
Phylogenetic Positions of Insectivora in Eutheria
Inferred from Mitochondrial Cytochrome c Oxidase
Subunit II Gene

Authors: Onuma, Michiko, Kusakabe, Tadashi, and Kusakabe, Shinichi

Source: Zoological Science, 15(1) : 139-145

Published By: Zoological Society of Japan

URL: https://doi.org/10.2108/zsj.15.139

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://complete.bioone.org/journals/Zoological-Science on 12 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



ZOOLOGICAL SCIENCE 15: 139–145 (1998) © 1998 Zoological Society of Japan

Phylogenetic Positions of Insectivora in Eutheria Inferred from
Mitochondrial Cytochrome c Oxidase Subunit II Gene
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Higashi-Hiroshima 739, Japan

ABSTRACT—For the elucidation of the phylogenetic position of insectivora in eutheria, we have sequenced
the cytochrome c oxidase subunit II (COII) gene of mitochondria for three insectivoran species [musk shrew
(Suncus murinus), shrew mole (Urotrichus talpoides), Japanese mole (Mogera wogura)] and analyzed these
amino acid sequences with neighbor-joining (NJ) method and maximum likelihood (ML) method. NJ analysis
shows polyphyly of Insectivora and Chiroptera. Assuming that each of Primates, Ferungulata, Chiroptera,
Insectivora and Rodentia is a monophyletic group, ML analysis suggests that Chiroptera is a sister group of
Insectivora and that Ferungulata is the closest outgroup to the (Insectivora and Chiroptera) clade.

* Corresponding author: Tel. +81-824-24-6507;
FAX. +81-824-24-0758.

INTRODUCTION

The mammalian species observed on the earth have
derived from the primitive shrew-like small beasts. Among their
descendants there are four groups that are believed to share
a close relationship each other among eutherians. They are
the Insectivores, the Macroscelideans, the Scandentians, and
the Chiropterans. Moreover, the Dermoptera and the Primates
are said to be of insectivore origin (Colbert and Morales, 1991).
However, it is very difficult to resolve their phylogenetic rela-
tionships only from the morphological characteristics and/or
the fossil evidences, because of poor fossil record. In adition,
although the insectivoran order is generally divided into three
suborder, the relationships among these suborders remain
uncertain due to inconsistencies in morphological traits.

In order to investigate the intraordinal relationships of
Insectivora among primitive placental groups, we sequenced
the cytochrome c oxidase subunit II (COII) genes of mtDNA
at first, since this gene has been used extensively in the in-
vestigation for systematic relationships within and among
mammalian orders. Although the nucleotide sequence of ani-
mal mtDNA is useful to investigate relationships among closely
related species because of its high evolutionary rate, the amino
acid sequence encoded by mtDNA can be also useful to probe
deep branchings because of its slower rate than the rate at a
nucleotide level. The other advantage of using mtDNA in a
phylogenetic work is that we are relatively free from the dan-
ger of comparing paralogous genes, as may sometimes be
the case in nuclear genes (Cao et al., 1994).

In our study we used three insectivoran species, musk
shrew (Suncus murinus), belonging to the family Soricidae,

and shrew mole (Urotrichus talpoides) and mole (Mogera
wogura), belonging to the family Talpidae. Mole and shrew
mole are specialized for underground life and they have the
shovel-like limbs for digging soil and their visual organs are
covered with the skin. On the other hand, musk shrew has
slender limbs with five toes and small normal visual organs.
Then we compared new amino acid sequences from these
three insectivora with those of the other mammalian orders,
with special attention to the other insectivoran species, the
order Chiroptera and the order Primates.

MATERIALS AND METHOD

DNA sequencing
Total genomic DNA from frozen liver, kidney and heart was ex-

tracted with the standard techniques (Sambrook et al., 1989). The mt
DNA from frozen liver, kidney and heart was extracted with the alka-
line lysis procedure (Tamura and Aotsuka, 1988). The complete COII
gene was PCR-amplified with primers L7784, L7553, H8169 and
H8320 (Adkins and Honeycutt, 1994). Each cycle of PCR consisted
of denaturation at 95°C for 1 min , hybridization at 45°C for 1 min, and
extension for 3 min at 72°C for 30 cycles. Double-strand PCR prod-
ucts of the COII gene were ligated into the plasmid pGEM-T vector.
Cycle sequencing reactions were carried out according to the method
described by Applied Biosystems, using a dye-labeled T7 and SP6
primers. Due to the inherent error rate of Taq polymerase (Saiki et
al., 1988; Tindall and Kunkel, 1988; Keohavang and Thilly, 1989), at
least two independent clones were sequenced for each taxon. No
sequence discrepancies were found between the clones.

Data analysis
Raw sequence data were analyzed with the software DNASIS-

Mac (Hitachi Software Engineering). We chose the human sequence
(Horai et al., 1992) as a reference sequence. Amino acid sequences
encoded by mtDNA are particularly useful to probe deep branches,
because selection (mainly negative selection in the framework of the
neural theory; Kimura, 1983) is likely to be operating stronger on an
amino acid site than on a nucleotide site (Kocher et al., 1989). There-
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fore, we used amino acid sequence of the COII gene for analysis,
together with the published data (Table 1).

In analyzing the COII amino acid sequence data of protein, we
used both neighbour-joining method (Saitou and Nei, 1987) and maxi-
mum likelihood method (Felsenstein, 1981). As for the case of the NJ
method, we used the MEGA program (Kumar et al., 1993) with a
gamma distance a = 0.7 (Nei et al., 1976). For maximum likelihood
analysis, we used the PROTML program in MOLPHY package, ver
2.3 (Adachi and Hasegawa, 1996).

For the PROML analyses, the mt REV-F models for mtDNA-en-
coded protein (Adachi and Hasegawa, 1996) were used for the these
data. Since it seems very likely that each of Primates, Ferungulata
[Artiodactyla, Cetacea and Carnivora (Cao et al., 1994)], Chiroptera,
Insectivora and Rodentia forms a monophyletic group, we add
arumadillo into these 5 groups and examined all of the 945 possible
trees among these 6 major lineage of eutheria. We estimated the
bootstrap probability by the RELL (resampling of the estimated log-
likelihood) method by Kishino et al. (1990). Although the sequence
data of goldenmole and hedgehog, which are assumed to have been
also the member of Insectivora, were available in a public data-base,
both of them were excluded in our analyses from the following rea-
sons. Goldenmole is suspected in a recent molecular study (Springer
et al., 1997) to be in a clade that contains members of presumed
African origin and its phylogenetic position in Insectivora is also un-
certain with morphological uncertainties (Van Valen, 1967; Eisenberg,
1981). On the other hand, hedgehog shows an higher levels of com-
positional bias in nucleotide bases of the overall mtDNA genes.

The branching orders within each of major lineage of eutherian

and within the outgroup were assumed as the consensus of previous
works (Cao et al., 1994; D’ Erchita et al., 1996; Bulmer et al., 1991; Li
et al., 1990; Szalay, 1977; McKenna, 1975; Van Valen, 1967; Mindell
et al., 1991; Adkins and Honeycutt, 1991). The species and their as-
sumed within-group relationships are Primates: (human, orangutan,
siamang, rhesus monkey, green monkey, mantled howler, Humboldt’s
wooly monkey, ring-tailed lemur, fat-tailed mouse lemur, slow loris,
bushbaby); Insectivora: ((short-tailed shrew, musk shrew), (shrew
mole, Japanese mole)); Ferungulata: ((harbor seal, grey seal) dog,
cat) ((goat, (cow, blue whale)), horse); Rodentia: (rat, mouse);
Chiroptera: (Leschenault’s rousette, greater spear-nosed, horse shoe);
and outgroup: ((wallaroo, opossum), platypus).

RESULTS AND DISCUSSION

The nucleotide sequences of cytochrome c oxidase sub-
unit II gene and the amino acid sequences are shown in Fig.
1 and in Fig. 2, respectively, for three insectivoran species
and human.

The phylogenetic tree based on NJ analysis is shown in
Fig. 3 and the result is generally consistent with the morpho-
logical and molecular phylogenetic trees already reported
(Honeycutt et al., 1995; Johnson et al., 1994), but shows some
interesting differences.

As is expected, the close relationships between mole and

Table 1. COII gene sequences included in this study

Class and order Latin binomial and common name Accession # and/or reference

Class Mammalia
Monotremata Ornithorhynchus anatinus (platypus) X80903; Janke et al. (1996)
Marsupialia Didelphis virginiana (opossum) Z29573; Janke et al. (1994)
Marsupialia Macropus robustus (wallaroo) Y10524; Janke et al. (1997)
Rodentia Mus musculus (mouse) J01420; Bibb et al. (1981)
Rodentia Rattus norvegicus (rat) X14848; Gadaleta et al. (1989)
Edentata Dasypus novemcinctus (nine-banded armadillo) M80903; Adkins and Honeycutt (1991)
Primates Galago senegalensis (lesser bushbaby) M80905; Adkins and Honeycutt (1991)
Primates Nycticebus coucang (slow loris) L22781; Adkins and Honeycutt (1994)
Primates Lemur catta (ring-tailed lemur) L22780; Adkins and Honeycutt (1994)
Primates Cheirogaleus medius (fat-tailed mouse lemur) L22775; Adkins and Honeycutt (1994)
Primates Alouatta palliata (mantled howler) L22774; Adkins and Honeycutt (1994)
Primates Lagothrix lagotricha (Humboldt’s wooly monkey) L22779; Adkins and Honeycutt (1994)
Primates Cercopithecus aethiops (green monkey) M58005; Ruvolo et al. (1991)
Primates Macaca mulatta (rhesus monkey) M74005; Disotell et al.(1992)
Primates Hylobates syndactylus (siamang) P25312; Horai et al. (1992)
Primates Pongo pygmaeus (orangutan) D38115; Horai et al. (1995)
Primates Homo sapiens (human) D38112; Horai et al. (1995)
Chiroptera Rousettus leschenaulti (Leschenault’s rousette) M80908; Adkins and Honeycutt (1991)
Chiroptera Rhinolophus darlingi (horse shoe bat) U62580; Adkins and Honeycutt (1993)
Chiroptera Phyllostomus hastatus (greater spear-nosed bat) M80906; Adkins and Honeycutt (1991)
Insectivora Blarina brevicauda (short-tailed shrew) U62578; Adkins et al. unpublished
Insectivora Suncus murinus (musk shrew) this paper
Insectivora Urotrichus talpoides (shrew mole) this paper
Insectivora Mogera wogura (mole) this paper
Carnivora Felis catus (cat) U20753; Lopez et al. (1996)
Carnivora Canis simensis (dog) L29414; Gottelli et al. (1994)
Carnivora Phoca vitulina (harbour seal) X63726; Arnason and Johnsson (1992)
Carnivora Halichoerus grypus (grey seal) X72004; Arnason et al. (1993)
Artiodactyla Bos taurus (cow) J01394; Anderson et al. (1982)
Artiodactyla Capra hircus (goat) U62569; Janecek et al. unpublished
Cetacea Balaenoptera musculus (blue whale) X72204; Arnason et al. (1993)
Perissodactyla Equus caballus (horse) X79547; Xu and Arnason (1994)
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shrew mole and between musk shrew and short-tailed shrew
are observed with high bootstrap probabilities (97% in both
cases) and the results are in accord with the traditional rela-

tionship by obtained morphological data (Butler, 1988; Szalay,
1977; McKenna, 1975; Van Valen, 1967). The NJ tree, how-
ever, have complicated the issue of fixing Insectivoran posi-

Fig. 1. Nucleotide sequence of the cytochrome c oxidase subunit II (COII) gene from the three insectivoran species along with the human
sequence (Anderson et al., 1981). Numbering is according to the human sequence. The predicted amino acid sequence of the human protein is
shown above by one-letter code. Nucleotides identical to those of human are indicated by dashes. human = Homo sapiens, musk shrew = Suncus
murinus, shrew mole = Urotrichus talpoides, mole = Mogera wogura.
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tion among major orders, with Chiroptera as many as three
independently evolving lineages observed (Fig 3). The boot-
strap probabilities of [(short-tailed shrew, musk shrew), greater
spear-nosed bat] clad and {horse shoe bat, [Leshenult’s
rousette,(shrew mole, Japanese mole)]} clade are only 27%
and 20%, respectively, which suggest the resolving power of
the present data would not be enogh to distinguish markedly
these groups. This, in fact, may suggest that the relationship
between Insectivora and Chiroptera may be very close. The
close relationship of armadillo to Primates is also not in ac-
cord with the evidence from the complete mtDNA data of ar-
madillo (Arnason et al., 1997).

Despite the predominantly divergent nature of most mo-
lecular evolution, parallel and convergent evolution sometimes
occur in the specific genes (Stewart et al., 1987), and such a
discrepancy could occur in 5% of the cases without any par-
ticular reason if the divergence among groups in question
occurred within a short period.

Furthermore, the suborder Anthropoidea seems to be too
distant from the other eutherians in Fig. 3. This may be prob-
ably due to the higher level of variation and the higer rate of
amino acid replacement in this lineage.

One of our purpose is to see the degree of interrelation-
ship among the extant eutherian orders and to seek the most
close relative of Insectivora. Therefore, we examined the data
by maximum-likelihood (ML) method (Kishino et al., 1990;
Adachi and Hasegawa, 1992) for protein sequences with
known consensus relationship of eutherians. The branching
orders within each of the Primates, Ferungulata (Artiodactyla,

Fig. 2. Amino acid sequence of the cytochrome c oxidase subunit II gene along with the human sequence (Anderson et al., 1981). human = Homo
sapiens, musk shrew = Suncus murinus, shrew mole = Urotrichus talpoides, mole = Mogera wogura.

Cetacea, Perissodactyla), Insectivora, Chiroptera, Rodent, and
outgroup are assumed as the consensus of the several mor-
phological and molecular studies. Figure 4 shows the phylo-
genetic relationship among the seven major eutherian groups
constructed from COII data alone by the PROTML. Although
the bootstrap probability is not high, the ML tree with the high-
est boot strap probability (45.7%) locates Chiroptera closer to
Insectivora than to the other eutherian orders.

From both NJ and ML phylogenetic analyses, the follow-
ing interesting results were obtained. Firstly, the most closest
relative of Insectivora seems to be the order Chiroptera. Sec-
ondly, there would be a sister-group relationship between
Ferungulata and (Insectivora + Chiroptera).

Novacek (1986, 1989) , from the analyses on skull char-
acters, suggested the possibility that Insectivora may be part
of a clade that includes Tublidentates and Carnivorans.
Miyamoto and Goodman (1986), from the analyses on amino
acid sequence changes in several proteins, suggested that
Insectivora may be most closely related to Carnivorans and
Pholidotans . But these evidences supporting each associa-
tion are admittedly weak. The insectivoran position has been
not clear in eutherian cladgram yet. The COII gene trees ob-
tained by the present study do not support either Novacek or
Miyamoto and Goodman’s hypothesis, and radically contra-
dict the traditional view, which says that Chiroptera would be
closely associated with Primates, flying lemur and tree shrew
in the superorder Archonta (Novacek et al., 1988 and Szalay,
1977).

We consider it appropriate to use molecular data bacause
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Fig. 3. The neighbor-joining tree of amino acid sequence of COII gene. Bootstrap values 40% or greater (derived from 1000 replicates) are
shown along branches. The horizontal length of each branch is proportional to the estimated number of amino acid substitutions.

it seems that there are no recognizably non-primitive traits of
Insectivora to distinguish them from other eutherians. Since
analyses of individual genes could lead to an erroneous tree
with an apparently significant confidence level, to avoid such
possibility, we will carry out further analyses based on as many
different genes as possible and synthesize the results.
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