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ABSTRACT

 

—Short photoperiod induces physiological changes connected to the wintering of the tundra
vole, 

 

Microtus oeconomus

 

. The aim of the present study was to investigate the effects of continuous mela-
tonin treatment on selected hormones and enzyme activities associated with energy metabolism in the
species. Liver, kidney, and muscle glycogen concentrations and glycogen phosphorylase activities, as well
as liver and kidney glucose-6-phosphatase and lipase esterase activities were determined. Plasma leptin,
ghrelin, thyroxine, testosterone, cortisol, and melatonin concentrations were also measured. Exogenous
melatonin stimulated gluconeogenesis, increased glycogen stores, and reduced fat mobilization in kidneys.
Melatonin treatment also increased the food intake of the voles. This may have been mediated via elevated
ghrelin levels of the melatonin-treated animals, as ghrelin is known to increase appetite of rodents. Winter
metabolism of the species does not seem to require accumulation of fat or extra stores of liver or muscle
glycogen. On the contrary, successful wintering of the tundra vole presumably depends on continuous food
availability.
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INTRODUCTION

 

Melatonin regulates seasonal physiological functions
such as reproduction (Tamarkin 

 

et al.,

 

 1985), thermoregula-
tion (Saarela and Reiter, 1994), and moulting (Rust and
Meyer, 1969). Photoperiod and melatonin affect body mass
(BM), adiposity, and energy intake (Wade and Bartness,
1984; Le Gouic 

 

et al

 

., 1996) of several seasonal mammalian
species. Melatonin also influences liver, kidney, and muscle
energy contents of mammals (Mazepa 

 

et al.,

 

 2000; Niemi-
nen 

 

et al.,

 

 2001; Mustonen 

 

et al.

 

, unpubl.).
Ghrelin is a newly discovered signal peptide secreted

primarily by the stomach (Date 

 

et al.,

 

 2000). Circulating
ghrelin levels are increased by fasting and reduced by re-
feeding, and exogenous ghrelin increases food intake and
BM gain in rodents (Tschöp 

 

et al.,

 

 2000). We have recently
demonstrated suppression of rat ghrelin levels by exoge-
nous melatonin (Mustonen 

 

et al.,

 

 2001). Leptin, a peptide
hormone secreted principally by white adipose tissue
(Zhang 

 

et al.,

 

 1994), has widespread effects on energy
homeostasis of vertebrates such as reptiles (Niewiarowski

 

et al.,

 

 2000), marsupials (Hope 

 

et al.,

 

 1999), and eutherian
mammals (Pelleymounter 

 

et al.,

 

 1995). Interactions between

melatonin and leptin have been demonstrated in rodents
(Ambid 

 

et al.,

 

 1998; Rasmussen 

 

et al.,

 

 1999) and in carni-
vores (Mustonen 

 

et al.,

 

 2000).
The tundra vole (

 

Microtus oeconomus

 

, Pallas, 1776) is
a rodent with a circumpolar distribution. In winter the species
lives in relatively dry areas on peatland and mineral soils,
while in summer it occupies flooded land (Tast, 1966,
1972a). The summer diet of the tundra vole consists of
leaves, flowers, seeds, and stalks of sedges and grasses,
whereas mainly underground storage organs of these plants
are consumed in winter. The tundra vole has high concen-
trations of muscle carbohydrates compared to more south-
ern rodent species, which may be related to improved cold
resistance (Galster and Morrison, 1975). Short photoperiod
increases nonshivering thermogenesis of the species as a
seasonal thermoregulatory adaptation (Wang 

 

et al.,

 

 1999).
We investigated short-term effects of continuous mela-

tonin treatment on key enzymes and hormones associated
with energy metabolism of the tundra vole. This species is
an attractive model for this study, as in nature it experiences
harsh winter conditions and extremely short and long photo-
periods, including continuous daylight and darkness, due to
its northern geographical distribution. Our goal was to dis-
cover the most important hormonal and enzymatic targets of
melatonin in the seasonal adaptation of the tundra vole.

 

* Corresponding author: Tel. +358-13-2513576;
FAX. +358-13-2513590.
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MATERIALS AND METHODS

 

Animals and treatments

 

Young tundra voles (n=24) were obtained from the laboratory
colony of the University of Joensuu (Joensuu, Finland). The animals
descended from voles that had been caught in northern Lapland
(Pallasjärvi, 68

 

°

 

N) and reared in the laboratory for several genera-
tions. The voles were maintained in a dark room with artificial illu-
mination from 0600 to 1800 (12L:12D) at a constant temperature of
20

 

±

 

1

 

°

 

C. They were housed singly in solid-bottomed plastic cages
(Makrolon; 42 cm 

 

*

 

 22 cm 

 

*

 

 15 cm) with wood shavings for bedding
and free access to tap water and a pelleted commercial diet (Avels-
foder för råtta och mus R36; 18.5% raw protein, 4.0% raw fat, 1,260
kJ metabolizable energy 100 g

 

–1

 

, Lactamin, Stockholm, Sweden).
All procedures were in accordance with institutional guidelines for
animal care of the University of Joensuu as well as with the Euro-
pean convention for the protection of vertebrate animals used for
experimental and other scientific purposes.

At the beginning of the experiment, half of the voles received
subcutaneous melatonin implants, the other half was sham-oper-
ated. Constant-release melatonin capsules are known to provide
e.g. ewes with a short day signal rather than a functional pinealec-
tomy (O´Callaghan 

 

et al.,

 

 1991). We used halved PRIME-X

 

®

 

melatonin implants containing 6 mg melatonin in a silastic matrix
manufactured by Wildlife Pharmaceuticals, Inc. (Fort Collins, CO,
USA). The capsules were implanted surgically into the interscapular
subcutaneous tissue of the voles, which were anaesthesized with
subcutaneous  Ketamine (Ketalar, 50 mg ml

 

–1

 

, Parke-Davis Scan-
dinavia AB, Solna, Sweden). A 0.5 cm incision was cut with a sterile
scalpel along the spine between the scapulae and the capsule was
inserted into this pouch with sterile forceps. The wound was sutured
with 3–0 plain gut with a single knot. The control group was sham-
operated with identical anaesthesia, incisions, and sutures but with-
out the insertion of melatonin-filled capsules.

The voles were 1–5 months of age and weighed 16–29 g at
the beginning of the experiment. Animals of different age and BM
were evenly distributed among two study groups of 12 individuals
each: Group 1 (controls) consisted of 8 males and 4 females
whereas group 2 (melatonin-treated voles) consisted of 5 males
and 7 females.

 

Data collection

 

BM gain (g) and relative food intake (g food consumed g BM

 

–1

 

wk

 

–1

 

) of the voles were recorded weekly at 1200–1300 hr through-
out the study. After 29 days, the voles were sacrificed at 1100–1300
hr by an overdose of diethyl ether. Blood samples were obtained by
cardiac puncture with aseptic needles into test tubes containing
EDTA and centrifuged at 1000 x g to obtain 50–200 

 

µ

 

l of plasma.
Livers, kidneys, and muscle samples from the quadriceps muscle
of the left thigh were dissected and immediately frozen in liquid
nitrogen and stored at –40

 

°

 

C. The presence of implants in the inter-
scapular subcutaneous tissue of the melatonin-treated voles was
verified after sampling.

 

Biochemical determinations

 

The activities of different enzymes were determined spectro-
photometrically. Liver and kidney samples were weighed to the
nearest 0.001 g and homogenized in cold citrate buffer for the glu-
cose-6-phosphatase (G-6-Pase; pH 6.5) and glycogen phosphory-
lase measurements (pH 6.1). The activity of G-6-Pase was mea-
sured using glucose-6-phosphate as substrate in the presence of
EDTA after an incubation time of 30 minutes at 37.5 

 

°

 

C (Hers and
van Hoof, 1966). Glycogen phosphorylase activity was measured in
the presence of glucose-1-phosphate, glycogen, sodium fluoride,
and AMP (Hers and van Hoof, 1966).

Homogenization was carried out in cold 0.85 % NaCl for the

lipase esterase measurement. Lipase esterase activities were mea-
sured according to the method of Seligman and Nachlas (1962)
using 2-naphtyl-laurate without taurocholate as substrate. Glycogen
concentrations were measured spectrophotometrically according to
the method of Lo 

 

et al. 

 

(1970).

 

Hormone determinations

 

Plasma testosterone and thyroxine (T4) concentrations were
measured with the Spectria [

 

125

 

I] Coated Tube Radioimmunoassay
kits of Orion Diagnostica (Espoo, Finland). Testosterone and T4
levels were determined from each individual due to the small sam-
ple volume these measurements required (20–25 

 

µ

 

l of plasma).
Plasma leptin concentrations were measured with the Multi-species
Leptin RIA kit from  Linco Research Inc. (St. Charles, MO, USA).
Plasma ghrelin levels were determined with the Ghrelin (Human)
RIA kit from Phoenix Pharmaceuticals Inc. (Belmont, CA, USA).
The crossreactivities of the kits to rat leptin and ghrelin are 61 and
100%, respectively. These kits have been previously used to mea-
sure leptin and ghrelin levels of microtinae plasma (Nieminen 

 

et al.

 

,
2002). Plasma melatonin concentrations were determined with the
Melatonin RIA kit manufactured by DLD Diagnostika GmbH (Ham-
burg, Germany). Plasma cortisol levels were determined with the
Cortisol [

 

125

 

I] Radioimmunoassay kit of Orion Diagnostica. Plasma
leptin, ghrelin, melatonin and cortisol concentrations were deter-
mined by pooling the plasma samples of voles from a particular
treatment due to the high sample volume requirements (100 

 

µ

 

l of
plasma) of the analyses. Equal amount of blood was added from
each animal to obtain 100 

 

µ

 

l of plasma required.

 

Statistical analyses

 

Body mass indices (BMIs) that reflect the amount of fat in the
body were calculated by the formula: weight (g) length

 

3

 

 (cm)

 

–1

 

.
Length from the nose to the anus was measured to the nearest mm
after sacrification. Paired comparisons were performed with the
Student’s t-test for unpaired data. For nonparametric data, the
Mann-Whitney U test was performed. P<0.05 was considered to be
statistically significant.

 

RESULTS

 

BM of the voles increased during the study, but exoge-

 

Fig. 1.

 

Kidney glucose-6-phosphatase activities (

 

µ

 

 g P mg tissue

 

–1

 

h

 

–1

 

), glycogen contents (

 

µ

 

 g glycogen mg tissue

 

–1

 

), and lipase
esterase activity levels (

 

µ

 

 g 2-naphtol 0.1g tissue

 

–1

 

 h

 

–1

 

) of control
and melatonin-treated tundra voles (mean+SE).
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nous melatonin did not significantly affect the mass gain
(1.5

 

±

 

0.82 (group 1) vs. 0.8

 

±

 

0.32 g (group 2) mass gain dur-
ing the study). Relative food intake of the melatonin-treated
animals increased significantly during the experiment
(1.2

 

±

 

0.04 vs. 1.4

 

±

 

0.03 g food consumed g BM

 

–1

 

 wk

 

–1

 

 at the
beginning and at the end of the study, respectively, 

 

t

 

-test,
p<0.014), which was not observed in the controls (1.2

 

±

 

0.07
vs. 1.3

 

±

 

0.03 g food consumed g BM

 

–1

 

 wk

 

–1

 

). Body lengths,
BMIs, and weights of livers, kidneys, and testes were not
significantly influenced by melatonin treatment.

Liver glycogen content was not significantly affected by
exogenous melatonin, but kidney glycogen concentrations
were significantly elevated in the melatonin-treated voles
(Mann-Whitney U test, p<0.0004, Table 1, Fig. 1). Kidney
glycogen content was significantly higher in the female voles
(Mann-Whitney U test, p<0.015). Muscle glycogen concen-
trations were significantly decreased by melatonin in the
males (Mann-Whitney U test, p<0.008), but significantly
increased in the females (Mann-Whitney U test, p<0.042).

Liver, kidney, and muscle glycogen phosphorylase
activities were not significantly influenced by melatonin
treatment (Table 1). Phosphorylase activities were signifi-
cantly higher in muscle than in livers and kidneys (Mann-
Whitney U test, p<0.0004). Hepatic G-6-Pase activities were
significantly suppressed in the melatonin-treated females
(Mann-Whitney U test, p<0.008). G-6-Pase activities in kid-
neys were significantly increased by exogenous melatonin
in both sexes (t-test, p<0.014, Fig. 1). Liver lipase esterase
activities were not significantly affected by melatonin treat-
ment, but in kidneys the activities were significantly sup-
pressed by exogenous melatonin (Mann-Whitney U test,
p<0.026, Fig. 1). Kidney lipase esterase activities were sig-
nificantly higher in the male voles (Mann-Whitney U test,
p<0.003).

Daytime plasma melatonin levels were higher in the
melatonin-treated voles than in the controls (580.9 vs 55.4
pg ml

 

–1

 

, respectively). Also ghrelin concentrations were over

two-fold higher in the melatonin-treated voles (1.7 vs 0.7 ng
ml

 

–1

 

). Plasma testosterone (Table 1), leptin (1.9 vs 1.8 ng
ml

 

–1

 

) and cortisol concentrations (73.1 vs 79.2 nmol l

 

–1

 

)
were not affected by melatonin. The T4 concentrations in
the female voles were decreased due to treatment (Mann-
Whitney U test, p < 0.023).

 

DISCUSSION

 

Tundra voles are nonhibernating herbivores, which win-
ter under the snow cover. Body size and foraging activity
levels of the species decrease in winter leading to reduced
energy expenditure (Wang and Wang, 1996). Finnish tundra
voles, however, have to forage throughout the cold season,
as they do not collect large stores of plant material unlike
Siberian tundra voles (Tast, 1972a). Food availability is
known to be an important factor controlling BM and winter-
ing success of tundra voles (Tast, 1972b). BM of our voles
increased during the experiment, as they were young and
growing animals. Their BM was not affected by melatonin
treatment, but exogenous melatonin significantly increased
their energy intake. This response to high circulating mela-
tonin levels (short photoperiod) may be of fundamental
importance in nature during the seasonal scarcity of food.

Rat ghrelin concentrations have decreased due to
exogenous melatonin (Mustonen 

 

et al.,

 

 2001). Our results
indicate to increased ghrelin levels in the melatonin-treated
voles. As the measurement could not be carried out in indi-
vidual voles, the results will need conformation in further
studies concentrating on ghrelin. Our ghrelin data, however,
are in concordance with the higher energy intake of the
melatonin-treated animals, as ghrelin is known to increase
food intake of rodents (Tschöp 

 

et al.,

 

 2000). In autumn,
increasing melatonin secretion could be a signal that
enhances ghrelin secretion of the voles. High ghrelin levels
could stimulate the appetite of the animals and thus main-
tain a sufficient foraging activity level to ensure their survival

 

Table 1.

 

Effects of 29 days of melatonin implants on selected enzymatic and hormonal parameters of energy metabolism
in the tundra vole liver, kidney, muscle, and plasma (mean

 

±

 

SE). 

 

*

 

 differs significantly from the control group of the same sex

 

†

 

 all the melatonin-treated voles differ from all the controls (Mann-Whitney U test, p<0.05).

Control males Control females Melatonin males Melatonin females

Glycogen liver 18.3 

 

±

 

 3.97 29.7 

 

±

 

 7.37 11.3 

 

± 

 

3.16 18.0 

 

± 

 

4.13

 

µ

 

g mg tissue

 

–1

 

kidney 0.49 

 

±

 

 0.036 0.55 

 

±

 

 0.044 0.67 

 

± 

 

0.052

 

*

 

0.94 

 

± 

 

0.150

 

*

 

muscle 1.32 

 

±

 

 0.228 0.38 

 

±

 

 0.025 0.53 

 

± 

 

0.117

 

*

 

0.97 

 

± 

 

0.156

 

*

 

Glycogen phosphorylase, liver 24.5 

 

±

 

 2.71 26.1 

 

±

 

 2.46 23.5 

 

± 

 

2.93 24.3 

 

± 

 

1.24

 

µ

 

g P mg tissue

 

–1

 

 h

 

–1

 

kidney 6.2 

 

±

 

 0.49 6.6 

 

±

 

 0.38 6.8 

 

± 

 

0.75 7.2 

 

± 

 

0.62

muscle 130.6 

 

± 

 

22.55 126.3 

 

± 

 

10.98 120.3 

 

± 

 

6.72 143.7 

 

± 

 

13.00

Glucose-6-phosphatase liver 59.9 

 

±

 

 1.59 61.0 

 

±

 

 1.42 63.5 

 

± 

 

2.83 56.0 

 

± 

 

0.65

 

*

 

µ

 

g P mg tissue

 

–1

 

 h

 

–1

 

kidney 36.7 

 

±

 

 1.98 37.2 

 

±

 

 1.86 40.5 

 

± 

 

1.44

 

†

 

42.8 

 

± 

 

1.80†

Lipase esterase liver 34.5 ± 1.97 33.0 ± 0.94 37.1 ± 2.03 34.8 ± 1.29

µg 2-naphtol mg tissue–1 h–1 kidney 25.0 ± 2.02 20.4 ± 1.23 21.3 ± 1.17† 18.7 ± 0.61†

Testosterone nmol l–1 plasma 0.35 ± 0.182 0.04 ± 0.014 0.07 ± 0.034 0.07 ± 0.020

Thyroxine nmol l–1 plasma 31.4 ± 3.55 31.3 ± 2.16 32.4 ± 4.80 23.6 ± 1.77*
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through the cold season. The increase in food intake caused
by ghrelin is probably mediated by an increased production
of neuropeptide Y (NPY) (Shintani et al., 2001), the hypo-
thalamic concentrations of which are augmented by prenatal
melatonin exposure (Díaz et al., 2000).

G-6-Pase activity indicates the ability of the tissue to
release free glucose from glucose-6-phosphate into the
blood stream (Harris, 1986). Glycogen phosphorylase, on
the other hand, is the regulatory enzyme of glycogenolysis.
Liver G-6-Pase and glycogen phosphorylase activities as
well as muscle phosphorylase activities of the bank vole
(Clethrionomys glareolus) and the field vole (Microtus agres-
tis) are highest in winter (Hyvärinen, 1984). Exogenous
melatonin caused only slight effects on these enzyme activ-
ities in tundra vole liver and muscle. The only effect
observed occurred in G-6-Pase activity levels in livers of the
females. Melatonin has previously increased liver and mus-
cle glycogen stores in nonexercised and exercised rats
(Mazepa et al., 2000), but in our experiment it did not affect
these glycogen stores in the voles.

Liver lipase esterase activities of bank voles are highest
in autumn and early winter (Hyvärinen, 1984). In our exper-
iment, melatonin did not affect hepatic lipase esterase activ-
ity levels. Neither were leptin levels affected. In humans and
laboratory rodents, leptin levels correlate positively with
body adiposity (Maffei et al., 1995). Melatonin and photope-
riod have affected leptin concentrations, and leptin gene and
receptor gene expression of rodents and mustelids (Ambid
et al., 1998; Mercer et al., 2000; Mustonen et al., 2000).
Carbohydrate metabolism seems to be more important for
energy production by voles than lipid utilization during winter
months (Hyvärinen, 1984). Microtinae rodents derive energy
from endogenous carbohydrates during starvation (Mosin
1984). After a total fast of only 20–26 hr, they die due to deep
hypoglycemia. Voles can die after starvation still having adi-
pose tissue in their bodies, because utilization of fat is rela-
tively small.

Exogenous melatonin influences water consumption,
urine production and electrolyte concentration, circulating
antidiuretic hormone levels (Richardson et al., 1992), blood
pressure (Kawashima et al., 1987), as well as glomerular fil-
tration rates (Tsuda et al., 1995) of mammals. Renal actions
of melatonin are supposed to be mediated through Mel1a
subtype receptor localized in the basolateral membrane of
proximal tubules (Song et al., 1997). Effects of melatonin
treatment on glycogen content and enzyme activities of tun-
dra vole kidneys were clear. This phenomenon has also pre-
viously been observed in the laboratory rat in a similar study
(Mustonen et al., unpubl). Responses of vole kidneys to
exogenous melatonin were nearly opposite to those of rats,
indicating that the renal effects of melatonin are species-
specific. In tundra voles, melatonin increased glycogen
stores and gluconeogenesis and reduced fat mobilization in
kidneys. This energy is probably used as a metabolic fuel for
the kidney itself. It is also possible that kidneys contribute to
general energy metabolism of microtines in winter. Extra

capacity for glycogen storing and gluconeogenesis may be
crucial, when cold temperatures increase thermoregulatory
needs and food deprivation poses a threat to survival.

T4 concentrations in the female voles decreased due to
melatonin treatment. The inhibitory effect of the pineal gland
on thyroid function has also been observed in other rodents
(Vriend, 1983). In nature, thyroid activity of small mammals
is often suppressed in winter (Hyvärinen, 1984). This may
function as an energy-sparing adaptation to winter metabo-
lism of voles by slowing metabolic rate and retarding
somatic growth. Testosterone levels of the voles were not
affected by exogenous melatonin. This was understandable,
as most of our voles were immature. In the wild, tundra
voles reach sexual maturity in the summer of birth or in the
spring after wintering. Increasing daylength is considered to
be the principal determinant for the onset of breeding sea-
son (Tast, 1966).

In summary, a short-term continuous melatonin treat-
ment stimulates gluconeogenesis, increases glycogen
stores, and reduces fat mobilization in kidneys of the tundra
vole. It also stimulates appetite of the voles, possibly via
increasing ghrelin concentrations. Winter metabolism of this
species does not depend on the accumulation of fat or extra
storage of liver or muscle glycogen. In fact, costs of deposi-
tion of energy can be several times more expensive to small
mammals than the energy gain from the utilization of such
stores (Miernikiewicz et al., 1996). The successful wintering
of tundra voles probably depends on continuous food avail-
ability.
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