 
cells (Varma et al., 2019). Mammalian melanopsin has also 
been shown to activate not only Gq but also Gi and Gs in 
mammalian cultured cells (Bailes and Lucas, 2013; McDowell 
et al., 2022). Therefore, it is of interest to investigate the acti-
vation of various G protein types, including Gq, by members 
of the ASO-II group. This will help to reveal their activation 
specificities and allow for comparison with those of mem-
bers of the protostome visual opsin/
deuterostome melanopsin group.

Here, we investigated the light-
dependent changes in second mes-
sengers and the G protein activation 
by two members (Antho2a and 
Antho2d) belonging to the ASO-II 
group from the reef-building coral 
Acropora tenuis as well as SpiRh1 
from the protostome visual opsin/
deuterostome melanopsin group 
(Koyanagi et al., 2008), used as a 
control. We selected Antho2a and 
Antho2d as representatives for each 
of the two phylogenetically classified 
subgroups within the ASO-II group, 
subtype 1 and subtype 2.1, respec-
tively (Gornik et al., 2021; Sakai et al., 
2025, in press). We heterologously 
expressed these opsins in mamma-
lian cultured cells and demonstrated 
that Antho2a and Antho2d light-
dependently elevated Ca2+  levels in 
the cells via activation of Gq, suggest-
ing that members of the ASO-II group 
are Gq-coupled opsins. Interestingly, 
Antho2d also activated Gi, similar to 
SpiRh1, while Antho2a showed lim-

ited or negligible Gi activation. We also found that Gi activa-
tion increased the magnitude of Ca2+  elevation triggered by 
Gq activation in Antho2d- or SpiRh1-expressing cells, sug-
gesting that Gi activation enhances Gq-dependent Ca2+ 
elevation. Additionally, we investigated the activation speci-
ficity of Antho2a for various types of G proteins and com-
pared it to hM3Dq, a Designer Receptors Exclusively 
Activated by Designer Drugs modified from the human M3 
muscarinic receptor, Gq DREADD. hM3Dq is known for its 
high specificity for Gq over other types of G protein and is 
widely used as a chemogenetic tool for manipulating Gq 
(Armbruster et al., 2007).

MATERIALS AND METHODS

Construction of expression vectors of opsins
cDNAs of two A. tenuis opsins in the ASO-II group, Antho2a 

and Antho2d (Accession numbers LC844932 and LC844935, 
respectively), were isolated in a separate study (Sakai et al., 2025, 
in press). These opsins, along with jumping spider Rh1 (SpiRh1) 
(Koyanagi et al., 2008), were tagged with the epitope sequence of 
the anti-bovine rhodopsin monoclonal antibody rho 1D4 
(ETSQVAPA) (Molday and MacKenzie, 1983) at their C-termini as 
described previously (Nagata et al., 2012). The tagged cDNAs of 
the A. tenuis opsins were inserted into the pMT expression vector 
(Shibahara et al., 1986), which was digested with Eco RI and Not I. 
The tagged cDNA of SpiRh1 was inserted into the pUSRα expres-
sion vector (Kayada et al., 1995), which was digested with Hind III 
and Eco RI.

Measurements of intracellular Ca2++  and cAMP levels
Changes in intracellular Ca2+  and cAMP levels in opsin-

expressing HEK293S cells were measured using the aequorin 
assay and the GloSensor cAMP assay (Promega), respectively, as 
described previously (Koyanagi et al., 2013, 2022; Sugihara et al., 
2016) with minor modifications. Briefly, 1.5 μg of each opsin plasmid 

Chordate visual / non-visual opsins

Opn3 (Encephalopsin) / TMT-opsin

Protostome visual opsins / Deuterostome melanopsins

Anthozoan-specific opsin II (ASO-II)

Anthozoan-specific opsin I (ASO-I)

Cnidarian Gs-coupled opsins (Cnidopsins)

RGR / Retinochromes

Peropsins

Opn5 (Neuropsin)

Go-coupled opsins

Gs-coupled

Gi-coupled

Go-coupled

Gt-coupled

Gi/Go-coupled

Gq-coupled

Fig. 1. Schematic illustration of animal opsin groups. This schematic illustrates the eight 
established opsin groups (Koyanagi and Terakita, 2014) and two anthozoan-specific opsin 
groups recognized in several published studies (Hering and Mayer, 2014; Gornik et al., 2021; 
Mason et al., 2023). The types of G proteins to which each opsin group is primarily coupled 
are also shown. Note that it was reported some members of Opn5 group activated Gq group 
G proteins (Wagdi et al., 2022; Sato et al., 2023). Antho2a and Antho2d are categorized under 
the ASO-II group, while jumping spider Rh1 (SpiRh1) is a member of the protostome visual 
opsin group.
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was transfected into HEK293S cells with 1.5 μg of either the aequo-
rin plasmid or the pGloSensor-20F cAMP plasmid (Promega), using 
the polyethyleneimine (PEI) transfection method. The aequorin 
used in this study was obtained by introducing a reverse mutation, 
A119D, into the plasmid [pcDNA3.1+ /mit-2mutAEQ] (Addgene 
#45539) (De La Fuente et al., 2012; Koyanagi et al., 2022). After 
transfection, the cells were incubated for 4 h (for the aequorin 
assay) or overnight (for the GloSensor cAMP assay), then treated 
with 11-cis retinal and further incubated overnight at 37°C. Before 
measurements, the culture medium was replaced with a CO2-
independent medium containing 10% FBS and Coelenterazine h 
(Wako) for the aequorin assay or GloSensor cAMP Reagent stock 
solution (Promega) for the GloSensor assay. The cells were incu-
bated for at least 2 h to equilibrate with the media. Luminescence 
values were measured at 25°C using GloMAX 20/20n Luminometers 
(Promega). The cells were illuminated with green light (Dual Head 
LED Light 495 nm or 506 nm, GB Life Science) for 1 s in both 
assays. It should be noted that Antho2a and Antho2d were sug-
gested to form green light-sensitive pigments (Sakai et al., 2025, in 
press for Antho2a; see Supplementary 
Figure S1 for Antho2d), like SpiRh1 
(Nagata et al., 2012). For Gq inhibition, 
YM-254890 (Wako) diluted in dimethyl 
sulfoxide (DMSO; final concentration of 1 
μM) was added more than 5 min before 
the measurement. For Gi/Go inhibition, 
pertussis toxin (PTX) (Wako) diluted in a 
buffer containing 10 mM potassium phos-
phate, 137 mM NaCl, and 10% glycerol 
(final concentration of 200 μg/mL) was 
added just before the supplementation  
of 11-cis retinal and when replacing  
the culture medium with the CO2-
independent medium.

Measurement of G protein activation
Light-dependent G protein activations 

by opsins in HEK293S cells were investi-
gated using the NanoBiT-G-protein disso-
ciation assay (Inoue et al., 2019). 2.4 μg of 
each opsin plasmid was transfected into 
HEK293S cells with 0.06 μg of Gα-LgBiT, 
0.3 μg of Gβ1-SmBiT, and 0.3 μg of Gγ2 
plasmids using the PEI transfection 
method, as described in a previous report 
(Matsuo et al., 2023). In the experiments 
comparing G protein activations by 
Antho2a or SpiRh1 with those by hM3Dq, 
1.2 μg of each opsin plasmid and 1.2 μg of 
hM3Dq (Gq DREADD) (Armbruster et al., 
2007) plasmid were transfected into 
HEK293S cells with 0.06 μg of Gα-LgBiT, 
0.3 μg of Gβ1-SmBiT, and 0.3 μg of Gγ2 
plasmids. The transfected cells were 
incubated overnight at 37°C. Before mea-
surements, the culture medium was 
replaced with a CO2-independent medium 
containing 10% FBS, Nano-Glo Vivazine 
Substrate (Promega), and 11-cis retinal, 
and the cells were incubated for at least 4 
h to equilibrate with the media. Lumines-
cence values were measured at 25°C 
using a GloMAX 20/20n Luminometer 
(Promega). The cells were illuminated 
with green LED light (495 nm) for 5 s. An 
agonist of hM3Dq, clozapine N-oxide 
(CNO; R&D Systems, Inc.; final concen-

tration of 0.2 μM), was added to stimulate hM3Dq. The G-alpha 
subunit sequences used for the Gα-LgBiT constructs are as fol-
lows: human Gαq (GenBank accession number: NP_002063.2), 
human Gα11 (NP_002058.2), human Gα14 (NP_004288.1), human 
Gαz (NP_002064.1), human Gα12 (NP_031379.2), human Gα13 
(NP_006563.2), human Gαs (NP_000507.1), human Gαolf 
(NP_892023.1), rat Gαi1 (NP_037277.1), rat Gαi2 (NP_112297.1), rat 
Gαi3 (NP_037238.1), mouse Gα15 (NP_034434.1), mouse GαoB 
(NP_001106855.1), mouse Gαt1 (NP_032166.1), mouse Gαt2 
(NP_032167.1), mouse Gαt3 (NP_001074612.1), monkey GαoA 
(NP_001182358.1) and zebrafish Gαv (NP_001159486.1). The 
G-beta subunit sequence used for the Gβ1-SmBiT construct was 
derived from human Gβ1 (NP_001269468.1), and the Gγ2 sequence 
was derived from human Gγ2 (NP_001230702.1). The GαoA-LgBiT, 
Gβ1-SmBiT, and Gγ2 plasmids were provided by Dr. Takashi 
Nagata and Dr. Keiichi Inoue (The University of Tokyo) (Matsuo et 
al., 2023). The other Gα-LgBiTs were constructed based on the 
nucleotide sequence of GαoA-LgBiT.
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Fig. 2. Light-dependent changes in Ca2+  levels in Antho2a-, Antho2d-, and SpiRh1-express-
ing HEK293S cells. (A) Time courses of changes in intracellular Ca2+  levels were measured 
with (black curves) and without (gray curves) the Gq inhibitor YM-254890 (denoted as YM in 
each graph) using the aequorin-based Ca2+  sensor. Data are presented as mean (solid 
curves) ±  SEM (shading) for n =  3 replicates. Black arrowheads indicate the timing of irradia-
tion with green light (495 nm, for 1 s, 4.30 ×  1016 photons/cm2/s). Luminescence values were 
normalized to the average of the 6 s immediately prior to irradiation (=  relative luminescence). 
(B) Effect of YM-254890 on the peak Ca2+  response in opsins-expressing HEK293S cells. 
The peak relative luminescence values were normalized to the average of those without YM 
(“−YM”) for each opsin. Each bar graph, with error bars, shows the mean ±  SEM for n =  3 
replicates. Open circles indicate individual records. Welch’s t-test was used to compare 
results with and without YM for each opsin (**P <  0.01, ***P <  0.001).
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RESULTS

Light-dependent Ca2++  and cAMP changes induced by 
Antho2a and Antho2d

We expressed two opsins from A. tenuis, Antho2a and 
Antho2d, both belonging to the ASO-II group (Fig. 1), in 
HEK293S cells and analyzed light-dependent changes in 
Ca2+ levels in these cells using the Ca2+-sensitive lumines-
cent protein aequorin. We also included jumping spider Rh1 
(SpiRh1), a member of the protostome visual opsin/
deuterostome melanopsin group and one of the well-studied 
opsins (Koyanagi and Terakita, 2008; Koyanagi et al., 2008; 
Nagata et al., 2012, 2019; Varma et al., 2019), as a control in 
the luminescence assay. Both Antho2a- and Antho2d-
expressing cells exhibited a clear increase in luminescence 
intensity upon light irradiation, indicating a light-dependent 
increase in Ca2+ levels (Fig. 2A, gray curves). This light-
dependent Ca2+ elevation was consistent with our previous 
observation that acropsin 4, an ASO-II group opsin from 
another coral species (A. millepora), light-dependently ele-
vated Ca2+ levels in mammalian cultured cells (Mason et al., 
2023). We used YM-254890 (Taniguchi et al., 2003), a spe-
cific inhibitor for activation of Gq-group G proteins (Gq, G11, 
G14) (Zhang et al., 2020), to investigate whether the increase 
in intracellular Ca2+ levels was due to Gq activation by each 
opsin. The light-dependent Ca2+ increase was completely 
abolished under the presence of YM-254890 in Antho2a-, 
Antho2d-, and SpiRh1-expressing cells (Fig. 2A, black curves 
and Fig. 2B), suggesting that Antho2a and Antho2d activate G 
proteins of the Gq-group, similar to SpiRh1. In other words, 
the activation of the member(s) of Gq group is essential for the 
light-dependent Ca2+ elevation by Antho2a and Antho2d, just 
as it is for SpiRh1.

SpiRh1 has been reported to activate Gi in addition to Gq 
(Varma et al., 2019). Therefore, we 
analyzed the decrease in intracel-
lular cAMP levels in Antho2a- 
and Antho2d-expressing cells 
using cAMP-sensitive luciferase 
(GloSensorTM, Promega) to inves-
tigate light-dependent activation of 
Gi, as it is well known that Gi sup-
presses adenylyl cyclase activity. 
We observed a clear transient 
decrease in cAMP levels in 
SpiRh1-expressing cells upon light 
irradiation, while Antho2a- and 
Antho2d-expressing cells did not 
show a clear decrease in cAMP 
levels (Fig. 3, gray curves). The 
addition of PTX, an inhibitor of 
activation of members of the Gi 
group (Gi and Go) by GPCRs, 
altered the cAMP change profiles 
significantly in both Antho2d- and 
SpiRh1-expressing cells, although 
the profiles after PTX treatment 
are different from each other (Fig. 
3, black curves). In contrast, no 
clear change in the profile was 
observed in Antho2a-expressing 

cells after PTX treatment (Fig. 3, black curves). The “differ-
ence profiles” comparing between the presence and 
absence of PTX clearly indicated a Gi/Go-dependent 
decrease in cAMP levels in both SpiRh1- and Antho2d-
expressing cells, although their detailed profiles were dif-
ferent (Fig. 3, broken black curves). However, there was no 
detectable decrease in Antho2a-expressing cells (Fig. 3, 
broken black curves). These results suggest that Antho2d, 
like SpiRh1, activates Gi/Go, while Antho2a shows limited 
or negligible activation of Gi/Go. It should be noted that in 
the presence of PTX, the light-dependent increase of 
cAMP was observed in SpiRh1- and Antho2d-expressing 
cells (Fig. 3, black curves), which is discussed in the 
DISCUSSION section.

Next, we evaluated the contribution of Gi/Go activation to 
the light-dependent Ca2+ elevation in Antho2d-expressing 
cells, comparing it to Antho2a, which has almost no Gi/Go 
activation ability, and SpiRh1, which clearly activates Gi/Go. 
We investigated the effects of Gi/Go inhibition by PTX on the 
Ca2+ response in each of the opsin-expressing cells. The 
addition of PTX resulted in a partial reduction of the Ca2+ 
increase in both Antho2d- and SpiRh1-expressing cells, 
whereas no effect of the Gi/Go inhibitor was observed in 
Antho2a-expressing cells (Fig. 4A, B). This indicates that 
Gi/Go activation is involved in the pathway leading to the light-
dependent Ca2+ increase in Antho2d- and SpiRh1-expressing 
cells. Together with the finding that the Gq inhibitor completely 
abolished the light-dependent Ca2+ increase in Antho2d- and 
in SpiRh1-expressing cells (Fig. 2), this suggests that while 
Gi/Go activation is not essential for the light-dependent Ca2+ 
increase by Antho2d, or SpiRh1, it does make a significant 
additional contribution to the Ca2+ increase triggered by Gq 
activation (see the DISCUSSION section).
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Observation of G protein activation by Antho2a
The results presented in Figs. 3 and 4 suggest that 

Antho2a activates Gi/Go only minimally or negligibly. We 
therefore investigated the activation of members of the Gi 
group by Antho2a using the NanoBiT-G-protein dissociation 
assay (Inoue et al., 2019). Antho2a clearly activated members 
of the Gq group, which are known as PLCβ activators 
(Hubbard and Hepler, 2006), similar to SpiRh1; specifically, it 
activated G14 more strongly and Gq and G11 to a lesser 
extent compared with SpiRh1 (Fig. 5A, and see Supplementary 
Figure S2A). In contrast, while SpiRh1 activated all tested 
members of the Gi group (Gi1, Gi2, Gi3, Gz, GoA, GoB, Gt1, 
Gt2, and Gt3), Antho2a showed only slight activation of 
GoA, GoB, and Gz, with no clear activation observed for the 
other members of the Gi group (Fig. 5B, and see 
Supplementary Figure S2B). This limited activation ability of 

Antho2a for members of the Gi group 
is consistent with the absence of PTX 
effects on light-dependent cAMP and 
Ca2+  changes in Antho2a-expressing 
cells (Figs. 3, 4). We also confirmed 
that the presence of PTX did not 
change the efficiency of Gq activation 
by either Antho2a or SpiRh1 (see Sup-
plementary Figure S3), indicating that 
the PTX effect on light-dependent 
Ca2+  elevation in SpiRh1 was associ-
ated with Gi/Go activation by SpiRh1.

We also analyzed the activation of 
the members of G protein groups other 
than Gq and Gi, specifically, members 
of the Gs, G12, and Gv groups, by 
Antho2a compared to SpiRh1 (see 
Supplementary Figure S2C–E). (Gv is 
the fifth Gα protein group and is con-
served across the animal kingdom, 
including arthropods, mollusks, and 
annelids (Oka et al., 2009).) Neither 
Antho2a nor SpiRh1 significantly acti-
vated members of these three groups, 
with one exception: both opsins effi-
ciently activated G12 (see Supplemen-
tary Figure S2D). This finding is 
consistent with previous observations 
that several Gq-coupled GPCRs can 
efficiently activate G12 (Gohla et al., 
2000; McCoy et al., 2010).

Comparison between the activation 
specificities of Antho2a and hM3Dq 
for various G proteins

The results presented above 
showed that among various types of G 
proteins, Antho2a exhibits a higher 
specific activation ability for the Gq 
group G proteins. hM3Dq is known as 
a GPCR with high Gq-specific activa-
tion ability and serves as a chemoge-
netic tool to selectively manipulate Gq 
activation in target cells (Armbruster et 
al., 2007). The effects of YM-254890 

and PTX on agonist-dependent Ca2+  increases in hM3Dq-
expressing cells (see Supplementary Figure S4A, B) were 
very similar to those observed for light-dependent Ca2+ 
increases in Antho2a-expressing cells (Figs. 2A, 4A). There-
fore, we attempted to compare the activation abilities of 
Antho2a and hM3Dq for various G proteins, including mem-
bers of G protein groups other than Gq and Gi, specifically 
the Gs, G12, and Gv groups.

We co-expressed Antho2a and hM3Dq in cultured cells 
and comparatively analyzed G protein activation upon light 
and hM3Dq-agonist stimulations, respectively. The amount 
of each type of G protein activated by hM3Dq and Antho2a 
was plotted on a two-dimensional graph, with hM3Dq and 
Antho2a values on the horizontal (x-axis) and vertical (y-axis) 
axes, respectively (Fig. 6). In the graph, the line connecting 
the origin and the point of Gq activation is represented by a 
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tentative linear equation, y =  f(x) (broken line). If the activa-
tion value of a certain G protein is plotted on the line, it indi-
cates that the activation ability for that G protein relative to 
Gq is identical between Antho2a and hM3Dq. If Antho2a 
exhibits higher or lower activation abilities for given G pro-
teins compared to hM3Dq, the points are plotted in regions 
where y >  f(x) (orange background) or y <  f(x) (green back-
ground), respectively. For members of the Gq group, both 

Antho2a and hM3Dq clearly activated Gq, G11, and G14, 
and Antho2a showed higher or lower activation abilities for 
G14 or G11 relative to Gq compared to hM3Dq, respectively 
(red open circles in Fig. 6). Although the activation profiles of 
Gq group G proteins differed between Antho2a and hM3Dq, 
it was evident that Antho2a efficiently activated Gq group G 
proteins. The six subtypes of the Gi group and G12 were 
plotted in the area of y <  f(x) or roughly on the line of y =  f(x), 

Fig. 5. Activations of the Gq- and Gi-group G proteins by SpiRh1 and Antho2a. Light-dependent activations of members of the Gq group 
(A) and Gi group (B) G proteins by SpiRh1 and Antho2a were measured using the NanoBiT-G-protein dissociation assay. G protein activa-
tion (Gα-βγ dissociation) was measured as a decrease in relative luminescence upon light irradiation in HEK293S cells co-expressing each 
Gα with Antho2a or SpiRh1 (see Materials and Methods and Supplementary Figure S2 for details). Each graph indicates the maximum 
decrease in relative luminescence over a 10-minute period after light irradiation. The time courses of the relative luminescence changes 
used to create this figure are shown in Supplementary Figure S2A and B. Each bar graph, with error bars, shows the mean ± SEM for n = 3 
replicates. Welch’s t-test was used to compare results between opsin-expressing cells and no-opsin-expressing cells (“ns” not significant, 
*P < 0.05, **P < 0.01, ***P < 0.001, “na” not activated: significant, but lower than that of no opsin).
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indicating that their activation abilities relative to Gq are sim-
ilar to or lower than those of hM3Dq (blue solid circles and 
green open triangles in Fig. 6).

The activation abilities of SpiRh1 and hM3Dq for each 
type of G protein were also comparatively investigated using 
the same methods as those applied for Antho2a and hM3Dq. 
We found that the activation abilities of SpiRh1 for three 
members of the Gq group (Gq, G11, G14) were roughly 
equivalent to those of hM3Dq (red open circles in 
Supplementary Figure S6). In contrast, the abilities of all 
members of the Gi group and G12 were plotted in the area of 
y >  f(x), indicating that SpiRh1 has higher activation abilities 
for these G proteins relative to Gq compared to hM3Dq, 
which is unlike Antho2a (blue solid circles and green open 
triangle in Supplementary Figure S6).

DISCUSSION

In this study, we found that two Antho2 opsins, Antho2a 
and Antho2d, from the ASO-II group in the reef-building 
coral A. tenuis, light-dependently activated Gq group G pro-

teins to increase Ca2+  in mammalian cultured cells. We pre-
viously reported that acropsin 4, an ASO-II group opsin from 
another coral species (A. millepora), also light-dependently 
elevates Ca2+  in mammalian cultured cells (Mason et al., 
2023). Importantly, the A. tenuis genome (Shinzato et al., 
2021) contains at least five different types of Gα proteins 
including Gαq, whose sequence of C-terminal five amino 
acids, known to be involved in selective interaction between 
Gα and a GPCR (Conklin et al., 1993; Blahos et al., 1998), is 
identical to that of mammalian Gq (see Supplementary 
Figure S7). Taken together, our findings suggest that mem-
bers of the ASO-II group are generally Gq-coupled.

Accumulated experimental evidence has established that 
the protostome visual opsin/deuterostome melanopsin group 
is a large Gq-coupled opsin group (Koyanagi and Terakita, 
2008). Human Opn5 was recently reported to couple with Gq 
(Wagdi et al., 2022), and more recently, the mammalian type 
Opn5 (Opn5m) has been shown to activate G14 from the Gq 
group (Sato et al., 2023). Based on our results, the ASO-II 
group can be regarded as a new Gq-coupled opsin group in 
addition to the known Gq-coupled opsin groups. Interestingly, 
regarding two well-studied opsins from the protostome visual 
opsin/deuterostome melanopsin group, jumping spider Rh1 
(SpiRh1) activates members of Gi (Varma et al., 2019), while 
vertebrate melanopsins activate both Gi (Bailes and Lucas, 
2013) and Gs (McDowell et al., 2022) members. Additionally, 
mouse and chicken Opn5s have been reported to activate Gi 
(Yamashita et al., 2010; Kojima et al., 2011) and we recently 
found that slug Opn5s activate Go (Matsuo et al., 2023). Inter-
estingly, we found that Antho2d activates members of the Gi 
group in addition to those of Gq, similar to SpiRh1, while 
Antho2a activates members of the Gi group only slightly. As 
described above, the presence of Gs, Gi, Go, Gq, and G12/13 
in the A. tenuis genome, each with C-terminal amino acid 
sequences identical or similar to their mammalian counter-
parts (see Supplementary Figure S7), suggests that the acti-
vation specificities of the Antho2 opsins toward these five 
types of G proteins, as observed in mammalian cultured cells, 
may generally reflect those in coral cells. However, further 
detailed discussions on the specific activation of G protein 
types and the physiological functions involving Antho2 opsins 
will require conducting NanoBiT-G-protein dissociation 
assays using coral G proteins and analyzing the co-
localization of the Antho2 opsins and G proteins.

We observed the Gi/Go- and Gq-independent increase 
in cAMP levels in SpiRh1- and Antho2d-expressing cells, but 
not in Antho2a-expressing cells (Fig. 3). Previous studies 
revealed that Gs (Gilman, 1987) and G12/G13 (Jiang et al., 
2008) serve as activators of cAMP synthesizing enzymes. 
However, neither SpiRh1 nor Antho2a activates Gs and G13, 
and both SpiRh1 and Antho2a activate G12 (see 
Supplementary Figure S2C, D). Therefore, activation of Gs 
and/or G12/G13 cannot account for the cAMP increase in 
the presence of Gi/Go as well as Gq inhibitors in 
SpiRh1-expressing cells but no cAMP increase in Antho2a-
expressing cells. Further studies are necessary to investi-
gate this unexplained increase in cAMP levels.

We found that Gi/Go activation contributes to the light-
dependent Ca2+  elevation in Antho2d- and SpiRh1-
expressing cells (Fig. 4). While Gi/Go activation is not 
essential for the light-dependent Ca2+  increase induced by 

Fig. 6. Comparison of activation abilities between Antho2a with 
hM3Dq for various types of G proteins. Two-dimensional plots illus-
trate the activation levels of different types of G proteins by Antho2a 
compared to those by hM3Dq. G protein activation levels were 
measured using the NanoBiT-G-protein dissociation assay. The 
levels of G protein activation by Antho2a were plotted against those 
by hM3Dq. The activation levels for each G protein by Antho2a are 
represented by the maximum difference in the light-dependent 
decrease of relative luminescence (relative to baseline) between 
cells expressing both Antho2a and hM3Dq and those expressing 
only hM3Dq. Conversely, the activation levels for each G protein by 
hM3Dq are represented by the maximum difference in the agonist-
dependent decrease between cells expressing both Antho2a and 
hM3Dq and those expressing only Antho2a. Measurements were 
performed for 11 different types of G proteins that were clearly acti-
vated by hM3Dq (see Supplementary Figure S5), including Gq 
group (red open circle), Gi group (blue solid circle), and G12 group 
(green open triangle) G proteins. Broken gray lines y = f(x) repre-
sent straight lines passing through the origin and the point of Gq 
activation (green background: y <  f(x), orange background: y > 
f(x)). Circles or triangles with error bars indicate the mean ±  SEM 
for n =  3 replicates. The inset shows an enlarged view of the figure.
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Antho2d or SpiRh1, it plays a significant additional role in 
enhancing the Ca2+  increase triggered by Gq activation. 
This is evidenced by the fact that the Gq inhibitor YM-254890 
completely abolished the light-dependent Ca2+  increase in 
Antho2d- and SpiRh1-expressing cells (Fig. 2). Previous 
studies have shown that Gαq subunit from Gq (heterotri-
meric G proteins including Gαq) and Gβγ subunit from Gi 
(heterotrimeric G proteins including Gαi) activated by Gq-
coupled and Gi-coupled receptors, respectively, co-
operatively increase the activity of PLCβ (possibly PLCβ3), 
leading to an enhanced increase in intracellular Ca2+  (Pfeil 
et al., 2020). In this study, we used PTX to clarify the contri-
bution of Gi/Go to Ca2+  elevation in HEK293S cells express-
ing Antho2d or SpiRh1. It has been reported that HEK293S 
cells express a much larger amount of Gi compared to Go, 
whose mRNA expression levels are not clearly detected 
(Atwood et al., 2011). Therefore, it is reasonable to conclude 
that Antho2d and SpiRh1 activate Gi in cultured cells. We 
suggest that Antho2d and SpiRh1 function as both Gq- and 
Gi-coupled GPCRs, achieving Gi-dependent enhancement 
of the light-dependent Ca2+  increase caused by Gq activa-
tion. Thus, a possible explanation for the different PTX effect 
on Ca2+  response between Antho2d and SpiRh1 is that the 
relative activation efficiencies of Gq and Gi are different 
between Antho2d and SpiRh1. We should compare PTX 
effect and activation ratio of Gi and Gq to clarify the absolute 
effect of Gi for the enhancement of Gq cascade as our future 
study. However, while we have reported co-localization of 
SpiRh1 and Gq in the rhabdoms of visual cells in jumping 
spiders (Nagata et al., 2012), we have yet to clarify the co-
localization of members of the Gi group with SpiRh1 or 
determine which subtype of PLCβ co-localizes with SpiRh1. 
Further studies are necessary to explore the co-operative 
activation of PLCβ by Gq and Gi.

In contrast to Antho2d and SpiRh1, Antho2a showed lim-
ited activation of members of the Gi group (Fig. 5B, and see 
Supplementary Figure S2B), while clearly activating mem-
bers of the Gq group in cultured cells (Fig. 5A, and see 
Supplementary Figure S2A). Furthermore, we did not 
observe any enhancement of the Gq-mediated light-
dependent increase in intracellular Ca2+  by Gi/Go activation 
(Fig. 4). The activation specificity of Antho2a for Gq is com-
parable to or even higher than that of hM3Dq, which is often 
used in chemogenetics due to its strong activation specific-
ity for Gq. Therefore, we propose that Antho2a has potential 
as a Gq-manipulating GPCR optogenetic tool.
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