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Spatial distribution of Svalbard rock ptarmigan based on a 
predictive multi-scale habitat model

Åshild Ø. Pedersen, Eva Fuglei, Maria Hörnell-Willebrand, Martin Biuw and Jane U. Jepsen

Å. Ø. Pedersen (aashild.pedersen@npolar.no) and E. Fuglei, Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.  
– M. Hörnell-Willebrand, Hedmark Univ. College, Dept of Forestry and Wildlife Management, Elverum, Norway. Present address: Wildlife 
Unit, Research and Assessment Dept, Swedish Environmental Protection Agency, Östersund, Sweden. – J. U. Jepsen, Norwegian Inst. for Nature 
Research, Fram Centre, Tromsø, Norway. Present address for MB: Akvaplan-niva, Fram Centre, Tromsø, Norway. – M. Biuw, Inst. of Marine 
Research, Tromsø, Norway

We re-evaluated the relationship between territorial Svalbard rock ptarmigan male presence and ecological relevant vari-
ables related to vegetation, terrain and snowmelt, building on the lessons learned from a previous regional habitat multi-
scale model, to predict breeding habitat suitability of this high-arctic, endemic ptarmigan on a large spatial scale. We used 
11 years (2000–2010) of presence/absence data of territorial males, a multi-scale generalized linear modelling framework 
(glms) and recent advances in digital satellite based vegetation mapping. The final habitat model contained four significant 
predictors related to vegetation, terrain (elevation and slope) and a heat load index, as a proxy for snowmelt. Increasing 
amount of one particular habitat type, ‘established dense Dryas heath’ influenced habitat suitability positively at a small 
scale, while gentle sloping landscapes of intermediate steepness (10–25°) and elevation in the upper southwest facing part 
of the mountain slopes characterized occurrence at the landscape scale. The best model attained a relatively high explana-
tory power with a good ability to discriminate correctly between used and available sites. We extrapolated the habitat model 
to all parts of Spitsbergen with a current growing season sufficiently long for ptarmigan to complete a breeding cycle. The 
model indicates that only a small proportion of the vegetation covered land area (∼3.9%) is highly suitable for ptarmigan. 
In Svalbard the ptarmigan is an attractive game species, appears in low densities with low annual survival, has restricted 
availability of breeding habitat and is likely vulnerable to climate change. In such contexts, we suggest to use our predictive 
habitat model in harvest management of the species so that hunting quotas and efforts may be adjusted to habitat suit-
ability, indicating the reproductive potential, in the hunting areas.

Understanding species spatial distribution across large 
geographic scales is important to conserve, manage and 
monitor species effectively. Extrapolating species distribu-
tions beyond areas of known presence, using predictive 
species distribution models, is a tool to gain information 
about continuous habitat suitability. This is particularly 
important in areas where surveys may be difficult owing 
to low abundance or rareness of the species or to remote-
ness of the study locations making surveys logistically chal-
lenging and costly (Jensen et al. 2008, Sharma et al. 2009, 
Speed et al. 2009, Revermann et al. 2012, Zohmann et al. 
2013, Hacohen-Domene et  al. 2015). Digital spatial data 
commonly covers large land areas that makes it possible to 
develop maps of habitat suitability and ecological forecasts 
(Lawler et al. 2011). Recently studies have pointed out the 
importance of multi-scale approaches to understand species 

distributions at various ecological spatial and temporal 
scales, especially when predicting habitat use in a changing 
climate (Storch 2002, Graf et al. 2005, Mayor et al. 2009, 
Revermann et al. 2012, Bean et al. 2014). Geographic infor-
mation systems are readily available to a wide community of 
managers and conservationists. Multi-scale statistical model-
ling approaches enable researchers to identify environmental 
predictors and their spatial scales relevant to habitat use of 
the study species (Mayor et al. 2009, Bean et al. 2014). Thus, 
by combining knowledge on species habitat use and environ-
mental variables relevant to spatial ecology, managers have 
the tools for making land use decisions and scientists more 
complex spatial models to explain ecological processes to pre-
dict future conditions or distributions and patterns in loca-
tions that have not yet been sampled (Drew et al. 2011).

The high-arctic archipelago, Svalbard, Norway, houses an 
endemic sub-species of the rock ptarmigan Lagopus muta, the 
Svalbard rock ptarmigan L. m. hyperborea. This non-cyclic 
ptarmigan species is among the northernmost ptarmigan in 
the world, vulnerable to climate change (Henden et al. 2017; 
see also Pernollet et al. 2015) and the most important small 
game species within the archipelago (Løvenskiold 1964, 
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Pedersen et  al. 2012, Soininen et  al. 2016). The Svalbard 
rock ptarmigan persists at low densities (range 1.2 to 4.7 
males km–2 in spring) with limited inter-annual population 
size variability (Pedersen et al. 2012, Soininen et al. 2016). 
Lack of breeding habitat is likely a limiting factor for the 
population size (Unander and Steen 1985). A recent study 
found surplus birds in spring (Pedersen et  al. 2014b), but 
the size and possible trends of this population component 
is not known (Soininen et al. 2016). A better knowledge of 
the quality and distribution of ptarmigan breeding habitat 
would hence be very valuable both for managing the popula-
tion in relation to hunting and for assessing likely effects of a 
changing climate on the population.

Habitat suitability models for territorial Svalbard rock 
ptarmigan males have previously been developed (Pedersen 
et  al. 2007), but model predictions were limited to a sec-
tion of central Spitsbergen (Nordenskiöld Land) due to 
lack of archipelago-wide digital vegetation data at that 
time. Pedersen et  al. (2007) found increasing amount of 
vegetated xeric sloping areas at local scale (foraging; spatial 
resolution 200  200 m) and terrain variables (elevation at 
site and slope-aspect ruggedness index at spatial resolution 
1000  1000 m) at a somewhat larger scale ( territory) to 
positively influence male presence in spring. Model predic-
tions were made using both a detailed (only regional avail-
ability) and coarse DEM, but models performed equally 
well. Their study was, however, not able to address fine-scale 
variations in terrain exposure and sun radiation, both known 
to be highly influential for snow accumulation, distribution 
and melting patterns (DeBeer and Pomeroy 2009). Such 
characteristics are regarded important determinants of ter-
ritory quality because early snowmelt allows for earlier onset 
of the breeding season (Unander and Steen 1985).

In this paper, we re-evaluated the relationship between 
Svalbard rock ptarmigan presence and environmental vari-
ables, building on the lessons learned in Pedersen et  al. 
(2007), and expanded the habitat model predictions to cover 
the majority of the Svalbard archipelago. We used a longer 
time-series (11 years, 2000–2010) of population abundance 
monitoring data of territorial Svalbard rock ptarmigan 
males, and recent improved advances in digital satellite based 
vegetation mapping covering the entire archipelago (Johan-
sen et al. 2009, 2012), as well as an updated digital eleva-
tion model. As Pedersen et al. (2007), we explored variables 
related to vegetation and terrain characteristics, relevant to 
ptarmigan breeding biology and fine scale habitat selection, 
using a multi-scale generalized linear modelling approach. 
Additionally, we also evaluated a heat load index as a proxy 
for snowmelt and spring onset within this framework. We 
discuss our results with focus on how this new and more 
comprehensive habitat model can guide future management 
of this low-density, endemic ptarmigan species.

Methods

Study area

Svalbard is a high-arctic Norwegian archipelago (74–81°N, 
10–35°E; 62 700 km2), encompassing more than 500 islands, 
with the largest being Spitsbergen, Edgeøya, Barentsøya 

and Nordaustlandet. Deeply indented fjords characterize 
the areas along the west and north coast. Mountains, with 
summits reaching up to around 1700 m a.s.l., cover much 
of Spitsbergen. Svalbard spans three bioclimatic zones. The 
middle Arctic tundra zone covers central Spitsbergen, the 
northern Arctic tundra zone covers large areas along the west 
coast of Spitsbergen and the polar desert zone covers areas in 
the northern and eastern parts of the archipelago (Elvebakk 
1999, 2005). Svalbard comprise 85% glaciers, barren and 
sparsely vegetated areas and only 15% of the land areas is 
vegetated. Of this about 22% is classified as rich vegetation 
(i.e. moss tundra, mires, fens, swamps and grassy heaths) 
and 78% as heaths and polar desert (Johansen et al. 2009). 
Svalbard has a relatively mild climate, shifting from typically 
humid, oceanic in the west to colder and drier climate 
conditions in the northern and eastern parts (Førland et al. 
2012).

The study area for the annual population abundance 
monitoring of territorial Svalbard rock ptarmigan males was 
located on the largest island, Spitsbergen, in the northeast-
ern part of Nordenskiöld Land. It encompassed approxi-
mately 1200 km2, and two large valleys, Adventdalen and 
Sassendalen (78°15′N, 17°20′E), surrounded by peaks 
reaching 1200 m a.s.l. (Fig. 1). Glacial valleys with wetland, 
ridge, and heath vegetation rarely above 5–20 cm in height 
dominates the study area (Elvebakk 1999).

Ptarmigan data

Ptarmigan monitoring data were available from annual point 
count surveys (2000–2010) of calling territorial Svalbard  
rock ptarmigan males. Pedersen et  al. (2007, 2012) 
documented the monitoring design and survey protocol 
followed, and we only briefly summarize them here. Male 
ptarmigan establish territories in April, at which time con-
tinuous daylight prevails. The distinct territorial behaviour 
of ptarmigan males (body displays and territorial calls) can 
therefore be observed throughout the 24 h day (Unander 
and Steen 1985b). Point counts were conducted only under 
optimal weather conditions (calm, clear days) by trained 
observers for 15 min on each site 2–3 times per season 
mainly in the month of April (from 2 to 30 April and in two 
years up to 6 May). During each visit, presence or absence 
of male ptarmigan was recorded to determine the size of the 
pre-breeding population. During 11 years (2000–2010), 208 
sites had been visited (range 1–29 visits; median  22). For 
the present analysis, we consider only sites visited  10 times, 
resulting in a total sample size of 148 sites. Ptarmigans were 
detected at least once on 141 of these 148 sites, i.e. absence 
was only observed at seven sites (Fig. 1). To represent the 
landscape potentially available for ptarmigan males, we used 
a sample of 368 random sites (pseudo-absence sites), also 
used in Pedersen et al. (2007), and added the seven moni-
toring sites with absence of ptarmigan males. We selected 
the pseudo-absence sites from the same landscape (i.e. 
study area) as the presences count sites, and located them 
randomly (see e.g. Wisz and Guisan 2009 for recommenda-
tions) on ice free areas at least 500 m from both ptarmi-
gan count sites and other random sites (Fig. 1). Thus, the 
pseudo-absences sites most likely represent similar ranges of 
values in the explanatory variables as the count sites. Due to 
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the landscape characteristics of the valleys within the study 
area (e.g. narrow, steep river valleys), we were not able to 
randomly allocate such a large number of pseudo-absences 
sites as recommended by Barbet-Massin et al. (2012).

Digital spatial data layers

We calculated and extracted all environmental variables 
using ArcMap with the Spatial Analyst extension (ver. 9.3; 
Environmental System Research Inst.). Pedersen et al. (2007) 
identified two significant scales for ptarmigan breeding 
habitat selection, a local scale around 200 m for vegetation 
variables, and a larger scale of 1000 m for terrain variables. 
Unless otherwise indicated we hence chose to evaluate 
vegetation variables at scales ranging from 100–500 m, and 
terrain variables ranging from 100–1200 m. Variables were 
calculated using neighbourhood estimates in a quadratic 
moving window with side length equal to the scale (Table 1, 
Supplementary material Appendix Table A2).

Vegetation
We used a digital vegetation map of the Svalbard archipelago 
that was based on unsupervised classification of 11 Landsat 
Thematic mapper scenes (TM/ETM), from July and 
August during the time-period from 1987 to 2000 (spatial 
resolution of 30  30 m; Johansen et  al. 2009, 2012 [see 
their Table 1 for details on the scenes]). This map was not 
available when Pedersen et  al. (2007) developed the first 
regional habitat model. The digital vegetation map consisted 

of 37 vegetation types which were grouped into 19 habitat 
types (Johansen et al. 2009; Supplementary material Appen-
dix Table A1) and later re-classified into 18 habitat types 
(Johansen et  al. 2012). This re-classification did not affect 
the habitat types relevant to ptarmigan spatial distribution 
(Supplementary material Appendix Table A1). We selected 
nine habitat types, which were vegetated or contained 
important landscape elements such as boulder fields and 
rocky areas, known to be important for ptarmigan breeding 
(Unander and Steen 1985, Unander et  al. 1985, Pedersen 
et  al. 2007, 2014a, Wilson and Martin 2008, Zohmann 
and Wöss 2008, Revermann et al. 2012, Nelli et al. 2013). 
The proportion of habitat types and proportion of vegetated 
area was calculated for each of five spatial scales and values  
were extracted for both presence and pseudo-absence sites 
(Table 1, Supplementary material Appendix Table A2).

Terrain
We obtained terrain variables (altitude, aspect, slope and 
‘Vector Ruggedness Measure’ [VRM]; Sappington et  al. 
2007) for both presence and pseudo-absence sites from the 
DEM of Svalbard which is based on aerial photographs (1:50 
000) from 1990 and onwards. The spatial resolution of the 
DEM is 20  20 m and estimated uncertainty is 5–10 m 
(Norwegian Polar Institute 2010). Elevation was extracted 
as a local variable at each site. Slope and VRM were calcu-
lated as mean values for each of six spatial scales (Table 1,  
Supplementary material Appendix Table A2). Aspect was 
categorized in eight directional groups (north  337.5–22.5; 

Figure 1. Map of the study area for the annual population abundance monitoring of Svalbard rock ptarmigan (Lagopus muta hyperborea) 
males (smaller quadrat on Svalbard map). The black circular dots indicate point count monitoring sites (n  148; 141 presence and seven 
absence sites; 2000–2010) and the smaller grey circular dots the pseudo-absence sites generated by Pedersen et al. (2007) (n  368). The 
inset show the Svalbard archipelago with the survey region (black quadrat) and the extrapolation region (black line) for predictive habitat 
modelling.
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most relevant ecological scale for ptarmigan breeding habi-
tat. See previous section for details on predictor variables 
and spatial scales. To arrive at the initial list of candidate 
models, we combined vegetation variables at each of five 
given scales with terrain variables at each of seven differ-
ent scales yielding a total of 35 candidate models. Each of 
these were again combined with HLI at each of four differ-
ent scales, yielding a total of 140 candidate models. Based 
on this, we first explored importance of the habitat type 
predictors (n  9 ecological relevant types; Supplementary 
material Appendix Table A1) at the smallest spatial scale 
(i.e. 100  100 m spatial scale; vegetation characteristics 
are predicted to be most important at ptarmigan fine scale 
habitat selection and foraging scales) in the candidate model 
sets by assessing ‘variable importance’ (VI). This statistic 
was calculated by summarizing the AICc weight values for 
the 40 best models (Anderson 2001). VI ranges from 0 to 
1 with the value of 1 characterizing the most important 
variable. The habitat type ‘established dense Dryas heaths’ 
(Supplementary material Appendix Table A1) was the over-
all most important habitat type (VI  1.00). All other habi-
tat types had VI  0.12, thus we decided only to include this 
habitat type in the subsequent development of candidate 
model sets. Second, we checked for co-linearity between the 
continuous predictor variables, as listed in Table 1, at each 
spatial scale using Pearson’s correlation coefficient. Mean 
slope and mean VRM were highly correlated at all spatial 
scales (maximum r was mostly above 0.70; see Dormann 
et al. 2013) and the variable ‘slope’ was retained for further 
development of candidate model sets for predictive habitat 
modelling. Additionally, we plotted the categorical variables, 
aspect and HLI, for visual inspection of correlative patterns. 
These variables appeared to slightly correlate, but the vari-
able ‘aspect’ was not retained in any of the final model sets 
evaluated for predictive purposes and was subsequently 
ignored. Third, we tested all possible combinations of the 
retained vegetation and terrain predictors, relevant to ptar-
migan breeding ecology, by using the dredge function in the 
R package MuMin (Barton 2009). We described non-linear 
relationships for the retained predictor variables, elevation 

north east  22.5–67.5 etc.; Table 1) and calculated at 
increasing spatial grid cell size as above.

To describe sections within the valleys with high 
incoming radiation and hence likely early snowmelt, we 
calculated a ‘heat load index’ (termed HLI; Parker 1988). 
This index accounts for that the southwest side of a slope 
in northern land areas receives the most heat load during  
24 h. HLI allowed for a distinction between the different 
parts of the characteristic valleys in the study area that con-
tain landscape features, relevant to ptarmigan ecology, which 
is not accounted for by slope and/or aspect alone. HLI was 
based on the extracted slope and aspect values from the DEM 
by calculating cosine (aspect-225)  tan(slope) was aspect 
was expressed as degrees azimuth and slope angle is expressed 
in degrees (Parker 1988). We calculated HLI as mean values 
at increasing spatial grid cell size with the survey site in 
the middle of a quadrat (four spatial scales with sides from 
200 to 800 m; Table 1, Supplementary material Appendix  
Table A2). We therefore categorised HLI into five classes 
capturing the upper north east hill slope, lower north east 
hill slope, valley bottom, lower south west hill slope, and 
upper south west hill slope.

Data analyses

Multi-scale habitat modelling approach
We followed the protocols of Johnson et  al. (2006) and 
developed resource selection functions based on a use-
availability design as described in Pedersen et  al. (2007). 
We developed logistic generalized linear regression candi-
date model sets (glm’s in R < www.r-project.org >) consid-
ering the probability of used sites (n  141 with presence 
of males) versus available sites (n  375; 368 with pseudo-
absence and seven with absence based on point count data) 
as a response variable. We included environmental variables 
related to vegetation (proportion of habitat types and pro-
portion of vegetated area at increasing spatial grid cell size), 
terrain variables (altitude, aspect, slope and VRM) and the 
‘heath load index’ as predictors of male ptarmigan presence 
in a multi-spatial scale modelling framework to identify the 

Table 1. Observed ranges of the environmental variables assessed for probability of presence of territorial Svalbard rock ptarmigan males in 
spring. Observed ranges are from presence and pseudo-absence sites at all spatial study scales. See Supplementary material Appendix 1 Table 
A2 for mean  SD of presences and pseudo-absences sites for variables included in the top ranked habitat model.

Variable Description Observed range

Habitat i Proportion of a habitat type within a quadrat of side lengths i1) 0.0–1.0
Vegetated area i Proportion of vegetated land area within a quadrat of side lengths i 0.0–1.0
Elevation Elevation (masl.) extracted from the 20 m digital elevation model at the count site 0–584
Slope j Mean slope within a quadrat of side lengths j 0–55°
Aspect j Mean aspect within a quadrat of side lengths j2) 1–360°
VRM j Mean vector ruggedness measure within a quadrat of side lengths j3) 0.000–0.112
HLI k Mean heat load index within a quadrat of side lengths k5, 4) –0.666–0.638

i  the survey site was positioned in the middle of a quadrat with side lengths 100, 200, 300, 400 or 500 m. Habitat types are according to 
Supplementary material Appendix 1Table A1.
j  the survey site was positioned in the middle of a quadrat with side lengths 100, 200, 400, 600, 800, 1000 and 1200 m.
k  the survey site was positioned in the middle of a quadrat with side lengths 200, 400, 600 and 800 m.
1) Johansen et al. 2009.
2) Aspect was categorised in eight directional groups and treated as a categorical variable.
3) Sappington et al. 2007.
4) HLI was categorised into five classes capturing upper north east hill slope, lower north east hill slope, valley bottom, south west lower hill 
slope, and south west upper hill slope.
5) Parker 1988.
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Predictive habitat suitability map

The Svalbard archipelago covers 7 degrees latitude and 20 
degrees longitude, and consequently large gradients in grow-
ing season characteristics (e.g. onset of spring, length of the 
growing season; Karlsen et al. 2014). The possibility for ptar-
migans to complete a breeding season is hence highly vari-
able across the archipelago. Thus, models of breeding habitat 
suitability must be extrapolated with care into bioclimatic 
regions not represented in the survey data (Braunisch and 
Suchant 2010, Bain et al. 2015). We therefore chose to limit 
the extrapolation of the habitat model to areas where; 1) the 
growth season starts earlier than 7 July, and 2) the growth 
season is longer than 35 days (Karlsen et al. 2014, Karlsen 
et al. unpubl.). We based our choice on described mean dates 
for onset of incubation (range 15 June to 4 July; Steen and 
Unander 1985) and the fact that chicks forage only on bul-
bils of Bistorta vivipara that needs to be present at the time of 
hatching and during the first few weeks of rearing (Unander 
et al. 1985).

We calculated the habitat suitability raster map for ter-
ritorial males (spatial resolution 100  100 m) using the 
model-building tool in ArcMap (ver. 9.2). Before the cal-
culation we developed a land filter (total 8148 km2), based 
on Pedersen et  al. (2007), consisting of land areas below 
600 m (anticipated to be potential ptarmigan habitat) with-
out glaciers and moraines (a buffer of 1 km was set around 
moraine areas). The map describes habitat suitability on a 
scale from 0 (not suitable) to 1 (highly suitable) and for visu-
alization we categorized habitat suitability into four classes 
(marginal 0–0.099, low 0.10–0.399, medium 0.40–0.699, 
high 0.70–1.00). The flat valley bottoms and mountain pla-
teaus ( 600 m) were natural borders between the lowest 
habitat suitability classes (classes marginal and low), and 
the remaining values from 0.1–1.0 were divided into three 
habitat suitability classes.

Results

The selected habitat model for probability of territorial male 
presence contained four significant environmental predic-
tors variables related to vegetation at the smallest spatial scale 
(foraging) and terrain characteristics at landscape scales ( 
territory; see Unander and Steen (1985) for territory sizes). 
All other competing models had a ΔAICc larger than 2 (Table 
2). The best model contained the habitat type ‘established 
dense Dryas heaths’ at the smallest spatial scale (100  100 m),  
elevation at ptarmigan survey site (m a.s.l.), slope 
(1000  1000 m) and the ‘heath load index’ (600  600 
m) at landscape scales (Table 2, Supplementary material 
Appendix Table A2). Increasing amount of the habitat type 
‘established dense Dryas heaths’ influenced habitat suitabil-
ity positively (Fig. 2, Supplementary material Appendix  
Table A2). Male presences decreased with elevation and the 
highest occurrence was in gentle sloping landscapes of inter-
mediate steepness (10–25°) in the upper southwest facing 
part of the mountain slopes that receive the most heat load 
(Fig. 2, Supplementary material Appendix Table A2). The 
probability of male presence was approximately 3.5 times 
higher in upper southwest facing slopes compared to the 

and slope, using second order polynomials. Interaction 
terms (i.e. multiplicative terms for continuous variables, 
centred to mean 0) altitude  slope was only tested in the 
final candidate model set, however, there was no evidence 
for this interaction and we subsequently ignored it.

We selected the final habitat model using AICc and differ-
ences in delta AICc (Burnham and Anderson 2004). When 
difference in delta AICc was less than two units, we retained 
the simplest model. We also report AICc weights and residual 
deviance for the ranked models, and model coefficients for 
the selected habitat model. We checked the final model for 
spatial autocorrelation following Pedersen et al. (2007) using 
the package ncf and the function ‘correlog’ for R (Bjørnstad 
2009), and calculated the degree of spatial autocorrelation in 
the model residuals at increasing spatial distance from zero 
to 30 000 m (increment 2000 m). The spatial autocorrela-
tion coefficient decreased with increasing spatial scale and 
was always below 0.12 (range 0–1), thus we subsequently 
ignored spatial autocorrelation in the final predictive habitat 
model. We showed the effect of each predictor variable in 
the final model on the predicted probability of territorial 
male presence by marginal model plots (95% confidence 
intervals), based on predicted values and marginal residuals, 
for each level of the HLI. To do so we let the predictor vari-
able take a set of values from the data while we held the other 
variables constant at an average values.

Habitat model evaluation
To assess discriminatory ability of the final habitat model, 
we calculated the threshold-independent ‘receiver opera-
tor characteristic’ (ROC) curve and the ‘associated area 
under the curve’ (AUC) (Pearce and Ferrier 2000) using the 
presence–absence library for R (Freeman and Moisen 2008) 
and the ‘true skill statistic’ (TSS) (Allouche et al. 2006) using 
the R BIOMOD package. The AUC describes the discrimi-
nation capacity ranging from 0.5 (models with no discrimi-
nation ability) to 1.0 (models with perfect discrimination) 
(Pearce and Ferrier 2000). The TSS range from –1 to  1 
where the latter indicates perfect agreement and values of 
zero and less indicate a performance no better than random. 
Since we lacked an independent data set for ptarmigan male 
presence, we followed the protocols developed by Pedersen 
et  al. (2007, 2014a) that internally cross-validated predic-
tive accuracy (i.e. proportion of observations correctly clas-
sified in a random sample of data) using a 25 fold internal 
cross-validation implemented in the library DAAG for R 
(Maindonald and Braun 2012). Cross-validated estimates 
are presented as mean  standard deviation of the iterative 
runs.

Goodness of fit of the final model was assessed by calculat-
ing Nagelkerke’s R2 which quantifies the power of explana-
tion of the model by comparing the null model to the fitted 
model (i.e. the smaller this ratio, the greater the improvement 
and the higher the R-squared) (Nagelkerke 1991). We also 
checked for over-dispersion in the final model (i.e. presence 
of greater dispersion in a data set than would be expected 
according to the statistical model in use) by calculating  
phi from the R library MASS (Venables and Ripley 2002). 
A phi-value (sum residuals [model, type  “pearson”]^2)/
df.residual (model)) close to one indicates no over-dispersion. 
We found no lack of fit in our final model (phi  0.96).
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that the model has a good ability to discriminate correctly 
between the presence (used sites) and pseudo-absence (avail-
able sites) (i.e. 84 % of the sites were classified correctly) 
(Fig. 3). The TSS (0.52) of the best model also supported 
this result. The proportion of correctly classified observation 
(internal cross-validation for predictive accuracy) ranged 

lowland valley bottom (odds ratio south-west upper hill 
slope / valley  3.49, 95 CI [1.56, 7.80]; other odds ratios 
are not reported since they were not significant).

The selected habitat model attained a Nagelkerke’s R2 of 
0.41, which indicates that the model has relatively high power 
of explanation. The AUC score of the model (0.84) indicates 

Table 2. List of the five best candidate habitat models for probability of presence of territorial Svalbard rock ptarmigan males in spring 
according to differences in Akaike’s information criterion corrected for small sample size (∆AICc) and AICweights. The spatial scales of the 
variable in meter are in parentheses. Np  number of parameters estimated. The model in bold was selected for predictive habitat 
modelling.

Model Altitude Altitude2

Habitat type 
Established dense 

Dryas heath 
(100  100)

Heat load 
index 

(600  600)
Slope 

(1000  1000)
Slope2 

(1000  1000) Np AICc ∆AICc

AICc 
weights

Residual 
deviance (df)

1 X X X X X X 10 454.85 0.00 0.775 434.42 (506)
2 X X X – X X 6 458.48 3.63 0.126 446.31 (510)
3 X – X X X X 9 460.32 5.47 0.050 441.96 (507)
4 X X – X X X 9 461.51 6.66 0.028 443.15 (507)
5 X – X – X X 5 462.15 7.30 0.020 452.03 (511)

Figure 2. Marginal plots for the fitted logistic regression model for probability of Svalbard rock ptarmigan male presence. The effect of each 
predictor variable on the predicted probability of male presence is shown by letting the predictor take a set of values from the data while 
the other variables are held constant on average values. Effect sizes are shown by shaded 95% confidence intervals for each level of the 
categorical ‘heat load index’ (HLI) variable. Valley  valley bottom; NE_up  upper northeast hill slope; NE_low  lower northeast hill 
slope bordering the valley bottom; SW_up  southwest upper hill slope; SW_low  lower northeast hill slope bordering the valley 
bottom.
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high quality forage for the ptarmigan in the winter months 
(Unander and Steen 1985, Unander et  al. 1985). When 
males return to the territory in late March and early April 
they ingest the small greenish leaves of Dryas octopetala along 
with plant parts of the wide spread Salix polaris and Saxifraga 
oppositifolia (Unander et  al. 1985). These plants are acces-
sible along the hill slopes and up towards the exposed ridge 
habitat with less snow accumulation (Elvebakk 1994). Our 
multi-scale modelling approach identified that the terrain 
attributes, elevation at count site and slope (1000  1000 m)  
which represented a landscape level spatial scale ( ter-
ritory scale), were better predictors of ptarmigan presence 
than more local scale estimates (Fig. 2). This corresponds to 
findings in Pedersen et al (2007) and is reflected in habitat 
studies from elsewhere in the distribution range that demon-
strate the importance of rocky, sloping areas in medium to 
high altitudes for ptarmigan spatial distribution (Zohmann 
and Wöss 2008, Schweiger et  al. 2012, Pedersen et  al. 
2014a). In contrast to Pedersen et  al. (2007), we selected 
a predictor based on slope rather than terrain ruggedness. 
Both variables were highly correlated. Terrain ruggedness 
is likely closer linked to terrain heterogeneity and probably 
associated vegetation diversity (Kudo 1991), which is impor-
tant in rock ptarmigan habitat selection (Revermann et al. 
2012, Schweiger et  al. 2012), slope might better capture 
the topographic terrain characteristics predominant in our 
study area, and indeed in most of the larger glacial valleys on 
Spitsbergen. Here the landscape is dominated by e.g. large 
valley systems, with an elevational habitat gradient spanning 
from tundra mires in the valley bottom to exposed ridges 
in the upper part of the hill slope, interspersed by glaciers 
(Elvebakk 1994). The significant second-order polynomial 
term suggested a peak in habitat suitability at lower eleva-
tions in gentle sloping landscapes of intermediate steepness 
(10–25°; not present at flat homogenous areas nor in the 
steepest parts of the mountain slopes; Fig. 2). This complies 

from 0.7968 to 0.8183 (mean [ standard deviation] for 25 
iterative runs  0.8070 [ 0.0053]).

Extrapolating the best habitat model to most of Spitsber-
gen (Fig. 4) yielded only a small proportion of the vegetation 
covered land area (∼3.9%) to be highly suitable for ptarmi-
gan breeding territories (Table 4).

Discussion

The predictive habitat model for probability of territo-
rial Svalbard rock ptarmigan male presence at the scale of 
Spitsbergen had a high predictive ability (AUC  0.84), and 
patterns of habitat use were consistent with the previous 
regional habitat model of Pedersen et al. (2007). Our refined 
habitat model was, however, able to better link presence of 
males to a particular habitat type, ‘established dense Dryas 
heaths’ at a smaller spatial scale related to forage plants, and 
to discriminate between terrain exposure which influence 
snow accumulation and snowmelt patterns important to 
territory establishment and breeding on the landscape scale 
(Fig. 2, Table 2). The best habitats were confined to nar-
row vegetated areas, in southwest facing slopes of intermedi-
ate elevation and steepness. Only a small proportion of the 
vegetation covered land area (∼ 3.9%) was of high-quality 
breeding habitat (Fig. 4, Table 3).

We were able to identify one particular habitat type at a 
smaller spatial scale (100  100 m) comparable to the previ-
ous regional habitat model by Pedersen et  al. (2007) that 
identified increasing amount of vegetated xeric slopes at a 
larger scale (200  200 m) to be an important predictor of 
ptarmigan breeding habitat. Vegetation cover in form of 
‘established dense Dryas heat’ (Fig. 2) increased the habitat 
suitability relative to the overall available habitat types across 
all sections of the landscape. While poor in terms of plant 
species diversity (Johansen et  al. 2009, 2012), it contains 
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Figure 3. Summary statistics for model evaluation of the selected habitat model for predicting probability of presence of territorial Svalbard 
rock ptarmigan males. Left panel: observed proportion of sites with presences plotted against predicted proportion of sites with presence. 
Right panel: the ‘associated area under the curve’ (AUC) between 0.8 and 0.9 indicates good discrimination capacity (Pearce and Ferrier 
2000). The absence and pseudo-absence sites were distributed as follows: marginal 0–0.099, presence (P)  6% (note that this might 
happened by chance be due to our way of selecting habitat suitability classes) and absence (A)  94%; low suitability 0.10–0.399, P  24%, 
A  76%; medium suitability 0.40–0.699, P  51%, A  49%; high suitability 0.70–1.00, P  78%, A  22%.
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Figure 4. Predicted habitat suitability (i.e. presence of territorial males in spring) of Svalbard rock ptarmigan on Spitsbergen, Svalbard, 
Norway. The black line show the delineation of the extrapolation region.

Table 3. Parameter estimates and standard error (SE) for the predictor variables in the selected habitat model for probability of presence of 
territorial Svalbard rock ptarmigan males in spring . Reference level was set to the categorical class ‘valley bottom’ of the heat load index. 
The estimates are differences (contrasts) between the intercept and the estimated effect. Estimates (SE) in bold are statistical significant  
(*p  0.01; **p  0.001; ***p  0). See Fig. 2 for marginal plots of the fitted logistic regression model for probability of Svalbard rock 
ptarmigan male presence.

Predictor Level Estimate SE

Elevation (at site) 0.002164 0.004842
Elevation2 (at site) –0.00002906* 0.00001147
Habitat type (100  100 m) Established dense Dryas heath 2.071** 0.683
Slope (1000  1000 m) 0.4463*** 0.0822
Slope2 (1000  1000 m) –0.01406*** 0.00286
Heat load index (HLI) intercept (valley bottom) –3.142*** 0.356

upper northeast hill slope 0.350 0.389
lower northeast hill slope 0.006 0.370
lower southwest hill slope 0.446 0.379
upper southwest hill slope 1.251** 0.402
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of lowland areas also on the eastern islands on Svalbard will 
experience similar climatic conditions to the ones found in 
our western study area today. Future collection of field data 
from regions outside the extrapolation region is required to 
validate the model and to predict across larger areas.

Extrapolating the habitat model to Spitsbergen identi-
fied only a small proportion (∼ 3.9%) of the land area highly 
suitability as breeding habitat (Table 4), which is consistent 
with the previous regional habitat model (Pedersen et  al. 
2007). This implies that breeding habitat availability is 
limited also on a very large scale and may restrict the spa-
tial distribution of this high-arctic ptarmigan sub-species. 
Several lines of evidence point to the Svalbard rock ptarmi-
gan is limited by shortage of territories sufficiently attractive 
for breeding (Unander and Steen 1985, Pedersen et al. 2012, 
2014b). This implies that habitat limitation, besides preda-
tion (Steen and Unander 1985, Prestrud 1992) and climatic 
variability (Steen and Unander 1985, Hansen et al. 2013), is 
an important factor in determining the size of the breeding 
population.

Our multi-scale habitat modelling approach identified 
relevant predictors (Fig. 2, Table 2) and their important eco-
logical scales that ultimately determine the spatial distribu-
tion of suitable breeding habitats across a large high-arctic 
island (Fig. 4). Recent studies have demonstrated the use of 
predictive habitat suitability models for rock ptarmigan as 
tools to guide and inform science-based planning, manage-
ment and monitoring (Booms et  al. 2011, Pedersen et  al. 
2012, Revermann et  al. 2012, Zohmann et  al. 2013). For 
instance, Revermann et al. (2012) predicted future changes 
in habitat availability and consequences for rock ptarmigan 
distributions and demonstrated the importance of adapting 
conservation strategies to a dynamic environment. Zohmann 
et  al. (2013) suggested combining habitat suitability with 
abundance data of rock ptarmigan from different points in 
time to evaluate changes in habitat suitability and species 
distribution over time. Booms et al. (2011) assessed changes 
in rock ptarmigan and gyrfalcon habitat suitability (funda-
mental niches) over a 200-year time-period and detected 
substantial environmental changes influencing long-term 
population viability and predator–prey interactions. Finally, 
Pedersen et  al. (2012) stratified survey sites for long-term 
population abundance monitoring according to habitat 

with the studies of Unander and Steen (1985) and with rock 
ptarmigan habitat requirements in other distant parts (e.g. 
the Alps and northern Sweden), although with contrasting 
environmental conditions of the rock ptarmigan distribution 
ranges (Revermann et al. 2012, Schweiger et al. 2012, Nelli 
et  al. 2013, Pedersen et  al. 2014a). In Svalbard, Unander 
and Steen (1985) described the breeding territories to be on 
slopes, including ridges and one or more small gulleys, with 
at least one steep rocky area. These terrain characteristics 
combined with a good view of the surroundings, along with 
shelter, cover and good drainage makes the nesting grounds.

The inclusion of the ‘heat load index’ by Parker (1988), 
as a proxy of snow-melting patterns, enabled us to relate 
and refine habitat suitability to sections of the landscape 
with different levels of sun exposure (Fig. 2). The categori-
cal HLI variable at this scale (600  600 m) likely captured 
the topographic characteristics of the wide glacial valleys 
(e.g. sloping mountain sides, ridges and v-shaped side river 
valleys and scars), and allows a relevant ecological distinction 
between the lower and upper parts of the mountain slopes 
and the valley bottom with different exposure. This is an 
improvement relative to the previous regional habitat model 
(Pedersen et al. 2007) where there was no difference in habi-
tat suitability in landscapes with different terrain exposure. 
The increasing habitat suitability in upper southwest facing 
slopes is likely related to the importance of snow free patches 
and early thaw for territory establishment, as qualitatively 
described by Unander and Steen (1985) to favor territory 
establishment. They found a higher proportion of territories 
occupied by pairs and higher reproductive output in areas 
with early thaw as compared to areas with late thaw, and sug-
gested that the quality of the male territory likely is the most 
important selective criterion for the hen and thus a good 
signal of the reproductive fitness of the male (Unander and 
Steen 1985). Our habitat model indeed supports their results 
and underlines the importance of snow cover (i.e. snow free 
patches) and spring onset. Such factors are major structuring 
determinants of habitat and forage availability and reproduc-
tion of many arctic species (Meltofte et al. 2008, van der Wal 
and Hessen 2009, Callaghan et al. 2011, Jensen et al. 2014). 
Ultimately, they may determine the spatial and temporal 
distribution of the Svalbard rock ptarmigan.

The selected habitat model had a high power of explana-
tion of male rock ptarmigan presence in spring (Nagelkerke’s 
R2  0.41), and the predictive ability of the model was good 
(∼8.5 out of 10 presence or absence sites were predicted 
correctly; Pearce and Ferrier 2000). The current model 
attained better predictive performance (AUC  0.84, Fig. 
3; TSS  0.52) and predictive accuracy (mean [ standard 
deviation] for 25 iterative runs  0.8070 [ 0.0053]) than 
the previous regional habitat model by Pedersen et al. (2007; 
see their Table 4), although methods for evaluation statistics 
differed. Despite the high predictive power, we limited model 
extrapolation to Spitsbergen due to the lack of independent 
validation data from other regions. Certain areas outside 
Spitsbergen have comparable climatic and environmental 
conditions to the survey area, in particular parts of Edgeøya, 
likely contain ptarmigan habitats. Indeed, considering the 
predicted changes in the growth season (Xu et al. 2013) and 
the close relations between plant biomass and summer tem-
perature (van der Wal and Stien 2014), a larger proportion 

Table 4. Summary of land cover statistics for probability of territorial 
Svalbard rock ptarmigan male presence in the extrapolation region 
on Spitsbergen, Svalbard, Norway. Habitat suitability classes are 
calculated from the predictive habitat model (Fig. 4).

Habitat suitability Area (km2) Percent (%) land area1)

High (0.7–1.0) 510.5 3.9
Fair (0.4–0.699) 1402.0 10.8
Low (0.1–0.399) 1983.0 15.3
Marginal (0–0.099) 3051.6 23.6
Not-classified2) 5989.9 46.3
Total land area 12937 –

1) Land area is calculated from Johansen et al. (2009) subtracting 
categories containing sea, lakes, rivers, glaciers and permanent 
snowfields.
2) This class contains the area of glaciers, moraines and other land 
areas above 600 m (i.e. not included in the land filter; see method 
section) that was not considered in the habitat model.
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Braunisch, V. and Suchant, R. 2010. Predicting species distribu-
tions based on incomplete survey data: the tradeoff between 
precision and scale. – Ecography 33: 826–840.

Burnham, K. P. and Anderson, D. R. 2004. Multimodel inference 
– understanding AIC and BIC in model selection. – Sociol. 
Meth. Res. 33: 261–304.

Callaghan, T. V. et  al. 2011. Arctic cryosphere: changes and 
impacts. – Ambio 40: 3–5.

DeBeer, C. M. and Pomeroy, J. W. 2009. Modelling snow melt 
and snowcover depletion in a small alpine cirque, Canadian 
Rocky Mountains. – Hydrol. Process 23: 2584–2599.

Dormann, C. F. et al. 2013. Collinearity: a review of methods to 
deal with it and a simulation study evaluating their perform-
ance. – Ecography 36: 27–46.

Drew, C. A. et  al. (eds) 2011. Predictive species and habitat 
modeling in landscape ecology: concepts and applications.  
– Springer.

Elvebakk, A. 1994. A survey of plant associations and alliances 
from svalbard. – J. Veg. Sci. 5: 791–802.

Elvebakk, A. 1999. Bioclimatic delimitation and subdivision of the 
Arctic. – In: Nordal, I. and Razzhivin, Y. Z. (eds), The species 
concept in the high north – a panarctic flora initiative. Norske 
Videnskaps-Akademi, pp. 81–112.

Elvebakk, A. 2005. A vegetation map of Svalbard on the scale 1 : 
3.5 mill. – Phytocoenologia 35: 951–967.

Freeman, E. and Moisen, G. 2008. PresenceAbsence: an R package 
for presence–absence model evaluation. – J. Stat. Softw. 11: 
1–31.

Fuglei, E. et al. 2017. Hidden in the darkness of the Polar night: 
a first glimpse into winter migration of the Svalbard rock 
ptarmigan. – Wildl. Biol. 2017: wlb.00241.

Førland, E. J. et  al. 2012. Temperature and precipitation 
development at Svalbard 1900-2100. – Adv. Meterol. 2012: 
1–14.

Graf, R. F. et al. 2005. The importance of spatial scale in habitat 
models: capercaillie in the Swiss Alps. – Landscape Ecol. 20: 
703–717.

Hacohen-Domene, A. et  al. 2015. Habitat suitability and 
environmental factors affecting whale shark (Rhincodon typus) 
aggregations in the Mexican Caribbean. – Environ. Biol. Fishes 
98: 1953–1964.

Hansen, B. B. et  al. 2013. Climate events synchronize the  
dynamics of a resident vertebrate community in the High 
Arctic. – Science 339: 313–315.

Henden, J. A. 2017. Changed Arctic-alpine food web interactions 
under rapid climate warming: implications for ptarmigan 
research. – Wildl. Biol. 2017: wlb.00240.

Jensen, R. A. et  al. 2008. Prediction of the distribution of  
Arctic-nesting pink-footed geese under a warmer climate 
scenario. – Global Change Biol. 14: 1–10.

Jensen, G. H. et  al. 2014. Snow conditions as an estimator of  
the breeding output in high-Arctic pink-footed geese Anser 
brachyrhynchus. – Polar Biol. 37: 1–14.

Johansen, B. et al. 2009. Vegetasjonskart over Svalbard. Dokumen-
tasjon av metoder og vegetasjonsbeskrivelser. – NINA Rapport 
456: 57, in Norwegian.

Johansen, B. E. et  al. 2012. Vegetation mapping of Svalbard 
utilising Landsat TM/ETM plus data. – Polar Rec. 48:  
47–63.

Johnson, C. J. et al. 2006. Resource selection functions based on 
use-availability data: theoretical motivation and evaluation 
methods. – J. Wildl. Manage. 70: 347–357.

Jonzen, N. et al. 2001. Harvesting spatially distributed populations. 
– Wildl. Biol. 7: 197–203.

Karlsen, S. R. et al. 2014. Spatial and temporal variability in the 
onset of the growing season on Svalbard, Arctic Norway  
– measured by MODIS-NDVI Satellite Data. – Remote Sens. 
6: 8088–8106.

suitability. These examples from different rock ptarmigan 
populations demonstrate the applicability and importance 
of having a basic understanding of spatial distribution at sev-
eral spatial and temporal ecological scales to address conser-
vation, management and monitoring questions.

The Svalbard rock ptarmigan is a highly attractive 
endemic game species where most of the offtake comes from 
the local breeding population (Soininen et al. 2016, Fuglei 
et al. 2017), and the current size of the surplus fraction of 
the population is unknown (Pedersen et al. 2014b, Soininen 
et al. 2016). It also appears in low densities (Pedersen et al. 
2014b, Soininen et  al. 2016) with low annual survival 
(Unander et al. 2015), has restricted availability of breeding 
habitat (Pedersen et al. 2007 and this article) and is likely 
vulnerable to climate change (Henden et al. 2017). In such 
contexts, we suggest our predictive habitat model, combined 
with hunting statistics (Soininen et al. 2016), to be used in 
harvest management of the species so that hunting quotas 
and efforts are adjusted to habitat suitability (i.e. indica-
tive of reproductive potential) at the scale of a hunting area. 
A spatial harvesting approach, with protected core areas, 
could avoid potential accelerating of over harvest, which 
is commonly characteristic of quota-based harvest systems 
(McCullough 1996, Jonzen et al. 2001).

Acknowledgements – We thank especially Stein-Rune Karlsen for 
allowing access to partly unpublished digital data on the start and 
end of the growing season and scientific advice, Nigel G. Yoccoz for 
valuable statistical assistance, Anders Skoglund for GIS support, 
Virve Ravolainen for detailed information on vegetation types and 
Leif Einar Støvern for use of a photo.
Funding – The Svalbard Environmental Protection Fund, the 
Norwegian Polar Inst. and the Norwegian Institute for Nature 
Research provided funding for this study.

References

Allouche O. et al. 2006. Assessing the accuracy of species distribu-
tion models: prevalence, kappa and the true skill statistic 
(TSS). – J. Appl. Ecol. 43: 1223–1232.

Anderson, D. R. 2001. The need to get the basics right in wildlife 
field studies. – Wildl. Soc. Bull. 29: 1294–1297.

Bain, K. et al. 2015. Risks in extrapolating habitat preferences over 
the geographical range of threatened taxa: a case study of the 
quokka (Setonix brachyurus) in the southern forests of Western 
Australia. – Wildl. Res. 42: 334–342.

Barbet-Massin M. et al. 2012. Selecting pseudo-absences for species 
distribution models: how, where and how many? – Methods 
Ecol. Evol. 3: 327–338.

Barton, K. 2009. MuMIn: multi-model inference. – R package ver. 
0.12.2/r18. < http://R-Forge.R-project.org/projects/mumin >.

Bean, W. T. et  al. 2014. A multi-scale distribution model for  
non-equilibrium populations suggests resource limitation in  
an endangered rodent. – PLoS One 9(9): e106638.

Bjørnstad, O. N. 2009. ncf: spatial nonparametric covariance 
functions. – R package ver. 1.1-3. < http://CRAN.R-project.
org/package = ncf >.

Booms, T. M. et  al. 2011. Linking Alaska’s predicted climate, 
Gyrfalcon and ptarmigan distributions in space and time: a 
unique 200-year perspective. – In: Watson, R. T. et al. (eds), 
Gyrfalcons and ptarmigan in a changing World. The Peregrine 
Fund, vol. 12, pp. 177–190.

Downloaded From: https://complete.bioone.org/journals/Wildlife-Biology on 07 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



11

Sappington, J. M. et al. 2007. Quantifying landscape ruggedness 
for animal habitat analysis: a case study using bighorn sheep 
in the Mojave Desert. – J. Wildl. Manage. 71: 1419–1426.

Schweiger, A. K. et al. 2012. Small-scale habitat use of black grouse 
(Tetrao tetrix L.) and rock ptarmigan (Lagopus muta helvetica 
Thienemann) in the Austrian Alps. – Eur. J. Wildl. Res. 58: 
35–45.

Sharma, S. et al. 2009. Impacts of climate change on the seasonal 
distribution of migratory caribou. – Global Change Biol. 15: 
2549–2562.

Soininen, E. et al. 2016. Complementary use of density estimates 
and hunting statistics: different sides of the same story? – Eur. 
J. Wildl. Res. 62: 151–160.

Speed, J. D. M. et  al. 2009. Predicting habitat utilization and 
extent of ecosystem disturbance by an increasing herbivore 
population. – Ecosystems 12: 349–359.

Steen, J. B. and Unander, S. 1985. Breeding biology of the Svalbard 
rock ptarmigan Lagopus mutus hyperboreus. – Ornis Scand. 16: 
191–197.

Storch, I. 2002. On spatial resolution in habitat models: can small-
scale forest structure explain capercaillie numbers? – Conserv. 
Ecol 6(1): 6.

Unander, S. and Steen, J. B. 1985. Behavior and social structure 
in Svalbard rock ptarmigan Lagopus mutus hyperboreus. – Ornis 
Scand. 16: 198–204.

Unander, S. et al. 1985. Seasonal changes in crop content of the 
Svalbard ptarmigan Lagopus mutus hyperboreus. – Polar Res. 3: 
239–245.

Unander, S. et  al. 2015. Populations on the limits: survival of 
Svalbard rock ptarmigan – J. Ornithol. 157: 407–418.

van der Wal, R. and Hessen, D. O. 2009. Analogous aquatic and 
terrestrial food webs in the high Arctic: the structuring force 
of a harsh climate. – Perspect. Plant Ecol. Evol. Syst. 11: 
231–240.

van der Wal, R. and Stien, A. 2014. High arctic plants like it hot: a 
long term investigation of between-year variability in plant bio-
mass across habitats and species. – Ecology 95: 3414–3427.

Venables, W. N. and Ripley, B. D. 2002. Modern applied statistics 
with S, 4th edn. – Springer.

Wilson, S. and Martin, K. 2008. Breeding habitat selection of 
sympatric white-tailed, rock and willow ptarmigan in the 
southern Yukon Territory, Canada. – J. Ornithol. 149:  
629–637.

Wisz, M. S. and Guisan, A. 2009. Do pseudo-absence selection 
strategies influence species distribution models and their 
predictions? An information-theoretic approach based on 
simulated data. – BMC Ecol. 9: 8.

Xu, L. et  al. 2013. Temperature and vegetation seasonality 
diminishment over northern lands. – Nat. Clim. Change 3: 
581–586.

Zohmann, M. and Wöss, M. 2008. Spring density and summer 
habitat use of alpine rock ptarmigan Lagopus muta helvetica 
in the southeastern Alps. – Eur. J Wildl. Res. 54: 379–383.

Zohmann, M. et al. 2013. Modelling habitat suitability for alpine 
rock ptarmigan (Lagopus muta helvetica) combining object-
based classification of IKONOS imagery and habitat suitability 
index modelling. – Ecol. Model. 254: 22–32.

Kudo, G. 1991. Effects of snow-free period on the phenology of 
alpine plants inhabiting snow patches. – Arctic Alpine Res. 23: 
436–443.

Lawler, J. J. et  al. 2011. Using species distribution models for 
conservation planning and ecological forecasting. – In: Drew, 
C. A. et  al. 2011. (eds), Predictive species and habitat 
modeling in landscape ecology: concepts and applications. 
Springer, pp. 271–290.

Løvenskiold, H. L. 1964. Avifauna Svalbardensis. – Norsk 
Polarinstitutt Skrifter 129.

Maindonald, J. and Braun, W. J. 2012. DAAG: Data analysis and 
graphics data and functions. – R package ver. 1.12. < http://
CRAN.R-project.org/package = DAAG >.

Mayor, S. J. et  al. 2009. Habitat selection at multiple scales.  
– Ecoscience 16: 238–247.

McCullough, D. R. 1996. Spatially structured populations and 
harvest theory. – J. Wildl. Manage. 60: 1–9.

Meltofte, H. et  al. 2008. High-arctic ecosystem dynamics in a 
changing climate – ten years of monitoring and research at 
Zackenberg Research Station, northeast Greenland – introduc-
tion. – In: Meltofte, H. et al. (eds), Adv. Ecol. Res., Vol 40. 
High-Arctic ecosystem dynamics in a changing climate. 
Elsevier Academic Press Inc, pp. 1–12.

Nagelkerke, N. J. D. 1991. A note on a general definition of the 
coefficient of determination. – Biometrika 78: 691–692.

Nelli, L. et al. 2013. Habitat selection by breeding rock ptarmigan 
Lagopus muta helvetica males in the western Italian Alps.  
– Wildl. Biol. 19: 382–389.

Parker, K. C. 1988. Environmental relationships and vegetation 
associates of columnar cacti in the northern sonoran desert. 
– Vegetatio 78: 125–140.

Pearce, J. and Ferrier, S. 2000. Evaluating the predictive perform-
ance of habitat models developed using logistic regression.  
– Ecol. Model. 133: 225–245.

Pedersen, Å. Ø. et al. 2007. Ecological correlates of the distribution 
of territorial Svalbard rock ptarmigan (Lagopus muta 
hyperborea). – Can. J. Zool. 85: 122–132.

Pedersen, Å. Ø. et al. 2012. Monitoring Svalbard rock ptarmigan: 
distance sampling and occupancy modeling. – J. Wildl. 
Manage. 76: 308–316.

Pedersen, Å. Ø. et  al. 2014a. Rock ptarmigan (Lagopus muta) 
breeding habitat use in northern Sweden. – J. Ornithol. 155: 
195–209.

Pedersen, Å. Ø. et  al. 2014b. Experimental harvest reveals the 
importance of territoriality in limiting the breeding population 
of Svalbard rock ptarmigan. – Eur. J. Wildl. Res. 60:  
201–212.

Pernollet, C. A. et  al. 2015. Regional changes in the elevational 
distribution of the Alpine rock ptarmigan Lagopus muta hel-
vetica in Switzerland. – Ibis 157: 823–836.

Prestrud, P. 1992. Food-habits and observations of the hunting 
behavior of arctic foxes, Alopexlagopus, in Svalbard. – Can. 
Field Nat. 106: 225–236.

Revermann, R. et al. 2012. Habitat at the mountain tops: how long 
can rock ptarmigan (Lagopus muta helvetica) survive rapid 
climate change in the Swiss Alps? A multi-scale approach. – J. 
Ornithol. 153: 891–905.

Supplementary material (available online as Appendix wlb-
00239 at < www.wildlifebiology.org/appendix/wlb-00239 >). 
Appendix 1.

Downloaded From: https://complete.bioone.org/journals/Wildlife-Biology on 07 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use


