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Abstract. Oviposition site selection directly affects biological fitness and is related to a large number of environmental factors. A conserved 
trait that constrains oviposition site selection in tree frogs is the laying of clutches in vegetation overhanging water bodies. Some factors 
that determine oviposition site selection in tree frogs are presence of predators, water temperature, desiccation risk, laying substrate, and 
the chemical traits of the water body. Agalychnis moreletii and A. callidryas are widespread throughout Central America, but their populations 
are declining due to deforestation, presence of pathogens, species smuggling, and changes in rainfall patterns caused by global warming. 
We studied the oviposition site selection of the aforementioned species in four sympatric sites in southern Mexico. We characterized the 
vegetation, pond area and depth, temperature, and precipitation of the four sites. Each site was visited three times per week for 4 mo to 
record clutch development and condition, the number of eggs, substrate species, distance to the pond, and sunlight incidence. We detected 
a total of 404 clutches of both species in all study sites. We used generalized linear models to explore the differences among sites and 
determine which variables most affected clutch condition. We found significant differences in vegetation structure and pond area and depth 
among sites. Oviposition site selection was observed at two different scales, and reproductive success was determined by precipitation, light 
incidence, and substrate availability. The non-random oviposition site selection suggests that both species rely on primary forest structure 
for a successful reproduction. This information emphasizes the prominent role of primary forest complexity in the reproductive success of 
these species.

Keywords. Amphibians; Clutch desiccation; Fungal predation; Global site factor; Phyllomedusinae; Reproductive success.

INTRODUCTION

Oviposition site selection (OSS) is crucial to main-
tain demographic processes in oviparous species because 
it has a direct effect on their reproductive success (Rese-
tarits, 1996; Refsnider and Janzen, 2010; Abbott and Du-
kas, 2016), which, in turn, is critical for threatened spe-
cies. For amphibians in particular, knowledge of the OSS 
process is fundamental to develop successful, long-term 
conservation and management plans (Semlitsch, 2002).

Generally, reproduction is an energetically demand-
ing process (Reznick et al., 2000) that can involve the ac-
quisition and storage of resources for gamete production 
and maturation (Glazier, 2000; Reznick et al., 2000), mate 
selection (Watson et al., 1998; Gavrilets et al., 2001), ter-
ritory and hatchling defense (Márquez-Luna et al., 2015), 
and OSS (Santos et al., 2010). OSS is considered to be criti-
cal for individual fitness and under intense selection pres-
sures (Refsnider and Janzen, 2010); however, although 
OSS is under strong selection, it is highly dependent on 
environmental conditions (which can be highly variable 

within and among years due to natural or induced factors) 
selecting for high phenotypic plasticity (Höbel, 2008). 
Therefore, OSS is a behavioral life history trait that var-
ies widely within and among species (Resetarits, 1996; 
Madsen and Shine, 1999). Several non-mutually exclusive 
hypotheses have been proposed to explain why there is 
strong selection for oviposition site, including (1) to max-
imize embryo survival, (2) to maximize parental survival, 
(3) to modify offspring phenotype, (4) to provide suitable 
resources for offspring, (5)  to maintain philopatry, and 
(6) as an indirect consequence of mate choice (Refsnider 
and Janzen, 2010). However, each hypothesis might in-
volve several environmental factors that influence OSS 
(Refsnider and Jazen, 2010).

Among oviparous fishes and amphibians, repro-
duction is particularly complex because oviposition sites 
must be appropriate for external fertilization (Browne 
et al., 2015), embryonic development, hatching, and lar-
val development (Bowcock et  al., 2009). Furthermore, 
most amphibian life cycles have developmental stages 
that occur under highly divergent environmental condi-
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tions (e.g., aquatic egg and tadpole in water, terrestrial 
post-metamorphs; McDiarmid and Altig, 1999). These 
dissimilar conditions might act as differential selective 
pressures, but most amphibians have a strong depen-
dence on water bodies. Hence, environmental humidity, 
precipitation, and unpolluted water bodies are critical 
to amphibian reproduction and development in order to 
maintain their populations (McDiarmid and Altig, 1999; 
Wells, 2010).

Offspring survival, which is closely related to suit-
able conditions for development, can be affected by sever-
al selective pressures that can act simultaneously on OSS, 
such as presence and abundance of predators, conspecific 
occurrence, temperature, and desiccation risk (Resetarits 
and Wilbur, 1989; Egan and Paton, 2004; Vredenburg, 
2004). Specifically in hylid tree frogs, laying clutches on 
vegetation or surfaces overhanging water bodies is con-
sidered a relatively well-conserved trait that can be driven 
by phylogenetic inertia and also constrain OSS (Wells, 
2010). However, the main factors identified in hylid OSS 
are tadpole predator presence, water temperature, desic-
cation risk, substrate, and water chemistry (Haramura, 
2008; Doody, et al., 2009; Székely et al., 2010; Vilela et al., 
2015; Mageski et al., 2016).

Evidence on the effect of predator presence is mixed. 
Some studies have shown that individuals select sites with 
conspecific egg clutches or tadpoles (Vaira, 2001; Abrun-
hosa and Wogel, 2004; Wogel et al., 2006; Doody et al., 
2009), whereas other studies have shown that adults 
avoid laying clutches where conspecific tadpoles species 
occur to decrease competition or predation (cannibal-
ism; Crump, 1983; Schiesari et al., 2003; Alves-Silva and 
da Silva, 2009). Water temperature affects growth rate 
and, ultimately, metamorph phenotype, leading adults to 
search for suitable sites for larval development (van Bus-
kirk and Arioli, 2005; Székely et al., 2010; Tejedo et al., 
2010). The effects of desiccation on hatchling survival are 
closely related to two non-exclusive selective forces, with 
desiccation risk being higher in ephemeral ponds, but risk 
of predation being higher in permanent ponds. Therefore, 
a trade-off between desiccation risk and predation risk is 
expected (Touchon and Warkentin, 2008; Touchon, 2012; 
Touchon and Worley, 2015; Cunha and Napoli, 2016; 
Mageski et  al., 2016). The specific substrates on which 
the eggs are laid can affect clutch oxygenation, predator 
avoidance (Warkentin, 1995; Warkentin, 2000; Vonesh 
and Warkentin, 2006), desiccation risk (Dias et al., 2014; 
Vilela et al., 2015; Cunha and Napoli, 2016; Mageski et al., 
2016), and chemical properties of the pond (when fallen 
leaves contain high concentrations of tannins or other 
compounds; Palen et al., 2005; Haramura, 2008).

Other important factors that affect the reproductive 
success of tree frogs are vegetation cover, height above 
the ponds where clutches are laid (Dias et al., 2014), and 
the specific substrate (Touchon and Warkentin, 2008; 

Touchon, 2012; Dias et  al., 2014; Touchon and Worley, 
2015; Vilela et al., 2015), which are associated with high 
temperature avoidance (Touchon, 2012). However, there 
are few studies that consider more than one selective 
force on OSS, which prevents us from fully understanding 
if any process has a higher influence on this critical life 
history trait and from proposing good strategies for tree 
frog conservation.

Determining the factors involved in OSS in amphib-
ians might be critical for threatened, geographically re-
stricted, and rare species. This information can generate 
new proposals for population management and habitat 
conservation or restoration. Particularly, in the IUCN Red 
List (IUCN, 2017), amphibians have the highest number 
of species under a risk category among the vertebrates 
(32.4%), and several species are listed as data deficient 
(24%). Moreover, 173 species are listed in the Conven-
tion on International Trade of Endangered Species due to 
the risk associated with international pet trade (CITES, 
2017). The humid-forests of northern Mesoamerica are 
recognized as a biodiversity reservoir for amphibians 
(Brooks et al., 2002; Lips et al., 2005; Pineda and Lobo, 
2008) where more than 105 threatened species occur 
(Olivet and Asquith, 2004).

In the present study, we studied two species of tree 
frogs. The black-eyed tree frog (Agalychnis moreletii Du-
méril, 1853) is a critically endangered species (IUCN, 
2017) that ranges from Mexico to Honduras; its popula-
tions have recently been reported as declining (Lawson 
et  al., 2011). Red-eyed tree frogs (Agalychnis callidryas 
[Cope, 1862]) are listed as least concern, occurring from 
Mexico to Colombia. Nevertheless, their populations 
are also considered to be declining at a high rate (IUCN, 
2017).

The main threats to these species are habitat loss, 
habitat degradation, the pathogenic fungus Batrachochy-
trium dendrobatidis (Bd; Longcore et  al., 1999; although 
Agalychnis callidryas shows resistance to Bd infection due 
to gene expression inhibiting inflammatory processes and 
activating skin integrity processes; Ellison et  al., 2015), 
and poaching for the illegal exotic pet trade; these are the 
most important factors contributing to the decline of their 
populations (Urbina-Cardona and Loyola, 2008). Both 
species co-occur along most of their distribution (Mexico, 
Guatemala, Belize, El Salvador, and Honduras; although 
A. callidryas has a wider distribution, from central Mexico 
to northern Colombia) and they are closely related; this 
may provide insights on similarities of factors associated 
with reproductive success (Duellman et al., 2016).

In this study, we analyzed OSS in Agalychnis moreletii 
and A.  callidryas and its relationship with reproductive 
success in four sites with different vegetation structures, 
total light incidence, water body depth and area, and envi-
ronmental temperature and humidity in order to identify 
the factors that are critical to both process.
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MATERIALS AND METHODS

Our study was conducted in the Neotropical Natural 
Protected Area of Nahá, located in the Lacandona region 
of southern Mexico. The area consists of primary forests 
with a complex transitional vegetation structure between 
tropical rain forest and temperate cloud forest. Climate 
is tropical, wet, and humid with mild temperatures and 
a well-defined dry season (CONANP, 2006). We delimited 
four permanent plots around body waters or wetlands 
that differed in abundance of Agalychnis moreletii and 
A. callidryas (Fig. 1; Table 1).

Study species

Agalychnis moreletii (Duméril, 1853) and A. callidryas 
(Cope, 1862) are species of Phyllomedusinae Günther, 1858, 
Hylidae Rafinesque, 1815 (Faivovich et al., 2010; for an al-
ternative arrangement, see Duellman et  al., 2016). Color-
ation varies from light to dark green depending on light con-
ditions and activity patterns. Sometimes, the dorsal surface 
has white dots. The main difference between the species is 
observed in ventral (orange in A. moreletii; yellowish in A. cal-
lidryas) and flank (plain green in A. moreletii; green, yellow, 
and blue with white stripes in A. callidryas) coloration. Dur-

Figure 1. Representative images of each plot of the study region.

Table 1. Study site locations and general characteristics.

Site Geographic coordinates Elevation 
(m)

Dominant vegetal 
species Water body type Predatory fish Area (m²) Distance to 

Site 1 (m)

1 16°57′48″N, 91°35′20″W 870
Ficus sp. 

Ocotea sp.
Permanent Present 2,343 -

2 16°59′41″N, 91°35′44″W 837 Eugenia sp. Ephemeral Absent 1,717 3,523

3 16°58′23″N, 91°33′32″W 1,023
Eugenia sp. 

Terminalia sp.
Ephemeral Absent 1,837 3,358

4 16°58′08″N, 91°35′10″W 919
Inga sp. 
Ficus sp.

Ephemeral Absent 2,453 672
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ing the dry season and daylight hours of the reproductive 
season, frogs seek shaded areas in the canopy (Duellman, 
2001). Males congregate on vegetation over ponds and vo-
calize to attract females. Both species usually lay eggs on 
vegetation overhanging ponds (egg clutches are apparently 
indistinguishable in both species; Pyburn, 1970; Warkentin 
et al., 2001). Seven to ten days later, hatchlings fall into the 
water bodies, although there may be differences if mechani-
cal disturbances occur (Warkentin 1995; Cohen et al., 2016; 
Warkentin et al., 2017). The mean snout–vent length (SVL) 
for A. moreletii is 65.7 mm for males and 82.9 mm for fe-
males (Köhler, 2011), whereas for A. callidryas it is 59 mm 
for males and 77 mm for females (Savage, 2002).

Habitat characterization

The habitat characterization is based on a detailed 
description of the vegetation structure and water bodies of 
the four sites. Each site was characterized in terms of vege-
tation inside and outside of the flooded area. In particular, 
plant species were identified to genus, and their coverage 
and total height were measured to obtain canopy volume. 
To collect data, we used three circular plots, each consist-
ing of a circle 5 m in diameter centered within a circle 10 m 
in diameter. From the outer circle, we measured tree total 
height, canopy coverage (from two perpendicular mea-
surements), and minimum leaf height for every individual 
more than 10  cm diameter at 1.5  m above the ground). 
From the smaller circle, we took the same data for every in-
dividual shrub less than 10 cm of diameter at 1.5 m above 
the ground. Using both measurements, we calculated the 
canopy volume for trees and shrubs. Furthermore, we char-
acterized light incidence using the global site factor (GSF; 
Anderson, 1964) with hemispherical photographs taken 
every 5 m (Canon 5D with a Sigma 4.5 mm lens, mode P, 
AF) at 1 m above the ground and north-oriented along two 
perpendicular 50 m transects covering most of the flooded 
area. GSF is the proportion of the global solar radiation 
light that is available and can take values from 0 (no light is 
available) to 1 (all of global solar radiation light is available). 
GSF was estimated using HemiView v.2.1 (Delta-T Devices, 
1998) following the methods described in Halverston et al. 
(2003). We also measured pond area and depth weekly dur-
ing the reproductive season (26 July–29 September 2016) 
as a measure of water availability of each site. We recorded 
precipitation every day at 09:00 with a graduated cylinder 
and temperature using a data logger (HOBO UA-001-64; 
measurements taken every 15 min) during the study.

Oviposition site selection

We visited the study sites every 3 d between 26 July 
and 29 September 2016 to search for clutches of Agalychnis 

moreletii and A. callidryas. For each clutch, we recorded the 
following data: number of eggs (validated through digital 
photographs), type of substrate on which the eggs were 
laid (leaf, roots, epiphytes, soil, branches), plant genus 
(when possible), the minimum linear distance to the pond 
(from the nearest portion of the pond to the clutch, con-
sidering that some clutches directly over the water body 
and others were not), light availability (measured by GSF 
using hemispherical photography next to the clutch and 
the same parameters described above), and status of eggs 
within each clutch (predated, desiccated, undeveloped, vi-
able). For viable clutches, we differentiated between eggs 
that reached the tadpole stage and hatched but were not 
above water (hatched) and those that hatched over water 
(successful).

Statistical analysis

Data are summarized as  ± SD. To explore differ-
ences in the physical and biological attributes between 
the sites, we constructed generalized linear models 
(GLM) with the Poisson distribution and log link func-
tion using the R program (R Core Team, 2017) and the 
RStudio (RStudio team, 2016) code editor. To evaluate 
the relationship between the response variables (OSS and 
reproductive success) and the environmental traits, we 
also used GLMs in a multi-model perspective (Burnham 
and Anderson, 2002), selecting the best fitting model us-
ing the Akaike information criterion (AIC; Akaike, 1973). 
We tested 92 models using the following five dependent 
variables: total egg number (TEN), number of hatched 
tadpoles (NHT), number of successful tadpoles (NST), 
number of desiccated eggs (NDE), and number of pre-
dated eggs by fungus or bacteria (NPE)—and eight inde-
pendent variables—distance to the pond (D), area of the 
pond (A) and depth of the pond (DE) measured weekly, 
mean precipitation of five preceding days of hatching (S), 
and mean temperature precipitation of five preceding 
days of hatching (T), total light incidence measured with 
GSF—and two categorical variables—substrate (SC) and 
substrate species (SS). For each dependent variable, we 
fitted a simple model for each independent variable and 
for all possible second and third degree additive models 
(we did not test for fourth degree and further models as 
over-parametrizing models with non-informative vari-
ables did not improve their fit; Table  S1). Considering 
that all dependent variables consisted on counts, we 
used a negative binomial distribution with the “logit” 
link function (RStudio, MASS package; Venables and Ri-
pley, 2002), because the Poisson distribution has been 
proven to increase type II error (Gardner, 1995; Lindén, 
2011). To explore more carefully the processes affecting 
clutches, we tested the effect of each independent vari-
able mentioned above on the number of eggs affected by 
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desiccation and fungus predation (as these factors were 
the most common affecting egg survival). As both de-
pendent variables consisted on counts, we used the same 
distribution and link function for GLMs as described 
above.

RESULTS

Habitat characterization

For each site, the volume of canopy vegetation de-
scribes the availability of oviposition sites between verti-
cal and horizontal structure. We found significant differ-
ences in canopy volume among sites (F = 7.77, df = 205, 
P < 0.01), particularly between sites 1 and 2 (P < 0.01), 
1 and 3 (P < 0.01), 2–4 (P = 0.04), and 3 and 4 (P = 0.02; 
Fig. 2). Nevertheless, vegetation structure heterogeneity 
was higher at site 4 than at site 1. The mean total light in-
cidence among sites was 0.33 ± 0.15 (0.12–0.88; n = 80), 
and we did not find significant differences among sites. 
The area and depth of each site pond varied among sites 
(H = 48.87, df = 3, P < 0.01; H = 47.94, df = 3, P < 0.01; 

respectively). For pond area, there were significant differ-
ences between sites 1 and 3 (P < 0.01), 1 and 4 (P < 0.01), 
2 and 3 (P < 0.01), 2 and 4 (P < 0.01), and 3–4 (P = 0.02). 
For pond depth, sites 1 and 2 (P < 0.01), 1 and 3 (P < 0.02), 
1 and 4 (P < 0.01), 2 and 3 (P < 0.01), and 3 and 4 (P < 0.01) 
were significantly different.

Oviposition site selection

We found a total of 404 clutches for all study sites for 
both species, mostly at site 4 (94.8%). The total number 
of eggs considering all clutches and all sites was 22,626, 
each clutch having on average 57.13 ± 33.69 eggs (12–297 
eggs; n = 396). Clutches were most commonly found on 
leaves of Inga sp. (48%), Eugenia sp. (3.5%), Ficus sp. (3%), 
Terminalia sp. (3%), several unidentified epiphytic species 
(14%), and other structures like branches, trunks, lianas, 
and roots (27%; Fig. 3B, C). Most clutches (91.75%) were 
affected by more than one factor; however, in most cases, 
these effects were partial (only on some eggs). The main 
factors affecting clutches were desiccation (42.5%) and 
predation (32%), but we also recorded unviable clutches 

Figure 2. Histograms of canopy percentage per plant genus of each site.
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(11%) and fallen leaves with clutches (6%). The mean 
clutch–pond distance was 1.68  ±  1.23  m (0–12.5  m; 
n  =  404). The number of clutches fluctuated over the 
rainy season and was closely associated with rainfall, with 
four peaks of clutches observed (more than 29) following 
heavy rains (Fig.  3). The average total light for clutches 
was 0.21 ± 0.07 GSF (0.04–0.53 GSF; n = 380). The aver-
age temperature for clutches was 21.75 ± 0.62°C (20.52–
23.61°C; n  =  383). From the total number of eggs, only 
40.6% (9,201 eggs) developed to tadpole stage; however, 
only 8.2% (1,870) of all tadpoles were successful (i.e., 
hatched over water).

Regarding the GLMs for site selection and repro-
ductive success, we found that TEN was best explained 
by the additive effects of GSF and substrate species 
(Fig. 4A, B). For NHT, the model with lowest AIC included 
the additive effects of precipitation, species, genus, and 
SC (Fig.  4C,  D,  E). For NST, the model with lowest AIC 
included precipitation, distance to the pond, and sub-
strate (Fig. 4F, G, H). For NDE, the best model included 
the additive effects of precipitation, GSF, and substrate 
(Fig. 5A, B, C). Finally, for the number of predated eggs, 
two models had similar fit (ΔAIC < 2), one including only 
precipitation and the second including the additive effects 
of precipitation and GSF (Fig. 5D, E). The full models set 

with their respective AICc, ΔAICc, and freedom degrees 
are listed in Table S1.

DISCUSSION

In Agalychnis moreletii and A. callidryas, OSS occurs 
at two different scales. First, there is a clear preference 
for site 4, which has a significantly greater canopy volume 
than sites 2 and 3, but it is similar to site 1. Site 4 also has 
a significantly smaller pond area and the pond is signifi-
cantly shallower than at sites 1 and 3, but it is similar to 
site 2. This combination of factors seems to make this site 
the most suitable for oviposition.

At a finer scale, several factors contribute to OSS. 
We observed a clear tendency regarding number of eggs 
in relation to substrate species and GSF, which are present 
in every model with AIC < 2. Inga sp. was the frequently 
used substrate species, and values of GSF were interme-
diate (0.14–0.53), although depth, distance, tempera-
ture, and area of the pond might also influence this trait. 
The observed trend might enhance egg development and 
hatching. The effect of vertical and horizontal vegetation 
structure on reproductive success in amphibians is not 
well understood (Shulse et al., 2012). Primary forest com-

Figure 3. Daily rainfall at the Protected Area of Nahá and number of Agalychnis moreletii and A. callidryas clutches recorded during the study.
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plexity and annual floods are important to Agalychnis mo-
reletii and A. callidryas, as in other amphibians (Donnelly 
and Guyer, 1994). Despite the similar availability of light 
in all our study sites, the overlapping of the canopy layers 
at site  4 provides the frogs with several sites for ovipo-
sition. Further, canopy volume might enhance adult sur-

vival, providing a higher number of covered areas for rest-
ing or reducing the probability of being seen by predators. 
The use of tree leaves, shrubs, herbs, roots, branches, and 
trunks near the ponds for oviposition is similar to obser-
vations for Phyllomedusa boliviana Boulenger, 1902 (Vaira, 
2001), Pithecopus azureus (Cope, 1862) (Dias et al., 2014), 

Figure 4. Relationship between the dependent and independent variables of the best fitted generalized linear models. (A–B) The two variables that af-
fect TEN. (C–E) The three variables that affect NHT. (F–H) The three variables that affect NST. Abbreviations: DE = pond depth, GSF = global site factor 
(total light incidence), NHT = number of hatched tadpoles, NST = number of successful tadpoles, TEN = total egg number.
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Phyllomedusa burmeisteri Boulenger, 1882 (Abrunhosa 
and Wogel, 2004), which suggests a highly conserved trait 
in phyllomedusines related to a high OSS plasticity that 
might vary among and within individuals throughout the 
life cycle (Mery and Burns, 2010).

Water availability is important for the development 
of most frog species, including our study species. Pond 
depth and area were among the most important variables 
in explaining the number of hatched and successful tad-
poles and desiccated eggs. These variables were closely 
related to precipitation, and amphibian dependence on 
water availability has been reported in several studies 
of amphibian reproductive success (Cayuela et al., 2012; 
Walls et  al., 2013); specifically, the persistence of water 
bodies is determinant for hatching. At our study sites, 
pond area varied drastically with rainfall, increasing after 

heavy rains and decreasing with rain scarcity. If no heavy 
rain occurs before hatching, clutches laid at the periph-
ery might result in tadpoles hatching out of the water. 
This might also explain why females lay their eggs near 
the water. Desiccation risk of the pond was reported as 
an important variable that influences reproductive suc-
cess in other species, including Lithobates sylvaticus (Le 
Conte, 1825) (Gervasi and Foufopoulos, 2008), Bombina 
variegata (Linnaeus, 1758) (Barandun and Reyer, 1997), 
Phrynobatrachus guineensis Guibé and Lamotte, 1962 (Ru-
dolf and Rödel, 2005), and Bufo bufo (Linnaeus, 1758) 
(Laurila, 1998). However, permanent ponds or water bod-
ies have higher abundance and diversity of predators than 
temporary ponds, which inhibit amphibian colonization 
or reproduction (Touchon, 2012; Touchon and Worley, 
2015). This might explain why we observed no clutches or 

Figure 5. Relationship between the dependent and independent variables of the best fitted generalized linear models. (A–C) The three variables that 
affect NDE, (D–E) The two variables that affect NPE. Abbreviations: A = area of the pond, DE = depth of the pond, GSF = global site factor (total light 
incidence), NDE = number of desiccated eggs, NPE = number of predated eggs by fungus or bacteria, P = mean precipitation of five preceding days.
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adults at site 1, where local community monitors reported 
A.  moreletii to have been abundant before the introduc-
tion of cichlid fishes, and to have dramatically declined 
subsequently, as observed in other studies (Hecnar and 
M´Closkey, 1997; Semlitsch and Gibbons, 1988; Collins 
and Storfer, 2003; Kats and Ferrer, 2003).

Female selection of Inga sp. (a legume) to lay clutches 
and more eggs is poorly understood. It could be a spurious 
correlation because this tree represents a huge amount of 
the biomass of the site, but we also think that this tree 
might offer some protection to clutches. Inga sp. may pro-
duce repellent and antiherbivore defense to insects, as has 
been reported for species of same genus (Koptur, 1985; 
Coley et al., 2005; Kursar et al., 2009). Moreover, the flex-
ibility that the leaves of legumes have because of pulvinus 
(a thickening at the base of the leaf; Rodrigues and Mach-
ado, 2008) might allow clutches to remain on trees despite 
wind or rain or even support larger, heavier clutches.

There is evidence that GSF affects developmental 
rate (Skelly, 2004; Hawley, 2010) and even the presence 
or abundance of amphibians in temperate regions (Halv-
erston et  al., 2003). Our results suggest that this trend 
also occurs in tropical areas and may influence OSS, and 
it is related with TEN, NHT, NST, NDE, and NPE. Indeed, 
total light incidence was the only factor present in every 
best fitted model for our dependent variables, which un-
derscores its relevance for successful reproduction. The re-
lationship of OSS and reproductive success to GSF might 
be mediated by a trade-off between developmental time 
and desiccation-predation risk. Clutches laid in open areas 
enhance the ability of eggs to reach larval stages because 
of higher temperatures (Saenz et al., 2003; Skelly, 2004; 
Székely et  al., 2010); however, this increases desiccation 
risk (because of mucus layer decreasing) and clutch detect-
ability for visual predators. In contrast, clutches laid in cov-
ered areas have lower desiccation risk but are more vulner-
able to fungus, bacteria, and predators in general because 
the rate development is slower. Further, OSS in specific 
light exposure conditions indicates that females have good 
night vision under the canopy and can identify the gaps 
of sky in the matrix of vegetation. We do not know which 
mechanisms allow females to discriminate the total light 
incidence in each place at night, but this behavior has also 
been observed in other hylid frogs (Touchon and Warken-
tin, 2008). It is known that some tree frogs have good 
night vision (Gomez et al., 2010) and also that light inci-
dence influences male calling activity (Grant et al., 2009; 
Vignoli and Luiselli, 2013). Furthermore, light exposure 
probably propitiates several trades-offs working together 
that increase or decrease the fitness of adult frogs.

Regarding our results on NDE and NPE, we think 
that predation might have less influence on OSS than 
desiccation risk. We found that most clutches were af-
fected by variables associated with desiccation probabil-
ity (total light incidence, area and depth of the pond, and 

precipitation), concurring with previous observations on 
Dendropsophus ebraccatus (Cope, 1874) (Touchon, 2012). 
It is noteworthy that several studies consider predation to 
be the main factor promoting the evolution of reproduc-
tive models in amphibians (Magnusson and Hero, 1991; 
Blaustein, 1999; Refsnider and Janzen, 2010); however, 
this may not be the case for species that lay their clutches 
on overhanging vegetation, where predators might be a 
weak selective force compared to desiccation risk (at least 
in the time frame of this study).

Conservation perspectives

Our results confirm that Agalychnis moreletii and 
A. callidryas oviposit nonrandomly, relying mostly on pri-
mary forest structure for successful reproduction. Both 
species had large distributional ranges that have been 
reduced to small areas as a result of land use conversion 
in southern Mexico (Ortiz-Espejel and Toledo, 1998; 
Díaz-Gallegos et  al., 2008) and Central America (Laur-
ance, 1999). Recently, forest degradation (particularly 
of flooding areas) and its conversion to grass- and crop-
lands have highly reduced plant diversity and vegetation 
structure (both horizontally and vertically; Franklin and 
Van Pelt, 2004). Considering that hatchling success relies 
mainly on GSF and pond depth, primary forest conserva-
tion and restoration are critical for tree frog population 
maintenance. Our study represents a baseline to enhance 
amphibian monitoring in conserved areas, although data 
from fragmented areas are still needed. Finally, changes 
in rainfall patterns (Dore, 2005) associated with periodic 
events like “el Niño” increase both species’ vulnerability, 
particularly in Central America, where rainfall patterns 
are changing (Touchon, 2012).
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