

Noninvasive Genetic Methods for Species Identification and Dietary Profiling of the Japanese Dormouse Glirulus japonicus from Fecal Samples

Authors: Sato, Jun J., Matsuda, Haruna, Fujita, Honoka, Yasuda, Kouki, Aiba, Haruka, et al.

Source: Mammal Study, 48(4) : 245-261

Published By: Mammal Society of Japan

URL: https://doi.org/10.3106/ms2023-0003

The BioOne Digital Library (<u>https://bioone.org/</u>) provides worldwide distribution for more than 580 journals and eBooks from BioOne's community of over 150 nonprofit societies, research institutions, and university presses in the biological, ecological, and environmental sciences. The BioOne Digital Library encompasses the flagship aggregation BioOne Complete (<u>https://bioone.org/subscribe</u>), the BioOne Complete Archive (<u>https://bioone.org/archive</u>), and the BioOne eBooks program offerings ESA eBook Collection (<u>https://bioone.org/esa-ebooks</u>) and CSIRO Publishing BioSelect Collection (<u>https://bioone.org/csiro-ebooks</u>).

Your use of this PDF, the BioOne Digital Library, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Digital Library content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne is an innovative nonprofit that sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Noninvasive genetic methods for species identification and dietary profiling of the Japanese dormouse *Glirulus japonicus* from fecal samples

Jun J. Sato^{1,*}, Haruna Matsuda¹, Honoka Fujita¹, Kouki Yasuda¹, Haruka Aiba^{2,3} and Shusaku Minato^{2,3}

¹ Laboratory of Zoology, Department of Biotechnology, Fukuyama University, Higashimura-cho, Aza, Sanzo, 985, Fukuyama 729-0292, Japan

² Japanese Dormouse Protection Research Group, Hokuto, Yamanashi 408-0015, Japan

³ Dormouse & Wildlife Institute, Hokuto, Yamanashi 408-0015, Japan

Published online 11 August, 2023; Print publication 31 October, 2023

Abstract. Noninvasive methods for species identification and dietary profiling from fecal samples in an artificial nest box were developed for the Japanese dormouse *Glirulus japonicus*. The species is a natural monument in Japan protected by domestic regulations since 1975. We assessed the mitochondrial cytochrome *b* gene for species identification and obtained location-specific sequences for Oki and Yamanashi, Japan. This marker was able to identify the dormouse species from feces. We also performed DNA metabarcoding analyses to clarify the invertebrate and plant diets of the Japanese dormouse. Various invertebrates and plants were detected, supporting the omnivorous nature of this species. Furthermore, almost all dietary items were identified to the genus level (82.1% and 99.5% for invertebrates and plants, respectively). The dietary components in Yamanashi Prefecture suggested that the Japanese dormouse mainly consumed Lepidoptera and various plants in summer, and Diptera and Hemiptera (aphids) invertebrates and *Actinidia* sp. plants in autumn. The latter plants produce fruit in autumn, enabling the dormouse to accumulate fat before hibernation. We discuss the potential and pitfalls of the noninvasive method, including the necessity of local DNA databases, reliability of the global DNA database, sampling procedure to avoid contamination, and individual identification.

Key words: DNA barcoding, DNA metabarcoding, DNA scatology, dormice, next-generation sequencing.

Noninvasive genetic (NIG) methods are used to assess wildlife ecology and evolution (Ferreira et al. 2018). Understanding basic ecology noninvasively is especially important when dealing with protected or endangered animals on a background of accelerated biodiversity loss and high extinction rate (Rockström et al. 2009; Ceballos et al. 2020). Although previous studies mainly used the NIG method for species identification (Rodrigues et al. 2020), population genetic diversity (Ferreira et al. 2018), or phylogeography (Querejeta and Castresana 2018), next-generation sequencing (NGS) has enabled noninvasive dietary profiling (Buglione et al. 2018).

The Japanese dormouse, *Glirulus japonicus* (Rodentia, Gliridae), is an arboreal species inhabiting Honshu, Shikoku, and Kyushu Islands of the Japanese archipelago (Ohdachi et al. 2015). It has been protected as a natural

monument in Japan since 1975. This species is the most ancient mammal in Japan (Nunome et al. 2007; Sato 2017), and each local population is highly differentiated (3–5 million years of divergence: Yasuda et al. 2007, 2012). Although its conservation status is currently Least Concern in the International Union for Conservation of Nature Red List, the basic ecology of this species has not been fully examined, and the population trend in the Red List is unknown. Considering the important roles of this species in the forest ecosystem, ecological insight into this strictly arboreal species is needed for sustainable forest management aiming at biodiversity conservation.

The diet of the Japanese dormouse has been assessed by direct observation of their feeding behavior or microscopic morphological analyses of stomach or fecal contents (Minato et al. 1997; Iwabuchi 2008; Aoki and

^{*}To whom correspondence should be addressed. E-mail: jsato@fukuyama-u.ac.jp

Moriya 2009; Ochiai et al. 2015; Minato 2018; Takatsuki and Suzuki 2022). However, direct observation of feeding behavior is difficult because of the nocturnal nature of the dormouse. Also, tiny fragments of dietary species in the stomach or feces are difficult to identify taxonomically without special expertise. Therefore, discussions of dietary components in previous studies were typically based on broad taxonomic units (e.g., Ochiai et al. 2015). Furthermore, Aoki and Moriva (2009) used a sample that died in an accident, which is required for analysis of stomach contents. However, dissection is not recommended for such protected animals. Fecal analysis therefore has promise for noninvasive assessment because feces are left behind in artificial nest boxes (Ochiai et al. 2015). A novel noninvasive technique based on fecal analysis is needed to clarify the diet of the dormouse.

Recently, DNA metabarcoding analysis has been applied for dietary profiling of various mammals. This method is based on high-throughput DNA sequencing of target PCR amplicons from fecal or gastrointestinal samples (de Sousa et al. 2019; Ando et al. 2020). Some rodent species have also been examined, e.g., Alexandromys (Microtus) montebelli and Apodemus sp. in Japan (Sato et al. 2018, 2019, 2022; Murano et al. 2023) and Ctenomys sp. in Brazil (Lopes et al. 2020). The technique enables assessment of seasonal variations, interspecific competition, and geographic variations in dietary components. This method was also applied to an endangered vole in the United States (Microtus californicus scirpensis) to explore its diet for the aim of conservation management (Castle et al. 2020). In addition to the stable-isotope analysis to assess the trophic levels of species (e.g., Shiozuka et al. 2023), the DNA metabarcoding method provides a useful non-invasive dietary analysis.

In this study, we developed a noninvasive method to identify the host species and to profile the dietary components of the Japanese dormouse from fecal samples collected from artificial nest boxes. Specifically, we established DNA barcoding and metabarcoding methods for species identification and dietary profiling, respectively. We also discussed the potential and pitfalls of the method to examine the dietary ecology of animals.

Materials and methods

Samples and study area

We collected feces from artificial nest boxes placed in forests of Kiyosato (N35.94128°, E138.44830°; Hokuto City, Yamanashi Prefecture; Yamanashi hereafter) and

Fig. 1. Sampling locality in the Japanese archipelago (Oki and Yamanashi). See Table 1 for detailed information on the study sites.

Okinoshima Islands (N36.25166°, E133.31559°; Oki Island, Shimane Prefecture; Oki, hereafter) (Fig. 1; Table 1) in August, September, and October of 2020 and June, July, August, September, and October of 2021 (Yamanashi), and November in 2019 (Oki). We focused on these two sites since efficiency of our non-invasive genetic methods could be tested with geographically distant habitats harboring genetically distinct Japanese dormice. These nest boxes are placed for the survey of basic ecology and conservation of this elusive species. We have placed 370 nest boxes in Yamanashi and 82 in Oki and collected samples from the nest boxes shown in Table 1. The study was mostly conducted in autumn, which is the season prior to dormice hibernation (Iwabuchi et al. 2017). Soon after hibernation, dormice in Yamanashi for example usually start breeding and give birth in spring although geographic variation is observed in season for parturition (Minato, 2018). Each nest box had a basal area of approximately 12 cm × 12 cm, and front (with a hole) and back (no hole) heights of approximately 17 cm and 20 cm, respectively. Each box was attached to a tree trunk 1.2-1.5 m above ground level (Fig. 2A). Nothing was placed within the nest boxes before dormice entered. Dormice use nest boxes for their resting and breeding, not for hibernation. Dormice typically bring moss (bryophytes) and tree bark inside nest boxes (Shibata 2000; Shibata et al. 2004; Minato 2018) and leave their feces on this plant matter (Fig. 2B). We used tweezers to collect feces in the nest box and transfer them to sampling tubes. Collecting feces from the nest box may cause stress on the dormice if they are present in the nest box. In this study, we found the dormice in eight of 24 nest boxes at the sampling of feces (Table 1). We took special care not to be invasive on the dormice when sampling. Feces were transported to the experimental room as soon as possible and preserved

Table 1. Sample information

Shiftyer Dr. Dirks Now Date Standard DotA Dirks Dirks <thdirks< th=""> Dirks <thdirks<< th=""><th rowspan="2">Sample ID Nes</th><th>No of home</th><th rowspan="2">Date of sampling</th><th>Location</th><th>DNA¹</th><th>Cytb</th><th>Obtaine</th><th>ed reads³</th></thdirks<<></thdirks<>	Sample ID Nes	No of home	Date of sampling	Location	DNA ¹	Cytb	Obtaine	ed reads ³
Dorf. 2019 Dord. 2019 Dord. 2020 V2020_14' November 25, 2019 Prefecture Oil Island, Shinnee Prefecture 25 Hap 38.69 24.440 P4.24 Dord. 2020 Dord. 2020 Y2020_14' August 25, 2020 11.7 41.2 43.4 9.2 41.40 Dord. 2020 Y2020_2 September 24, 2020 MapA 107.47 26.53.87 Dord. 2020 Y2020_2 September 24, 2020 42.6 HapA 10.47 65.93 Dord.A52_2020 YGA/2020_1 Kiyosato, IIokato City, Yanansshi Prefecture 91 HapA 10.47 65.93 Dord.A72_2020 YGA/2020_1 Kiyosato, IIokato City, Yanansshi Prefecture 91 HapA 10.67 26.65 67.843 Dord.A72_2020 YGA/2020_1 V12* June 10.2021 10.22 25.2 10.49 HapA 10.67 24.93 Dord.A72_2020 Y12* June 10.2021 10.41 10.6007 24.93 Dord.A2021 SY7-12* July 28, 2021 11.7 14.1 10.6007 24.93 Dord.2021		INEST DOX		Location	DNA	Haplotypes ²	COI	ITS2
Dack_2019 V200_1* August 25, 202 Prefecture 1.7 Hap2 43.20 1.147 Devf_2020 V200_1* August 25, 202 3.4 1.34 79.44 Devf_2020 V2020_1* September 24, 2020 1.91 20.66 79.473 Devf_2020 V2020_2 September 24, 2020 4.26 HapA 25.326 59.8989 Devf_A52_2020 VGA2020_1 - 4.26 HapA 26.16 6.02 79.473 6.03 79.473 6.03 79.473 6.03 79.473 6.03 79.473 6.03 79.473 6.06 79.473 70.07 70.63 70.77 70.07 79.63 70.77 70.99.633 70.77 70.99.633 70.77 70.99.633 70.77 70.99.633 70.77 70.99.633 70.77 70.22 70.09.66 70.6433 70.77 70.22 70.22 70.21 71.2 64.667 70.77 70.7 70.7 70.99.633 70.77 70.22 70.22 70.22 70.22	Dor1_2019	02010 14	November 25, 2010	Oki Island, Shimane	25	HanD	3869	24 446
Derf. 2020 Y2020_11* August 25, 2020 9.2 Share 25, 2020 Derf. 2020 V2020_2 September 24, 2020 9.2 HapA 2074 256 327 Derd. 2020 V2020_2 September 24, 2020 19.1 19.1 19.2 19.1 42.6 HapA 20.65 7.2 65.65 9.97 DerGAS-1 2020 V0A2020_1 Kjyosato, Hokuto City, Yamanshi Peefecture 91 93.08 1111244 65.035 0.06 66.6 76.843 DerGAA-1 2020 October 29, 2020 October 29, 2020 19 HapA 106.070 99.033 DerGAA-1 2020 VCA2020_2 19 HapA 160.0770 99.033 DerGAA-1 2020 VCA2020_2 19.9 HapB 20.617 - DerGAA-1 2020 VCA2020_2 19.9 HapA 106.07 - DerGAA-1 2020 VCA2020_2 19.9 HapA 106.07 - DerGAA-1 2020 VCA2020_2 19.9 HapA 106.07 - DerGAA-1 2021	Dor2_2019	02019_1	100vember 25, 2019	Prefecture	11.7	парь	43 240	147
Dard 2020 Unit Dard 56 336 58 989 Dord 2020 Y200.2 September 24, 2020 96.2 HapA 107 472 65 337 Dord 2020 YGA.2020_1 Kiyosato, Hokuto City, Yamanashi Prefeeture 91 HapA 127 4672 65 337 DorGA.7-1 2020 YGA.2020_1 YGA.2020_1 September 24, 2020 111 244 65 995 DorGA.7-1 2020 October 29, 2020 118 8 92 666 76 843 DorGA.7-1 2020 October 29, 2020 19 HapA 160 770 99 643 DorGA.7-2 2020 October 29, 2020 19 HapA 160 770 99 643 DorGA.7-2 2020 V7-12 July 28, 2021 19.9 HapB 66 76 643 DorfA.2020 SY7-12 July 28, 2021 19.9 HapB 160 70 99 64 DorfA.2021 SY7-12 July 28, 2021 19.9 HapB 160 70 -21 411 Dor20, 2021 SY7-12 Septem	Dor5_2020	Y2020 14	August 25, 2020		3.4	HapC	31 374	79 441
Dorf. 2020 Y2020_2 September 24, 2020 HapA 107 472 65 327 Dorf. 2020 Y020_2 September 24, 2020 Kiyosato, Hokuto City, Yamanashi Prefecture 19.5 HapA 20.65 79.473 DorGA.5-1_2020 YGA.2020_1 Kiyosato, Hokuto City, Yamanashi Prefecture 19.5 HapA 160.77 65.035 DorGA.7-1_2020 October 29, 2020 October 29, 2020 19 HapA 160.77 99.63 DorGA.7-1_2020 October 29, 2020 October 29, 2020 19 HapA 160.70 99.63 DorGA.7-1_2020 VGA.2020_2 October 29, 2021 55.2 19 HapA 160.70 99.63 DorfA.72 (202) SY7-12 July 28, 2021 36.4 HapB - 780 DorfA 2021 SY7-2 August, 2021 36.4 HapA 160.067 - DorfA 2021 SY7-2 August, 2021 36.4 HapA 26.30 - DorfA 2021 SY7-12 July 28, 2021 SY6-17 September 72, 2021 36.4 </td <td>Dor6_2020</td> <td>12020_1</td> <td></td> <td>.</td> <td>9.2</td> <td>impe</td> <td>56 336</td> <td>58 989</td>	Dor6_2020	12020_1		.	9.2	impe	56 336	58 989
Dord 2020 Y2020_2 September 24, 2020 19,1 10,1 20,63,6 79,47,3 Dord 2020 YGA,2020_1 Kiyosato, Hokuto City, Yamanashi Prefecture 19,5 HapC 34,672 62,032 DorGA,7-1_2020 October 29, 2020 October 29, 2020 112,4 24,2 43,365 - DorGA,7-1_2020 October 29, 2020 October 29, 2020 19,9 HapA 66,6 26,8155 - DorGA,7-2, 2020 October 29, 2020 55,2 190,077 9-9,633 - - 66,6 26,8155 - - - - - 66,6 26,8155 - - - - - - - - - 11,93 HapB 54,007 - - - 21,411 - 10,007 24,92 - - - 21,411 - 10,007 24,92 - - 21,411 - - 21,411 - - 21,411 - - 2	Dor7_2020				96.2	HapA	107 472	65 327
Dob/2020 - - - 193 HapA 25154 65 095 DorGA5-1_2020 YGA2020_1 Yamanaki Prefecture 91 59 308 111 244 DorGA7-1_2020 October 29, 2020 October 29, 2020 18 42.2 43.365 - DorGA7-1_2020 October 29, 2020 October 29, 2020 19 HapA 160 070 99 633 DorGA7-3_2020 YGA2020_2 - 66.6 268 155 - DorGA7-3_2020 Y12' June 10, 2021 36.4 HapB - 780 Dor14_2021 SY7-12.1 July 28, 2021 36.4 HapB 25.9 - Dor16_2021 SY7-12.2 July 28, 2021 - 80 HapB 25.907 - 21.33 HapA 23.30 25.907 Dor16_2021 SY7-12.4 July 28, 2021 - 13.8 HapA 23.00 - 21.411 160 067 - 24.330 25.907 Dor21_2021 SY7-11.5 September 1, 2021 </td <td>Dor8_2020</td> <td>Y2020 2</td> <td>September 24, 2020</td> <td></td> <td>19.1</td> <td>IL C</td> <td>20 636</td> <td>79 473</td>	Dor8_2020	Y2020 2	September 24, 2020		19.1	IL C	20 636	79 473
Dard GAS Part South Part Sout	Dor9_2020	—	1		19.5	HapC	34 672 25 154	62 032
DiorAis 2020 YGA2020_1 Yananashi Prefecture 91 35 900 111 241 DorGAX -2 2020 111 241 33 65 -	DorrC 4.5 1 2020			Kiyosato, Hokuto City,	4.20	Парл	50 209	111 244
DorGA 7-1 20.0 October 29, 2020 18 HapA 100 770 99 633 DorGA 7-2 20.0 YGA 2020 2.5 190 997 - DorGA 7-4 20.00 - 66.6 268 155 - DorGA 7-4 20.00 - 66.6 268 155 - DorGA 7-2 20.1 SY 7-12-1 July 28, 20.21 36.4 HapB - 780 DorI 5 2021 SY 7-12-2 July 28, 20.21 98.8 HapB 19.9 HapB 29.559 - DorI 5 2021 SY 7-12-2 July 28, 20.21 98.8 HapB 15.400 476 DorI 5 2021 SY 7-17-2 August, 20.21 98.8 HapA 4957 - Dor21 2021 SY 6-17* September 1, 2021 25.4 HapA 4957 - 21.411 Dor22 SY 8-10 September 24, 2021 25.4 HapA 20.830 - 20.830 - 10.93 HapB<	DorGA 5-2 2020	YGA2020_1		Yamanashi Prefecture	24.2		43 365	111 244
DorGA7-2	Dor $GA7_{-1}$ 2020				18.8		92 666	76 843
DerGA7-3_2020 DerGA7-4_2020 DerGA7-4_2020 DerGA7-4_2020 DerGA7-4_2020 DerGA7-4_2020 DerGA7-4_2020 DerGA7-4_2020 SY7-12-1 June 10, 2021 July 28, 2021 25.2 190 097 DerGA7-2_2020 DerGA7-2_2020 DerGA7-2_2020 DerGA7-2_2021 Y-12* July 28, 2021 July 28, 2021 36.4 HapB 780 DerGA7-2_2021 SY7-12-2 July 28, 2021 36.4 HapB 607 DerGA7-2_2021 SY7-12-2 July 28, 2021 98.8 HapB 607 DerGA2021 SY7-12-2 July 28, 2021 98.8 HapB 607 DerGA2021 SY6-17* September 1, 2021 98.8 HapB 154.00 475 DerC2 2021 SY6-26* September 1, 2021 26 HapA 26.907 DerC2 2021 SY8-10 September 24, 2021 104 HapB 157.344 259.094 DerC3 2021 SY8-18 September 27, 2021 17.9 HapB 151.87 159.591 DerC3 2021 SY6-26 October 18, 2021 0.542 HapB 151.993.48	DorGA7-2 2020		October 29, 2020		18.8	HanA	160 770	99 633
DorGA7-4 2020 66.6 268 155 - DorGA7-5 71.2 64.667 - DorG 2021 SY7-12-1 July 28, 2021 19.9 HapB 2955 - Dor16 2021 SY7-12-2 July 28, 2021 98.8 HapB 607 - 24.938 Dor15 2021 SY7-2 August, 2021 98.8 HapA 5330 25.907 Dor15 2021 SY6-17' September 1, 2021 1.38 HapA 5330 25.907 Dor21 2021 SY6-26' September 24, 2021 26.4 HapA 20.830 - Dor22 2021 SY8-18 September 24, 2021 23.8 HapC 107.363 - Dor24 2021 SY8-18 September 27, 2021 0.542 HapB 157.344 259.094 Dor28 2021 SY8-29 October 18, 2021 7.76 5007 132.469 Dor39 2021 SY6-21 October 18, 2021	DorGA7-3 2020	YGA2020 2			25.2		190 097	-
Dords.7-5_2020 71.2 64 667 - Dord 2021 Y-124 June 10, 2021 36.4 HapB - 780 Dorl 5 2021 SY7-12.1 July 28, 2021 19.9 HapB 29.59 - Dorl 5 2021 SY7-12.4 August, 2021 80 HapB 607 - Dorl 6 2021 SY7-2 August, 2021 98.8 HapB 15.400 476 Dorl 7 2021 SY6-17' September 1, 2021 14.1 160.067 24.938 Dorl 2 2021 SY6-264 September 24, 2021 25.4 HapA 23.00 - Dor22 2021 SY8-10 September 24, 2021 23.8 HapC 1014 HapA 24.938 Dor24 2021 SY8-10 September 27, 2021 23.8 HapB 15.187 159.091 Dor25 2021 SY8-24 October 18, 2021 17.9 HapB 2.60 HapC 190.938 Dor39 2021 SY4-25 October 18, 2021 17.9 HapB 2.61	DorGA7-4_2020				66.6		268 155	_
Dor3_2021 Y-12' June 10, 2021 36.4 HapB - 780 Dor14_2021 SY7-12.1 July 28, 2021 19.9 HapB 29.559 - Dor16_2021 SY7-12.2 July 28, 2021 8 HapB 1607 - Dor16_2021 SY7-2 August, 2021 8 8 HapB 607 - 24.938 Dor19_2021 Sy76-174 September 1, 2021 7 - 21.411 160.067 24.938 Dor20_2021 Sy76-264 September 24.2021 76 - 21.411 Dor22_2021 SY7-11 September 24.2021 36 HapA 20.830 - Dor24_2021 SY8-18 September 24.2021 0.542 HapB 151.87 159.591 Dor25_2021 Y49 September 27.2021 0.542 HapB 161.97 4.48 Dor39_2021 SY6-21 October 18, 2021 0.542 HapB 151.97 163.944 Dor49_2021 SY3-24 October 18,	DorGA7-5_2020				71.2		64 667	-
Dorl 4 2021 SY7-12-1 July 28, 2021 19.9 HapB 29.559 - Dorl 5 2021 SY7-2 August, 2021 80 HapB 16.400 476 Dorl 5 2021 SY7-2 August, 2021 98.8 HapB 15.400 476 Dorl 5 2021 SY7-2 August, 2021 98.8 HapA 5330 25.907 Dorl 2 2021 SY6-17* September 1, 2021 27 - 21.411 Dor22 2021 SY7-10 September 24, 2021 36 HapA 20.80 Dor24 2021 SY8-10 September 24, 2021 23.8 HapC 31.3 - 10.4 Dor25 2021 SY8-18 September 27, 2021 23.8 HapB 15.187 159.591 25.9 Dor26 2021 Y44* September 7, 2021 0.54 HapB 26.910 83.856 Dor38 2021 SY3-24 October 18, 2021 Yamanabi Prefecture 7.766 HapC 50.007 132.469 10.7078 199.9348 <td< td=""><td>Dor3_2021</td><td>Y-12⁴</td><td>June 10, 2021</td><td></td><td>36.4</td><td>HapB</td><td>-</td><td>780</td></td<>	Dor3_2021	Y-12 ⁴	June 10, 2021		36.4	HapB	-	780
Dor15 2021 SY7-12-2 July 28, 2021 Dor16 2021 SY7-2 August, 2021 Dor17 2021 SY7-2 August, 2021 Dor19 Sy7-2 August, 2021 Dor19 Sy7-174 September 1, 2021 Dor20 SY6-174 September 1, 2021 Dor21 SY6-264 September 24, 2021 Dor22 SY7-11 September 24, 2021 Dor24 SY8-10 September 24, 2021 Dor25 Sy8-18 September 24, 2021 Dor26 Y8-18 September 27, 2021 Dor27 Y44* September 27, 2021 Dor28 Y429 September 27, 2021 Dor49 September 27, 2021 Dor49 Sy4-25 October 18, 2021 Dor40 Sy4-25 October 18, 2021 Dor41 Y44* September 27, 2021 Dor49 Sy4-25 October 18, 2021 Dor40 Sy6-21 October 18, 2021 Dor41 Sy7-21 October 18, 2021	Dor14_2021	SY7-12-1	July 28, 2021		19.9	HapB	29 559	-
Dorl 6_2021 SY7-2 August, 2021 98.8 HapB 15 400 476 Dorl 8_2021 SY6-174 September 1, 2021 13.8 HapA 5330 25 907 Dorl 9_2021 SY6-264 September 1, 2021 27 - 21 411 Dor22_2021 SY6-264 September 24, 2021 36 HapA 20 830 - Dor22_2021 SY8-10 September 24, 2021 104 HapC 3413 - Dor24_2021 SY8-10 September 27, 2021 23.8 HapB 15 187 159 591 Dor25_2021 Y89 September 27, 2021 0448 HapB 2 181 130294 Dor26_2021 Y49 September 27, 2021 0448 HapB 1 130294 048 856 Dor38_2021 SY4-25 October 18, 2021 Kiyosato, Hokuto City, Yamanashi Prefecture 7.6 S0 007 132 469 Dor42_2021 SY7-21 October 18, 2021 - 4.3 HapB 171 078 Dor43_2021 SY7-21 Octobe	Dor15_2021	SY7-12-2	July 28, 2021		80	HapB	607	-
Dorl7_2021 Dorl9_2021 September 1, 2021 14.1 160.067 24.938 Dorl9_2021 Dorl9_2021 - 21.411 - 24.938 Dorl9_2021 SY6-264 September 1, 2021 36 HapA 5330 25.907 Dorl2_2021 SY6-264 September 1, 2021 36 HapA 20.830 - Dorl2_2021 SY8-10 September 24, 2021 36 HapA 20.830 - Dorl2_2021 SY8-10 September 24, 2021 38.84 HapC 3413 - Dorl2_2021 SY8-18 September 27, 2021 9.38 HapB 15.187 159.591 Dorl3_2021 SY4-25 October 18, 2021 0.542 HapB - 130.294 Dord3_2021 SY4-25 October 18, 2021 Network 18, 2021 0.542 HapC 6965 117.078 Dord3_2021 SY6-21 October 18, 2021 0.542 HapC 190.672 - Dord3_2021 SY6-21 October 18, 2021 - 18	Dor16_2021	SY7-2	August, 2021		98.8	HapB	15 400	476
Dor18_2021 SY6-17 ⁴ September 1, 2021 1.38 HapA 5330 25 907 Dor19_2021 2021 27 - 21 411 Dor20_2021 SY6-26 ⁴ September 1, 2021 36 4957 - Dor22_2021 SY7-11 September 24, 2021 36 - 25.4 HapA 20.8 30 - Dor22_2021 SY8-10 September 24, 2021 36 HapA 20.8 30 - Dor22_2021 SY8-18 September 24, 2021 36 HapC 3413 - Dor25_2021 Y50 September 27, 2021 9.38 HapB 15 187 159 591 Dor28_2021 Y48 ⁴ September 27, 2021 0.542 HapB - 130 294 Dor39_2021 SY3-24 October 18, 2021 Yamanashi Prefecture 7.76 161 346 Dor42_2021 SY4-25 October 18, 2021 145 767 161 346 Dor42_2021 SY7-8 October 18, 2021 18.2 HapB 5396 -	Dor17 2021				14.1		160 067	24 938
Dor19_2021 Z7 - 21 411 Dor20_2021 Dor22_2021 SY6-26 ⁴ September 1, 2021 36 HapA 20 830 - Dor22_2021 SY7-11 September 24, 2021 36 HapA 20 830 - Dor22_2021 SY8-10 September 24, 2021 37 - 23.8 HapC 107 363 - Dor25_2021 SY8-18 September 27, 2021 9.38 HapB 157 344 259 094 Dor26_2021 Y49 September 27, 2021 0.542 HapB 15 187 159 591 Dor29_2021 SY3-24 October 18, 2021 Kiyosato, Hokuto City, Yamanashi Prefecture 7.76 50 007 132 469 Dor40_2021 SY4-25 October 18, 2021 7.76 6065 117 078 Dor42_2021 SY6-21 October 18, 2021 16.4 HapC 190 072 - Dor42_2021 SY7-8 October 18, 2021 18.2 HapB 5396 - Dor42_2021 SY7-12 October 18, 2021 66.6	Dor18_2021	SY6-17 ⁴	September 1, 2021		1.38	HapA	5330	25 907
Dor20_2021 Dor20_2021 SY6-26 ⁴ September 1, 2021 36 25.4 HapA HapA 4957 20.830 - 20.830 - 20.83 HapB 151.87 159.591 Dor25_2021 Y48 ⁴ September 27, 2021 0.542 HapB - 130.294 Dor32_2021 Y49 September 27, 2021 0.542 HapB 2.6010 83.856 Dor32_2021 SY3-24 October 18, 2021 7.76 50007 132.469 Dor41_2021 SY6-21 October 18, 2021 7.76 HapC 101.973 161.346 Dor42_2021 SY6-21 October 18, 2021 7.76 HapC 101.97519 107.519 Dor43_2021 SY7-8 October 18, 2021 0.602 HapC 138.	Dor19_2021		-		27	-	-	21 411
Dor21_2021 S16-20 September 1, 2021 25.4 HapA 20.830 - Dor22_2021 SY7-11 September 24, 2021 104 HapC 3413 - Dor24_2021 SY8-10 September 24, 2021 23.8 HapC 107 363 - Dor26_2021 SY8-18 September 24, 2021 9.38 HapB 157 344 259 094 Dor26_2021 Y50 September 27, 2021 0.542 HapB 15 187 159 591 Dor28_2021 Y48* September 27, 2021 0.542 HapB 26 910 83 856 Dor39_2021 SY4-25 October 18, 2021 Kiyosato, Hokuto City, Yamanashi Prefecture 7.76 50 007 132 469 Dor42_2021 SY6-21 October 18, 2021 1.87 HapC 109 092 - Dor42_2021 SY6-21 October 18, 2021 1.87 HapC 109 072 - Dor42_2021 SY7-8 October 18, 2021 1.8.2 HapB 5396 - Dor47_2021 SY7-12 October 18, 2021	Dor20_2021	SV(2)	Soutombox 1, 2021		36	Llon A	4957	_
Dor22_2021 SY7-11 September 24, 2021 Nor24_2021 SY7-10 September 24, 2021 104 HapC 3413 - Dor24_2021 SY8-10 September 24, 2021 September 24, 2021 23.8 HapC 107.363 - Dor25_2021 SY8-18 September 27, 2021 9.38 HapB 157.344 259.094 Dor25_2021 Y48' September 27, 2021 0.542 HapB 151.87 159.591 Dor29_2021 Y49 September 27, 2021 0.542 HapB 26.910 83.856 Dor39_2021 SY4-25 October 18, 2021 Yamanashi Prefecture 2.26 HapC 107.396 199.348 Dor42_2021 SY4-25 October 18, 2021 Yamanashi Prefecture 7.6 HapC 50.007 132.469 Dor42_2021 SY6-21 October 18, 2021 1.87 HapC 109.072 - Dor47_2021 SY7-8 October 18, 2021 1.87 HapC 29.070 107.519 Dor46_2021 SY7-12 Oc	Dor21_2021	510-20	September 1, 2021		25.4	парА	20 830	-
Dor24_2021 SY8-10 September 24, 2021 23.8 HapC 107 363 - Dor25_2021 SY8-18 September 24, 2021 9.38 HapB 157 344 259 094 Dor26_2021 Y50 September 27, 2021 17.9 HapB 15 187 159 591 Dor28_2021 Y484 September 27, 2021 0.542 HapB 26 910 83 856 Dor38_2021 SY3-24 October 18, 2021 Kiyosato, Hokuto City, Yamanashi Prefecture 7.76 50 007 132 469 Dor42_2021 SY4-25 October 18, 2021 Yamanashi Prefecture 35.2 145 767 161 346 Dor42_2021 SY6-21 October 18, 2021 35.2 145 767 161 346 Dor42_2021 SY7-8 October 18, 2021 18.7 HapC 190 072 - Dor42_2021 SY7-12 October 18, 2021 18.2 HapB 5396 - Dor42_2021 SY7-12 October 18, 2021 18.2 HapB 5396 - Dor51_2021 Oct	Dor22_2021	SY7-11	September 24, 2021		104	HapC	3413	_
Dor25_2021 SY8-18 September 24, 2021 9.38 HapB 157 344 259 094 Dor26_2021 Y50 September 27, 2021 17.9 HapB 151 87 159 591 Dor28_2021 Y48 ⁴ September 27, 2021 0.542 HapB 151 87 159 591 Dor28_2021 Y49 September 27, 2021 0.542 HapB 26 910 83 856 Dor39_2021 SY3-24 October 18, 2021 4.48 HapB 26 910 83 856 Dor40_2021 SY4-25 October 18, 2021 Yamanashi Prefecture 7.76 HapC 6965 117 078 Dor42_2021 SY6-21 October 18, 2021 1.87 HapC 190 072 - Dor42_2021 SY7-8 October 18, 2021 18.2 HapB 5396 - Dor42_2021 SY7-12 October 18, 2021 78 HapB 5396 - Dor42_2021 SY7-21 October 18, 2021 78 HapB 471 - Dor52_2021 GA26	Dor24_2021	SY8-10	September 24, 2021		23.8	HapC	107 363	-
Dor26_2021 Y50 September 27, 2021 17.9 HapB 15 187 159 591 Dor28_2021 Y48* September 27, 2021 0.542 HapB - 130 294 Dor29_2021 Y49 September 27, 2021 4.48 HapB 26 910 83 856 Dor38_2021 SY3-24 October 18, 2021 Yamanashi Prefecture 2.26 HapC 107 396 199 348 Dor40_2021 SY4-25 October 18, 2021 Yamanashi Prefecture 15.4 HapC 50 007 132 469 Dor42_2021 SY6-21 October 18, 2021 Yamanashi Prefecture 35.2 145 767 161 346 Dor42_2021 SY7-8 October 18, 2021 35.2 141 943 189 108 Dor42_2021 SY7-12 October 18, 2021 60.2 HapB 5396 - Dor42_2021 SY7-21 October 18, 2021 78 HapB 471 - Dor51_2021 GA26 October 19, 2021 78 HapB 53 878 37.8 37.8 3	Dor25_2021	SY8-18	September 24, 2021		9.38	HapB	157 344	259 094
Dor28 2021 Y48 ⁴ September 27, 2021 0.542 HapB - 130 294 Dor29 2021 Y49 September 27, 2021 4.48 HapB 26 910 83 856 Dor38 2021 SY3-24 October 18, 2021 Kiyosato, Hokuto City, Yamanashi Prefecture 7.76 HapC 107 396 199 348 Dor49 2021 SY4-25 October 18, 2021 Yamanashi Prefecture 7.76 HapC 6965 117 078 Dor42 2021 SY6-21 October 18, 2021 Yamanashi Prefecture 35.2 145 767 161 346 Dor42 2021 SY7-8 October 18, 2021 187 HapC 190 072 - Dor45 2021 SY7-8 October 18, 2021 60.2 HapB 29 070 107 519 Dor42 2021 SY7-12 October 18, 2021 78 HapB 471 - Dor51 2021 GA26 October 19, 2021 78 HapB 513 07 - Dor52<	Dor26_2021	Y50	September 27, 2021		17.9	HapB	15 187	159 591
Dor29_2021 Y49 September 27, 2021 4.48 HapB 26 910 83 856 Dor38_2021 SY3-24 October 18, 2021 Kiyosato, Hokuto City, Yamanashi Prefecture 2.26 HapC 107 396 199 348 Dor39_2021 SY4-25 October 18, 2021 Kiyosato, Hokuto City, Yamanashi Prefecture 7.76 HapC 50 007 132 469 Dor40_2021 SY6-21 October 18, 2021 SY6-21 October 18, 2021 35.2 145 767 161 346 Dor42_2021 SY7-8 October 18, 2021 0ctober 18, 2021 141 943 189 108 Dor45_2021 SY7-12 October 18, 2021 60.2 HapC 29 070 107 519 Dor42_2021 SY7-21 October 18, 2021 18.2 HapB 5396 - Dor45_2021 SY7-21 October 18, 2021 78 HapB 471 - Dor52_2021 October 19, 2021 0ctober 19, 2021 37.8 HapA 545 43 607 Dor52_2021 October 19, 2021 40.6 HapB	Dor28_2021	Y48 ⁴	September 27, 2021		0.542	HapB	-	130 294
Dor38_2021 SY3-24 October 18, 2021 Kiyosato, Hokuto City, Yamanashi Prefecture 2.26 HapC 107 396 199 348 Dor39_2021 SY4-25 October 18, 2021 Yamanashi Prefecture 7.76 HapC 50 007 132 469 Dor40_2021 SY6-21 October 18, 2021 35.2 145 767 161 346 Dor42_2021 SY6-21 October 18, 2021 35.2 145 767 161 346 Dor42_2021 SY7-8 October 18, 2021 187 HapC 190 072 - Dor45_2021 SY7-8 October 18, 2021 60.2 HapC 29 070 107 519 Dor42_2021 SY7-12 October 18, 2021 18.2 HapB 5396 - Dor51_2021 SY7-21 October 19, 2021 6.94 13 812 - Dor52_2021 GA26 October 19, 2021 50.6 HapA 545 43 607 Dor52_2021 Y37 October 19, 2021 89.6 HapC 91 807 53 352 Dor52_2021 Y10 ⁴	Dor29_2021	Y49	September 27, 2021		4.48	HapB	26 910	83 856
Dor39_2021 Dor40_2021 SY4-25 October 18, 2021 Kiyosato, Hokuto City, Yamanashi Prefecture 7.76 15.4 HapC 50 007 6965 132 469 117 078 Dor41_2021 Dor42_2021 SY6-21 October 18, 2021 35.2 145 767 161 346 Dor42_2021 SY6-21 October 18, 2021 1.87 HapC 190 072 - Dor43_2021 SY7-8 October 18, 2021 60.2 HapC 29 070 107 519 Dor46_2021 SY7-12 October 18, 2021 60.2 HapB 5396 - Dor51_2021 SY7-21 October 18, 2021 78 HapB 471 - Dor52_2021 GA26 October 19, 2021 78 HapA 545 43 607 Dor54_2021 GA26 October 19, 2021 37.8 HapA 545 43 607 Dor55_2021 Dor56_2021 Y37 October 19, 2021 89.6 HapC 91 807 53 352 Dor57_2021 Y10 ⁴ October 19, 2021 18.9 HaoC 8227 138 051	Dor38_2021	SY3-24	October 18, 2021		2.26	НарС	107 396	199 348
Dor40_2021 SY4-25 October 18, 2021 Yamanashi Prefecture 15.4 HapC 6965 117 078 Dor41_2021 35.2 145 767 161 346 Dor42_2021 SY6-21 October 18, 2021 1.87 HapC 190 072 - Dor43_2021 4.3 141 943 189 108 Dor45_2021 SY7-8 October 18, 2021 60.2 HapC 29 070 107 519 Dor46_2021 SY7-12 October 18, 2021 18.2 HapB 5396 - Dor51_2021 SY7-21 October 18, 2021 18.2 HapB 5396 - Dor52_2021 October 19, 2021 6.94 13 812 - Dor52_2021 GA26 October 19, 2021 37.8 HapA 545 43 607 Dor54_2021 40 173 790 - - 40 173 790 - Dor55_2021 Y37 October 19, 2021 40.6 HapB 66 648 137 260 Dor57_2021 Y10 ⁴ Oct	Dor39_2021	GTT1 05	0 1 10 0001	Kiyosato, Hokuto City,	7.76	N G	50 007	132 469
Dor41_2021 35.2 145 767 161 346 Dor42_2021 SY6-21 October 18, 2021 1.87 HapC 190 072 - Dor43_2021 4.3 141 943 189 108 189 108 Dor45_2021 SY7-8 October 18, 2021 60.2 HapC 29 070 107 519 Dor46_2021 SY7-12 October 18, 2021 18.2 HapB 5396 - Dor47_2021 SY7-21 October 18, 2021 78 HapB 471 - Dor51_2021 October 19, 2021 78 HapA 23 746 35 878 Dor52_2021 GA26 October 19, 2021 37.8 HapA 545 43 607 Dor54_2021 40 173 790 - - - - - Dor55_2021 Dor52_021 Y37 October 19, 2021 40.6 HapB 66 648 137 260 Dor57_2021 23.6 HapC 116 936 - - Dor58_2021 Y104 October 19, 2021 18.9 HaoC 8227 138 051 Dor59_2021 <t< td=""><td>Dor40_2021</td><td>SY4-25</td><td>October 18, 2021</td><td>ramanasm Prefecture</td><td>15.4</td><td>НарС</td><td>6965</td><td>117 078</td></t<>	Dor40_2021	SY4-25	October 18, 2021	ramanasm Prefecture	15.4	НарС	6965	117 078
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dor41_2021				35.2		145 767	161 346
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dor42_2021	SY6-21	October 18, 2021		1.87	HapC	190 072	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dor43_2021				4.3		141 943	189 108
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dor45_2021	SY7-8	October 18, 2021		60.2	HapC	29 070	107 519
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dor46_2021	SY7-12	October 18, 2021		18.2	HapB	5396	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dor47_2021	SY7-21	October 18, 2021		78	HapB	471	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dor51_2021				6.94		13 812	-
Dor53_2021 37.8 Hapk 545 43 607 Dor54_2021 40 173 790 - Dor55_2021 89.6 HapC 91 807 53 352 Dor56_2021 Y37 October 19, 2021 40.6 HapB 66 648 137 260 Dor57_2021 23.6 HapC 116 936 - Dor58_2021 Y10 ⁴ October 19, 2021 18.9 HaoC 8227 138 051 Dor59_2021 Y46 ⁴ October 19, 2021 13.2 HapB 79 313 70 256	Dor52_2021	GA26	October 19, 2021		50.6	HanA	23 746	35 878
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dor53_2021	0.120	Secoler 17, 2021		37.8	тира	545	43 607
Dor55_2021 89.6 HapC 91 807 53 352 Dor56_2021 Y37 October 19, 2021 40.6 HapB 66 648 137 260 Dor57_2021 23.6 HapC 116 936 - Dor58_2021 Y10 ⁴ October 19, 2021 18.9 HaoC 8227 138 051 Dor59_2021 Y46 ⁴ October 19, 2021 13.2 HapB 79 313 70 256	Dor54_2021				40		173 790	-
Dorso_2021 Y 37 October 19, 2021 40.6 HapB 66 648 137 260 Dors7_2021 23.6 HapC 116 936 - Dors8_2021 Y10 ⁴ October 19, 2021 18.9 HaoC 8227 138 051 Dors9_2021 Y46 ⁴ October 19, 2021 7.68 8042 95 979 Dor60_2021 Y46 ⁴ October 19, 2021 13.2 HapB 79 313 70 256	Dor55_2021		0.1.10.000		89.6	HapC	91 807	53 352
Dots / 2021 25.0 Hape 110 930 - Dor58_2021 Y10 ⁴ October 19, 2021 18.9 HaoC 8227 138 051 Dor59_2021 Y46 ⁴ October 19, 2021 7.68 8042 95 979 Dor60_2021 Y46 ⁴ October 19, 2021 13.2 HapB 79 313 70 256	Dor56_2021	¥37	October 19, 2021		40.6	НарВ	00 048	13/260
Dot50_2021 110 October 19, 2021 18.9 Haoc 8227 138 051 Dor59_2021	Dor58 2021	V104	October 10, 2021		23.0 10.0	Парс	110 930	129.051
Dor59_2021 7.68 8042 95 979 Dor60_2021 Y46 ⁴ October 19, 2021 13.2 HapB 79 313 70 256	Dor 50 2021	1 10	0000001 19, 2021		10.7	11400	0227	05 070
	Dor60 2021	Y46 ⁴	October 19, 2021		13.2	HapB	0042 79 313	95 979 70 256

 $^{1}\!\!:$ DNA concentration (ng/µl) calculated by Qubit fluorometer.

²: Cytochrome *b* gene haplotypes obtained in this study (see text for accession numbers in the DNA database).

³: Reads for animals and plants left after removing those for negative control, infrequent (less than 100), and bait reads for all samples.

⁴: The Japanese dormouse was present in the nest box.

Fig. 2. Photographs of the artificial nest box (A) and feces on bryophyte plants (B) in Yamanashi Prefecture.

at -20 °C until DNA extraction. Because visits by dormice to the nest boxes were infrequent and fecal samples were obtained rarely, we could perform only sporadic sampling. Therefore, the numbers of samples obtained differed depending on month and location (Table 1).

DNA extraction

We used a commercial DNA extraction kit to extract genomic DNA from 3–5 pieces of feces so as not to exceed the maximum weight of samples (200 mg) as indicated in the kit instruction (QIA amp DNA Stool Mini Kit; Qiagen, Hilden, Germany). Before DNA extraction, we removed as much moss as possible from the feces and extensively cut feces using anatomical scissors. We followed the instructions of the kit, except for the duration of vortex mixing with inhibition buffer (from 1 min to 5 min) and the duration of DNA in the filter with elution buffer (from 1 min to 3 min). The DNA concentration was calculated using a Qubit Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA; Table 1).

Molecular method for species identification of the Japanese dormouse

As a target for PCR, we used the mitochondrial cytochrome b (*Cytb*) gene for species identification. The primers were designed previously (Yasuda et al. 2005, 2007, 2012): L14115 and Gjap-cyt-H323. The targets were 344 bp in length. PCR amplification was performed using an automated thermal cycler (Life Touch Thermal Cycler; Bioer Technology, Hangzhou, China). We used the KOD FX Neo kit (Toyobo, Osaka, Japan) for PCR. Aliquots of 20 ng of template DNA were added to 50 μ L

of PCR mixture containing 2× PCR buffer for KOD FX Neo, 0.4 mM dNTPs, 0.3 µM of each primer, and 1 µL of KOD FX Neo DNA polymerase. The PCR conditions were as follows: initial denaturation at 94°C for 1 min; followed by 35 cycles of denaturation at 98°C for 10 s, annealing at 50°C for 30 s, and extension at 68°C for 30 s; and a final extension at 68°C for 5 min. A negative control was included in each PCR, and we confirmed no amplification in the negative control lane by agarose gel electrophoresis. Single bands were purified using the **OIAquick PCR Purification Kit (Oiagen).** For multiple bands, we used the QIAquick Gel Extraction Kit (Qiagen) to purify the target amplicon. PCR products were sequenced with the BigDye Terminator Cycle Sequencing kit v3.1 (Thermo Fisher Scientific) using the same primers as PCR in both directions, followed by DNA purification by ethanol precipitation, and evaluation using an ABI3130 genetic analyzer (Thermo Fisher Scientific). To identify species, we conducted BLAST searches (Altschul et al. 1990) of the DDBJ/ENA/ GenBank International DNA Database on the NCBI website. We identified sequences with the highest identity. To assess the genetic relationships of the obtained and previously determined sequences, we constructed phylogenetic trees using the neighbor-joining method (Saitou and Nei 1987) in MEGA version 10.2 (Kumar et al. 2018). The obtained sequences were deposited in DNA databases under accession numbers LC762420-LC762423.

DNA metabarcoding analysis

Considering the omnivorous nature of the Japanese dormouse, we focused on one marker in mitochondrial DNA for invertebrate dietary profiling and one marker in nuclear DNA for plant dietary profiling. Diet of vertebrates suggested in Minato (2018; e.g., Japanese tit, *Parus minor*) was not considered in this study. We determined partial sequences of the mitochondrial cytochrome *c* oxidase subunit I gene (*COI*; Zeale et al. 2011) and the internal transcribed spacer between 5.8S rDNA and 28S rDNA (*ITS2*; Moorhouse-Gann et al. 2018).

Two-step tailed PCRs with first and second PCRs were conducted to prepare libraries for NGS analyses. The first PCR amplified the target region and the second PCR attached sequence adapters connected to the flow-cell in the Illumina MiSeq NGS platform (Illumina, San Diego, CA, USA) and each sample-specific index for sample identification. PCR was conducted in an automated thermal cycler (Life Touch thermal cycler; Bioer Technology). For the first PCR, KAPA HiFi HotStart ReadyMix (Kapa Biosystems Inc., Wilmington, DE, USA) was used in a 25-µL PCR mixture containing 2× KAPA HiFi HotStart ReadyMix, 0.3 µM of each universal primer as described below, and templates (20 ng DNA), adjusted with PCR-grade water. For COI, we used ZBJ-ArtF1c (5'-AGATATTGGAACWTTATATTTTATTTTGG-3'; Zeale et al. 2011) and ZBJ-ArtR2c (5'-WACTAATCAAT TWCCAAATCCTCC-3'; Zeale et al. 2011) to assess invertebrate materials. For ITS2, we used a universal primer pair UniPlantF (5'-TGTGAATTGCARRATY CMG-3'; Moorhouse-Gann et al. 2018) and UniPlantR (5'-CCCGHYTGAYYTGRGGTCDC-3'; Moorhouse-Gann et al. 2018) to assess plant materials. Each primer has a sequence at the 5'-end for priming the second PCR and sequencing primers and has six N nucleotide bases for efficient sequencing by MiSeq. The first PCR primers were as follows: [forward] 5'-ACACTCTTTCCCTACA CGACGCTCTTCCGATCTNNNNNN***-3' (*** is each universal forward primer as described above) and [reverse] 5'-GTGACTGGAGTTCAGACGTGTGCTC TTCCGATCTNNNNN+++-3' (+++ is the universal reverse primer described above). The lengths of the PCR products were expected to be 289 bp for COI and 305-595 bp for ITS2 in the first PCR (Zeale et al. 2011; Moorhouse-Gann et al. 2018). The first PCR conditions for COI were as follows: initial denaturation at 95°C for 15 min; followed by 35 cycles of denaturation at 98°C for 20 s, annealing at 57°C for 90 s, and extension at 72°C for 60 s; and a final extension at 72°C for 10 min. The first PCR conditions for ITS2 were as follows: initial denaturation at 95°C for 10 min; followed by 35 cycles of denaturation at 98°C for 20 s, annealing at 55°C for 30 s,

and extension at 72°C for 30 s; and a final extension at 72°C for 2 min. The first PCR products were purified using AMPure XP beads (Beckman Coulter Inc., Brea, CA, USA) and eluted with 35 μ L of PCR-grade water.

For the second PCR, KAPA HiFi HotStart ReadyMix (Kapa Biosystems Inc.) was used in a 24-µL PCR mixture containing 2× KAPA HiFi HotStart ReadyMix, 0.29 µM of each index primer (described below), and template (2 µL of the purified first PCR product), adjusted with PCR-grade water. The index primers for the second PCR were shared by all the molecular markers: [forward] 5'-AATGATACGGCGACCACCGAGATCTACAC-[8-bp index]-ACACTCTTTCCCTACACGACGCTCTT CCGATCT-3' and [reverse] 5'-CAAGCAGAAGACGG CATACGAGAT-[8-bp index]-GTGACTGGAGTTCAG ACGTGTGCTCTTCCGATCT-3'. The sequences of the 5'-end of the 8-bp index in the forward and reverse index primers were P5 and P7 adapters, respectively, which were attached to the MiSeq flow-cell and those of the 3'-side were primed to overhang regions of the first PCR product. With these primers, the second PCR added 69 bp to the first PCR products. Combinations of forward and reverse 8-bp indices were used for sample identification. The second PCR conditions were identical for all molecular markers: initial denaturation at 95°C for 3 min; followed by 12 cycles of denaturation at 98°C for 20 s, annealing at 55°C for 15 s, and extension at 72°C for 15 s: and a final extension at 72°C for 5 min. The same volumes of the second PCR products were mixed in a tube and purified using AMPure XP beads.

We used an E-gel electrophoresis system with E-GelTM SizeSelectTM II Agarose Gels 2% to extract the target DNA fragments (Thermo Fisher Scientific). The extracted samples were subjected to library quantification and quality check using a Qubit Fluorometer and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), respectively, and sequenced by several runs of Illumina MiSeq NGS and reagent kits with 300 pair-end cycles for *COI* and 500 cycles for *ITS2*. The PhiX control spike-in was set to 20-30%.

Data filtering and DNA database search

We used Claident software (Tanabe and Toju 2013) to filter the data and search DNA databases. First, we converted the bcl files generated by MiSeq into FASTQ files via *bcl2fastq*. DNA sequence data in the FASTQ file were assigned to the samples based on an 8-bp index and the primer regions and their flanking sequences were removed via *clsplitseq*. We next used *clconcatpair* to merge the forward and reverse paired-end sequences generated at each cluster on the flow-cell. Low-quality and noisy data were removed using *clfilterseq* and *clcleanseqv*. Sequences of < 100 bp and < 150 bp were omitted for COI and ITS2, respectively. Clustering of the denoised sequences was conducted via *clclassseqv* with a 98% minimum identity to assess the operational taxonomic units (OTUs) of the dietary items. Sequence data omitted because of their noisiness but similar to those of clustered OTUs were recovered using *clrecoverseqv*. For the COI sequences, we checked chimera sequences using clrunuchime and excluded them (for ITS2, we did not check because the option was not available). Next, we BLAST searched the DNA database for dietary OTUs using *clrunuchime*. Finally, the lowest common ancestor (LCA) algorithm was performed in *classigntax* to identify conservative OTUs. OTUs with < 100 reads were removed as low-frequency OTUs. If we could not obtain the taxonomic names by LCA analysis, we repeated the BLAST search individually to identify similar sequences. We followed the scientific names based on those deposited in the DNA databases. The filtered read data for each sample are summarized in Supplementary Tables S1-S6. We converted the filtered dietary reads into relative read abundance (rra) data for each month, where the numbers of reads for each OTU in a month were summed, the sum was divided by the number of samples in each month, and each read number was converted to a proportion (0-1) to the total read in each month. This procedure provides the number of reads per sample per month for each OTU (Tables 2-5). Although the frequency-based occurrence data should be supplementarily examined in addition to the rra data since the rra data might provide biased estimation of the food items by difference in DNA extraction efficiency or PCR amplification bias, we could not examine the occurrence data because of small sample size.

For identifying plant taxa, we made the following assumptions because of the presence of possibly unreliable and insufficient data in the global DNA databases. First, if a few minor data in the DNA database caused failure of identification, we did not consider such problematic sequences. For example, the obtained sequence was frequently similar to distantly related taxa, e.g., *Actinidia* sp. (> ten sequences in the database), *Asplenium scolopendrium* (one sequence), and *Aesculus chinensis* (one sequence) with the same sequence identity values. In this case, we assumed that our sequence corresponded to that of *Actinidia* sp. and recognized the other sequences (*A. scolopendrium* and *A. chinensis*) as error sequences in

the database. This assumption is considered valid considering that almost all other OTUs were Actinidia sp. (Supplementary Tables S4–S6). Similarly, we adopted Wisteria (> ten sequences) and Humulus (> ten sequences) and therefore excluded Millettia japonica + Lilium tsingtauense (one sequence each) and Keteleeria davidiana + Oryza meridionalis (one sequence each), respectively, with the same sequence identity values. Second, the sequence of Clematoclethra scandens was typically a top hit, followed by Actinidia sp. (Supplementary Tables S4–S6). However, because the genus Clematoclethra is present in China, but not in Japan, we chose Actinidia sp. as the dietary taxon despite A. scolopendrium and A. chinensis having identical sequence identity values (see the reason above).

Results

Species identification using Cytb sequences

We determined nucleotide sequences from the start codon of the mitochondrial Cytb gene to the last base before the reverse primer Gjap-cyt-H323 (some sequences were not fully determined; 271-322 bp). With these sequences, we identified all the fecal samples to be from the Japanese dormouse. We detected four haplotypes (HapA-HapD; Fig. 3A), which were identical to sequences in the database and were consistent with the geographic variations (Fig. 3B). Specifically, sequences detected in Oki and Yamanashi were identical to those detected previously (Yasuda et al. 2007, 2012; Fig. 3B). Sequences from samples in the same nest box were typically identical, and samples Dor7-10 2020 and Dor55-57 2021 from a nest boxes Y2020-2 and Y37, respectively, showed multiple sequences. In the nest box Y2020-2, Dor7 2020, Dor8 2020, and Dor10 2020 were HapA, while Dor9 2020 was HapC. In the nest box Y37, Dor55 2021 and Dor57 2021 were HapC, while Dor57 2021 was HapB. These findings suggest that two maternal individuals (mate-pairs or fatheroffspring) were present in each nest box.

Sequences of dietary items by DNA metabarcoding analysis

We performed six independent analyses of Dor1–10 in 2019 and 2020, DorGA5 and GA7 in 2020, and Dor3–60 in 2021 for invertebrate and plant dietary analyses. The numbers of filtered reads for the dietary items are listed in Supplementary Tables S1–S6. We identified almost all dietary items at the genus level (82.1% and 99.5% for invertebrates and plants, respectively).

Fig. 3. Phylogenetic trees based on the neighbor-joining method constructed based on 268-bp sequences of the mitochondrial DNA cytochrome b gene for only samples examined in this study (A) and for haplotypes obtained in this study and those downloaded from the DNA database (data from Yasuda et al. 2007, 2012) (B). HapA, B, C, and D mean haplotypes obtained in this study.

For *COI* data of Dor1–10 in 2019 and 2020, we obtained 322 753 total reads (average = 40 344, min = 3869, max = 107 472) excluding infrequent sequences (< 100 reads; Supplementary Table S1). In total, 51 OTUs were obtained with 96.7% average identity to the database sequence (Supplementary Table S1), which were assigned to 22 genera (six unidentified), 19 families (two unidentified), and six orders (Table 2). For *COI* data of DorGA5 and GA7 in 2020, we obtained 879 028 total reads (average = 125 575, min = 43 365, max = 268 155) excluding infrequent sequences (< 100 reads; Supplementary Table S2). In total, 36 OTUs were obtained with 96.5% average

identity to the database sequence (Supplementary Table S2), which were assigned to 27 genera (five unidentified), 21 families (two unidentified), and nine orders (Table 2). For *COI* data of Dor3–60 in 2021, we obtained 1 806 920 total reads (average = 58 288, min = 471, max = 190 072) excluding infrequent sequences (< 100 reads; Supplementary Table S3). In total, 165 OTUs were obtained with 97.2% average identity to the database sequence (Supplementary Table S3), which were assigned to 88 genera (ten unidentified), 52 families (five unidentified), and ten orders (one unidentified; Table 3). For *ITS2* data of Dor1–10 in 2019 and 2020, we obtained 434 950

Table 2.	Relative read abundance	(rra) of the dietary	v invertebrate	OTUs detected	l in samp	les collected	in 2019	and 2020
----------	-------------------------	------	------------------	----------------	---------------	-----------	---------------	---------	----------

				01/2	Vamanachi	Vamanachi	Vamanashi
				November		September	October
Class	Order	Family	Genus	n=2	n=2	n = 4	n = 7
Arachnida	Araneae	Amaurobiidae	Tegecoelotes	0.00	0.00	0.00	
Arachnida	Araneae	Pimoidae	Weintrauboa				0.01
Arachnida	Araneae	Tarsonemidae	unidentified				0.00
Chromadorea	Rhabditida	Rhabditidae	Oscheius				0.00
Collembola	Entomobryomorpha	Tomoceridae	Tomocerus	0.03	0.00	0.00	0.01
Insecta	Blattodea	Ectobiidae	Rlattella	0.00	0.00	0.00	0.01
Insecta	Coleontera	unidentified	unidentified	0.00	0.00	0.00	0.00
Insecta	Dintera	Symbidae	Snhecomvia	0.00	0.00	0.01	0.00
Insecta	Diptera	Campichoetidae	Campichoeta	0.00	0.00	0.00	
Insecta	Diptera	Cecidomviidae	unidentified	0.00	0.00	0.00	0.00
Insecta	Diptera	Ceratopogonidae	Atrichonogon				0.00
Insecta	Diptera	Chironomidae	Rheocricotonus	0.00	0.06	0.00	0.00
Insecta	Diptera	Culicidae	Lutzia	0.00	0.00	0.00	0.01
Insecta	Diptera	Dolichopodidae	Chrysotimus	0.00	0.33	0.00	0.01
Insecta	Diptera	Drosonhilidae	Drosonhila	0.00	0.00	0.54	0.01
Insecta	Diptera	Drosophilidae	Stegana	0.00	0.52	0.01	0.83
Insecta	Diptera	Fanniidae	Fannia	0.00	0.00	0.01	0.02
Insecta	Diptera	Muscidae	Halina	0.00	0.00	0.42	0.02
Insecta	Diptera	Muscidae	Limnophora	0.00	0.00	0.00	0.00
Insecta	Diptera	Muscidae	Muscina				0.00
Insecta	Diptera	Sciaridae	Camptochaota				0.01
Insecta	Diptera	Sumbidae	Argantinomyia	0.00	0.00	0.00	0.00
Insecta	Diptera	Tashinidaa	Coromagia	0.00	0.00	0.00	0.01
Insecta	Diptera	Tachinidae	Phytomyntara	0.00	0.00	0.00	0.01
Insecta	Diptera	Tachinidae	r nyiomypieru Smidtia	0.00	0.00	0.00	0.00
Insecta	Diptora	Tachinidae	unidentified	0.00	0.00	0.00	0.00
Insecta	Diptera	unidentified	unidentified	0.00	0.00	0.00	0.00
Insecta	Dipiera	Ambididaa	Dhullanhia	0.00	0.00	0.00	0.00
Insecta	Hemiptera	Apindidae	F nyilapnis Cinana				0.00
Insecta	Hemiptera	Damahiliidaa	Cinara				0.01
Insecta	Lanidantara	Fampinnae	Cepnaicia Amata	0.70	0.00	0.00	0.00
Insecta	Lepidoptera	Erebidae	Amala Cominata	0.79	0.00	0.00	0.01
Insecta		Erebidae	Coenipeia Eilem n				0.00
Insecta		Erebidae	Ellema	0.01	0.00	0.00	0.00
Insecta		Erebidae	Cyana	0.01	0.00	0.00	
Insecta		Eredidae	Sypnoides	0.01	0.00	0.00	0.00
Insecta		Geometridae	Cabera	0.00	0.00	0.00	0.00
Insecta		Geometridae	Macaria	0.00	0.00	0.00	
Insecta		Geometridae	Dhuing lanin	0.02	0.00	0.00	0.00
Insecta			Phrixolepia	0.01	0.00	0.00	0.00
Insecta		Lymantriidae	Lymantria	0.01	0.00	0.00	0.00
Insecta		Noctuidae	Acronicia				0.00
Insecta	Lepidoptera	Noctuidae	Cosmia				0.01
Insecta	Lepidoptera	Noctuidae	Feralia	0.00	0.00	0.00	0.02
Insecta	Lepidoptera	Noctuidae	Lithophane	0.00	0.00	0.00	
Insecta	Lepidoptera	Noctuidae	Orthosia	0.01	0.00	0.00	0.00
Insecta	Lepidoptera	Noctuidae	unidentified	0.00	0.00	0.01	0.00
Insecta	Lepidoptera	Saturniidae	Citheronia	0.00	0.00	0.01	
Insecta	Lepidoptera	Tortricidae	Ancylis	0.00	0.00	0.00	
Insecta	Lepidoptera	Iortricoidea	unidentified	0.00	0.00	0.00	
Insecta	Lepidoptera	unidentified	unidentified	0.11	0.07	0.00	
Insecta	Orthoptera	Rhaphidophoridae	unidentified	0.00	0.01	0.00	
Insecta	Orthoptera	Tettigoniidae	Cosmetura				0.00
Insecta	Psocoptera	Psocidae	Metylophorus				0.00
Background color:	0	0 < rra < 0.005	$0.005 \leq rra < 0.1$				
	$0.1 \leq rra < 0.4$	$0.4 \le rra \le 0.8$	$0.8 \le rra \le 1.0$				

Downloaded From: https://complete.bioone.org/journals/Mammal-Study on 19 Apr 2025 Terms of Use: https://complete.bioone.org/terms-of-use

Table 3.	Relative read abundance	of the dietary	v invertebrate	OTUs detected	in samples	collected in	2021
----------	-------------------------	----------------	----------------	---------------	------------	--------------	------

				Yamanashi	Yamanashi	Yamanashi	Yamanashi
Class	Order	Family	Genus	n = 2	August $n = 1$	n = 10	n = 19
Arachnida	Araneae	Clubionidae	Clubiona	0.00	0.00	0.00	0.00
Arachnida	Araneae	Pimoidae	Weintrauboa	0.00	0.00	0.00	0.00
Arachnida	Araneae	Salticidae	Hvllus	0.00	0.00	0.00	0.00
Arachnida	Araneae	Tetragnathidae	Menosira	0.00	0.00	0.00	0.00
Arachnida	Araneae	Theridiidae	Takavus	0.00	0.00	0.01	0.00
Arachnida	Scorpiones	unidentified	unidentified	0.00	0.50	0.00	0.00
Collembola	Entomobryomorpha	Tomoceridae	Tomocerus	0.00	0.00	0.00	0.00
Insecta	Coleoptera	Carabidae	unidentified	0.01	0.00	0.00	0.00
Insecta	Coleoptera	Cerambycidae	Grammoptera	0.00	0.00	0.00	0.01
Insecta	Coleoptera	Coccinellidae	Harmonia	0.00	0.00	0.00	0.00
Insecta	Coleoptera	Curculionidae	Curculio	0.00	0.00	0.00	0.00
Insecta	Coleoptera	Endomychidae	Endomychus	0.00	0.00	0.00	0.00
Insecta	Coleoptera	Staphylinidae	Quedius	0.00	0.00	0.00	0.00
Insecta	Coleoptera	unidentified	unidentified	0.00	0.00	0.00	0.00
Insecta	Diptera	Bibionidae	Bibio	0.00	0.00	0.00	0.03
Insecta	Diptera	Carnidae	Meoneura	0.00	0.00	0.00	0.00
Insecta	Diptera	Chironomidae	Cricotopus	0.00	0.00	0.00	0.00
Insecta	Diptera	Chironomidae	Tanytarsus	0.00	0.00	0.00	0.00
Insecta	Diptera	Chloropidae	Tricimba	0.00	0.00	0.01	0.00
Insecta	Diptera	Drosophilidae	Amiota	0.00	0.00	0.00	0.00
Insecta	Diptera	Drosophilidae	Apenthecia	0.00	0.00	0.00	0.00
Insecta	Diptera	Drosophilidae	Drosophila	0.01	0.00	0.21	0.14
Insecta	Diptera	Drosophilidae	Stegana	0.00	0.00	0.00	0.34
Insecta	Diptera	Limoniidae	Libnotes	0.00	0.00	0.00	0.00
Insecta	Diptera	Limoniidae	unidentified	0.00	0.00	0.00	0.04
Insecta	Diptera	Muscidae	Helina	0.00	0.00	0.00	0.00
Insecta	Diptera	Muscidae	Neomyia	0.00	0.00	0.00	0.00
Insecta	Diptera	Muscidae	Phaonia	0.00	0.00	0.00	0.00
Insecta	Diptera	Mycetophilidae	Exechia	0.00	0.00	0.00	0.00
Insecta	Diptera	Phoridae	Megaselia	0.00	0.00	0.01	0.00
Insecta	Diptera	Pipunculidae	Eudorylas	0.00	0.03	0.00	0.00
Insecta	Diptera	Psychodidae	Psychoda	0.00	0.00	0.00	0.00
Insecta	Diptera	Syrphidae	Dasysyrphus	0.02	0.00	0.00	0.00
Insecta	Diptera	Syrphidae	Epistrophe	0.00	0.00	0.00	0.03
Insecta	Diptera	Syrphidae	Meliscaeva	0.00	0.00	0.00	0.00
Insecta	Diptera	Syrphidae	Syrphus	0.00	0.00	0.00	0.02
Insecta	Diptera	Tachinidae	Ceromasia	0.00	0.00	0.00	0.00
Insecta	Diptera	Tachinidae	Oswaldia	0.00	0.00	0.00	0.00
Insecta	Diptera	Tachinidae	Triarthria	0.00	0.00	0.00	0.00
Insecta	Diptera	unidentified	unidentified	0.00	0.00	0.00	0.00
Insecta	Hemiptera	Aphididae	Euceraphis	0.00	0.00	0.00	0.03
Insecta	Hemiptera	Aphididae	Longistigma	0.00	0.00	0.05	0.02
Insecta	Hemiptera	Lachnidae	Cinara	0.02	0.00	0.00	0.01
Insecta	Hemiptera	Lachnidae	Tuberolachnus	0.00	0.00	0.00	0.00
Insecta	Hemiptera	Pentatomidae	Dinorhynchus	0.00	0.00	0.00	0.00
Insecta	Hymenoptera	Braconidae	Pauesia	0.00	0.00	0.00	0.00
Insecta	Hymenoptera	Pamphiliidae	Cephalcia	0.00	0.00	0.01	0.00
Insecta	Hymenoptera	Tenthredinidae	Pristiphora	0.00	0.00	0.00	0.00
Insecta	Hymenoptera	Vespidae	Vespula	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Crambidae	Palpita	0.00	0.04	0.00	0.00

	,			Yamanashi July	Yamanashi August	Yamanashi September	Yamanashi October
Class	Order	Family	Genus	n=2	n = 1	<i>n</i> = 10	<i>n</i> = 19
Insecta	Lepidoptera	Depressariidae	Psilocorsis	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Epicopeiidae	Psychostrophia	0.00	0.02	0.00	0.00
Insecta	Lepidoptera	Erebidae	Coenipeta	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Erebidae	Cratoplastis	0.00	0.00	0.00	0.08
Insecta	Lepidoptera	Erebidae	Eilema	0.00	0.10	0.00	0.00
Insecta	Lepidoptera	Erebidae	Epitausa	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Erebidae	Ghoria	0.00	0.09	0.00	0.03
Insecta	Lepidoptera	Erebidae	Lithosia	0.00	0.03	0.00	0.00
Insecta	Lepidoptera	Erebidae	Oxidercia	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Erebidae	Zale	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Gelechiidae	unidentified	0.00	0.00	0.01	0.00
Insecta	Lepidoptera	Geometridae	Cabera	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Geometridae	Cystidia	0.00	0.00	0.00	0.01
Insecta	Lepidoptera	Geometridae	Deileptenia	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Geometridae	Dioptrochasma	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Geometridae	Ennomos	0.02	0.00	0.00	0.00
Insecta	Lepidoptera	Geometridae	Macaria	0.00	0.00	0.04	0.00
Insecta	Lepidoptera	Geometridae	Melanthia	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Geometridae	unidentified	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Limacodidae	Microleon	0.00	0.00	0.00	0.02
Insecta	Lepidoptera	Nepticulidae	Stigmella	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Noctuidae	Feralia	0.04	0.00	0.00	0.02
Insecta	Lepidoptera	Noctuidae	Heliocheilus	0.00	0.00	0.02	0.00
Insecta	Lepidoptera	Noctuidae	Neumichtis	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Noctuidae	unidentified	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Nolidae	Pseudoips	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Notodontidae	Drymonia	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Pyralidae	Ceroprepes	0.00	0.00	0.00	0.10
Insecta	Lepidoptera	Saturniidae	Saturnia	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Sphingidae	Marumba	0.01	0.00	0.00	0.00
Insecta	Lepidoptera	Sphingidae	Neogene	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Tortricidae	Acleris	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Tortricidae	Argyroploce	0.00	0.00	0.02	0.02
Insecta	Lepidoptera	Tortricidae	Eccopsis	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Tortricidae	Isochorista	0.00	0.00	0.00	0.01
Insecta	Lepidoptera	Tortricidae	Lobesia	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Tortricidae	Pseudogalleria	0.00	0.01	0.00	0.00
Insecta	Lepidoptera	Tortricidae	Strophedra	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Tortricidae	Syndemis	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	Tortricidae	Tortricodes	0.00	0.00	0.00	0.00
Insecta	Lepidoptera	unidentified	unidentified	0.86	0.15	0.23	0.00
Insecta	Orthoptera	Acrididae	Nomadacris	0.00	0.00	0.00	0.01
Insecta	Orthoptera	Mogoplistidae	Ornebius	0.00	0.00	0.03	0.00
Insecta	Orthoptera	Tettigoniidae	Cosmetura	0.00	0.00	0.00	0.00
Insecta	Orthoptera	Tettigoniidae	Metrioptera	0.00	0.00	0.00	0.00
Insecta	Plecoptera	Nemouridae	Nemoura	0.00	0.00	0.00	0.00
Insecta	Psocoptera	Stenopsocidae	Stenopsocus	0.00	0.00	0.00	0.00
Insecta	unidentified	unidentified	unidentified	0.00	0.03	0.31	0.00
Background color:	0	0 < rra < 0.005	$0.005 \le rra \le 0.1$	0.00	0.05	0.01	0.00
6	$0.1 \leq rra < 0.4$	$0.4 \leq rra < 0.8$	$0.8 \le \text{rra} \le 1.0$				

Table 4.	Relative read abundance	of the dietary pla	nt OTUs detected in	samples collected in 2020
		21		

Order	Family	Genus	Oki November n = 2	Yamanashi August n=2	Yamanashi September n = 4	Yamanashi October n = 3
Ericales	Actinidiaceae	Actinidia	0.05	0.98	1.00	1.00
Fagales	Betulaceae	Alnus	0.00	0.01	0.00	
Fagales	Fagaceae	Castanopsis	0.95	0.00	0.00	
Fagales	Fagaceae	Quercus	0.00	0.00	0.00	
Poales	Poaceae	Triticum	0.00	0.00	0.00	
Rosales	Rosaceae	Prunus	0.00	0.00	0.00	
Background color:	0	0 < rra < 0.005	$0.005 \leq rra < 0.1$			
	$0.1 \leq rra < 0.4$	$0.4 \leq rra < 0.8$	$0.8 \leq rra < 1.0$			

255

total reads (average = 54369, min = 147, max = 79473) excluding bacteria, fungi, contaminants, infrequent sequences (< 100 reads), and other unknown organisms (Supplementary Table S4). In total, 33 OTUs were obtained with 98.1% average identity to the database sequence (Supplementary Table S4), which were assigned to six genera, five families, and four orders (Table 4). For ITS2 data of DorGA5 and GA7 in 2020, we obtained 287 720 total reads (average = 95 907, min = 76 843, max = 111 244) excluding bacteria, fungi, contaminants, infrequent sequences (< 100 reads), and other unknown organisms (Supplementary Table S5). In total, 21 OTUs were obtained with 96.7% average identity to the database sequence (Supplementary Table S5), which were assigned to one genus, one family, and one order (Table 4). For ITS2 data of Dor3-60 in 2021, we obtained 2 187 598 total reads (average = 99 436, min = 476, max = 259 094) excluding bacteria, fungi, contaminants, apples (Malus sp.) and oranges (Citrus sp.) used to keep dormice temporarily in the nest box (Dor17–21 in 2021), infrequent sequences (< 100 reads), and other unknown organisms (Supplementary Table S6). In total, 146 OTUs were obtained with 98.3% average identity to the database sequence (Supplementary Table S6), which were assigned to 25 genera (one unidentified), 23 families, and 11 orders (Table 5).

Based on the read data in Supplementary Tables S1– S6, rra ratios were calculated (Tables 2–5). For invertebrate dietary components in 2019 to 2020, the genus *Amata* in Erebidae (Lepidoptera; approximately 80%) was the main component, followed by unidentified Lepidoptera sp. (approximately 10%) in the fecal sample from Oki in November 2019, whereas Diptera dominated in fecal samples from Yamanashi in August to October of 2020 (approximately 90%; Lutzia in Culicidae, Drosophila and Stegana in Drosophilidae, Fannia in Fanniidae, Muscina in Muscidae, and Ceromasia in Tachinidae) (Table 2). Lepidoptera were detected in Yamanashi in August (7%, unidentified Lepidoptera sp.), September (1%, Citheronia in Saturniidae), and October (3%, Cosmia and Feralia in Noctuidae) albeit at a lower rate than Diptera (Table 2). In 2021, Diptera was the main item in October (60%) fecal samples (Drosophila and Stegana in Drosophilidae, unidentified species in Limoniidae, and Dasysyrphus and Syrphus in Syrphidae), and Lepidoptera were detected less frequently in October (29%; Table 3). By contrast, in 2021 samples, Lepidoptera was the main item in July (93%), August (44%), and September (32%), and was higher than Diptera (3%, 3%, and 23%, respectively; Table 3). Also, 2020 and 2021 samples had higher proportions of Hemiptera in autumn, including Cinara in Lachinidae (1% in October 2020, 2% in July 2021, and 1% in October 2021), Longistigma in Aphididae (5% in September 2021 and 2% in October 2021), and Euceraphis in Aphididae (3% in October 2021; Table 3). Scorpiones sp. (Arachnida) dominated 50% of reads detected for one sample from August 2021 in Yamanashi. Although species of this taxon are not distributed in the study area, the sequence identity to the database sequence was high (96.8%; Supplementary Table S3).

Various plant dietary components were detected in Oki and Yamanashi in 2019 to 2020. *Castanopsis* (Fagaceae) was the main item in Oki (95%, November), and *Actinidia* (Actinidiaceae; mostly *Actinidia arguta*) dominated fecal samples from Yamanashi (98–100%, August to October) (Table 4). The latter taxon was observed in Oki, albeit at a lower rate (5%; Table 4). In 2021, *Actinidia*

Order	Family	Genus	Yamanashi June n = 1	Yamanashi August n = 1	Yamanashi September n = 7	Yamanashi October n = 13
Caryophyllales	Polygonaceae	Rumex	0.00	0.00	0.00	0.00
Cornales	Cornaceae	Cornus	0.00	0.00	0.00	0.00
Cornales	Hydrangeaceae	Deutzia	0.00	0.00	0.02	0.00
Ericales	Actinidiaceae	Actinidia	0.00	0.00	0.89	0.99
Ericales	Clethraceae	Clethra	0.00	0.34	0.00	0.00
Ericales	Pentaphylacaceae	Eurya	0.00	0.00	0.01	0.00
Ericales	Pentaphylacaceae	unidentified	0.00	0.00	0.00	0.00
Ericales	Primulaceae	Myrsine	0.00	0.00	0.00	0.00
Fabales	Fabaceae	Wisteria	0.27	0.00	0.00	0.00
Fagales	Betulaceae	Carpinus	0.00	0.00	0.00	0.00
Fagales	Fagaceae	Castanea	0.00	0.45	0.00	0.00
Fagales	Fagaceae	Quercus	0.00	0.00	0.00	0.00
Fagales	Juglandaceae	Pterocarya	0.37	0.00	0.00	0.00
Gentianales	Rubiaceae	Lasianthus	0.00	0.00	0.00	0.00
Laurales	Lauraceae	Lindera	0.00	0.00	0.00	0.00
Porellales	Frullaniaceae	Frullania	0.19	0.22	0.00	0.00
Porellales	Porellaceae	Porella	0.00	0.00	0.00	0.00
Ranunculales	Eupteleaceae	Euptelea	0.00	0.00	0.00	0.00
Rosales	Cannabaceae	Celtis	0.00	0.00	0.07	0.00
Rosales	Cannabaceae	Humulus	0.00	0.00	0.00	0.00
Rosales	Rosaceae	Prunus	0.00	0.00	0.00	0.00
Rosales	Ulmaceae	Ulmus	0.17	0.00	0.00	0.00
Sapindales	Aceraceae	Acer	0.00	0.00	0.00	0.00
Sapindales	Anacardiaceae	Toxicodendron	0.00	0.00	0.00	0.00
Sapindales	Rutaceae	Zanthoxylum	0.00	0.00	0.00	0.00
Vitales	Vitaceae	Parthenocissus	0.00	0.00	0.00	0.00
Background color:	0	0 < rra < 0.005	$0.005 \leq rra < 0.1$			
	$0.1 \leq rra < 0.4$	$0.4 \leq rra < 0.8$	$0.8 \leq rra < 1.0$			

 Table 5.
 Relative read abundance of the dietary plant OTUs detected in samples collected in 2021

predominated in autumn fecal samples (89% in September, 99% in October; Table 5). In September 2021, *Celtis* (Cannabaceae, 7%) and *Eurya* (Pentaphylacaceae, 1%; identified as *Eurya japonica* with 100% sequence identity) were also detected. In June and August, plant taxon diversity was elevated (Table 5): *Pterocarya* (Juglandaceae, 37%), *Wisteria* (Fabaceae, 27%), and *Ulmus* (Ulmaceae, 17%) in June and *Castanea* (Fagaceae, 45%; identified as *Castanea crenata* with 99.7% sequence identity) and *Clethra* (Clethraceae, 34%; identified as *Clethra barbinervis* with 99.7% sequence identity) in August. We detected the bryophyte genus *Frullania*

(Frullaniaceae) in June (19%) and August (22%) samples (Table 5), but we considered them to have been carried by dormice into the nest box and did not regard them as dietary components.

Discussion

Noninvasive method for species identification

We report a method for species identification and assessment of the geographic variation of the Japanese dormouse using fecal samples and primers developed by Yasuda et al. (2005, 2012). Such a method is beneficial because the direct capture or handling of the Japanese dormouse is problematic as a result of it being a protected natural monument in Japan. For dietary profiling, species identification using feces is mandatory because other small mammals, such as the small Japanese wood mouse Apodemus argenteus, are likely to share an artificial nest box and produce feces (Minato 2018; Takatsuki et al. 2022). It is therefore critical to identify species before dietary analysis. Furthermore, the procedure in this study can be used to clarify geographic variations of the Japanese dormouse. The Japanese dormouse was demonstrated to be genetically distinct locally, maintaining nine phylogroups that were inferred to have differentiated in the late Miocene to Pliocene (Yasuda et al. 2012). Our noninvasive procedure may facilitate phylogeographic studies and contribute to the circumscription of the conservation unit for this species.

Dietary profiling of the Japanese dormouse

Previous studies of dormouse diet were based on direct observation (Minato et al. 1997; Iwabuchi 2008; Aoki and Moriya 2009; Ochiai et al. 2015; Minato 2018; Takatsuki and Suzuki 2022). These studies suggested this species to be omnivorous and to have seasonal variation in dietary components, consistent with our findings. However, these previous studies were based on broad taxonomic units. This is also the case for the other dormouse species in Europe (e.g., Glis glis, Nowakowski and Godlewska 2006; Eliomys quercinus in Spain, Gil-Delgado et al. 2010; Dryomys nitedula, Nowakowski and Godlewska 2006, Juškaitis and Baltrūnaitė 2013a; Muscardinus avellanarius, Juškaitis and Baltrūnaitė 2013b). We provided taxonomic resolution at the genus level or sometimes at the species level for the dietary items. In this study, sufficient sampling to fully discuss the diet of dormice was difficult because of their elusiveness and domestic regulation. We therefore focused on their main dietary characteristics and discussed the potential and pitfalls of our methodology. In future, we should collect more samples with more efficient strategy such as finding highly utilized nest boxes or higher density regions to assess the seasonal variation of diets more fully. Placing more nest boxes would also be efficient.

Direct observations in previous feeding experiments and field surveys demonstrated that dormice eat insects such as beetles, butterflies, centipedes, dragonflies, earwigs, flies, grasshoppers, ladybirds, mantises, moths, spiders, wasps, and aquatic insects (Aoki and Moriya 2009; Minato 2018). In this study, Lepidoptera was predominantly detected in Oki samples, whereas Lepidoptera and Diptera were two main items in Yamanashi samples. In Yamanashi, the proportions of these two taxa differed seasonally although it should be noted that the sample size in summer was so small. Nevertheless, Lepidoptera decreased and Diptera increased in fecal samples toward autumn. Also, Hemiptera (specifically, aphids) increased toward autumn. In fact, Minato (2018) observed that the Japanese dormice in Yamanashi consumed aphids in gall of the Koyama's Spruce (Picea kovamae) in September. Consumption of insects is high in summer and decreases toward autumn, and fruits are often consumed instead in autumn (Ochiai et al. 2015; Takatsuki and Suzuki 2022). Lepidoptera showed a similar tendency in this study, but Diptera and Hemiptera did not. Thus, insects might still be important resources in autumn by the Japanese dormouse. It is also likely that some fruit-related flies were consumed simultaneously when dormice searched for fruits such as Actinidia sp. in autumn (see below). Such accidental consumption may introduce bias in the dietary components, as suggested in a recent DNA metabarcoding study (Tercel et al. 2021).

Regarding dietary plant components, Actinidia sp. (mostly the hardy kiwi, A. arguta) was detected in almost all samples obtained in autumn (September and October 2020 and 2021) in Yamanashi, consistent with a prior report (Minato 2018). By contrast, dormice tended to have a more diverse plant diet in summer (June to August) although small sample size should provide only preliminary dietary trend. Nevertheless, dormice appeared not to consume Actinidia sp. exclusively in summer, while probably preferentially selecting this plant species in autumn. Autumn is important for accumulating fat for hibernation (Shibata 2000). Dormice typically weigh 14-20 g in summer and in spring after hibernation, but > 20 g is needed to prepare for hibernation (Minato 2018). Dormice therefore increase their weight in autumn by eating nutritious, high-carbohydrate foods to prepare for hibernation. In this study, A. arguta was detected at a high rate in autumn. This plant has been reported as an important food resource for various mammalian species, which disperse its seeds (e.g., black bears, macaques, racoon dogs, and martens; Yasumoto and Takatsuki 2015; Naoe et al. 2019). This is consistent with a direct observation that a portion of the September diet of the Japanese dormouse in Yamanashi included the fruit of A. arguta, which ripens from September to October (Iwabuchi et al. 2008; Minato 2018). In addition, other plants that produce ripened fruits in autumn (Celtis sp.

and *E. japonica*) were detected in September 2021. The consumption of fruits in autumn is consistent with a recent microscopy study (Takatsuki and Suzuki 2022). Fructose, a carbohydrate present in fruits and honey, can be converted into fat via several metabolic pathways; therefore, many animals use fruits for energy storage (Johnson et al. 2020). As such, the fruit of *A. arguta* may be an important dietary resource enabling Japanese dormice to survive hibernation.

Clethra barbinervis (detected in August 2021) was also observed by Iwabuchi et al. (2008) and Minato (2018). August is the flowering season for this species. Iwabuchi et al. (2008) and Minato (2018) reported that dormice consumed the flower of this species, as well as Lepidoptera around the flower. Lepidoptera was detected frequently in August 2021, albeit in a single sample. The flowering season for Pterocarya sp. and Wisteria sp., detected in a fecal sample in June 2021, is in spring (April to June), suggesting that flowers are the consumed tissue. Dormice pollinate various plant species (Minato 2018). Castanea crenata in August might be at a post-flowering stage and we could not determine which tissues were consumed by dormice. Hard chestnuts are difficult for dormice to eat because of their poor jaw power. In feeding experiments, dormice did not consume hard nuts such as acorns and walnuts (Minato 2018). Iwabuchi et al. (2008) noted that, in summer after the flowering season, dormice might mainly eat tree bark and insects, possibly including the bark of Castanea species. We could not assess the Ulmus lifecycle; species of this genus were not identified because of 100% sequence identities among Ulmus species.

Potential and pitfalls of noninvasive species identification and dietary profiling

This is the first study of noninvasive species identification and dietary profiling using genetic methods for dormouse fecal samples. These methods provided insight into the evolution and ecology of this elusive and protected species. However, the methods are imperfect and should be improved by solving the following problems and incorporating several recommendations.

First, although the global DNA database provided highly similar sequences for the *COI* and *ITS2* markers (> 96.5% and > 96.7% on average, respectively), they were not 100%, limiting identifications to the genus level. A local reference DNA database would facilitate species-level identification (Ando et al. 2020), enabling clarification of the ecological requirements of this protected species. *ITS2* is an efficient marker for plant metabarcoding because of its discriminatory power among species and its recently established database (Cheng et al. 2016; Moorhouse-Gann et al. 2018; Banchi et al. 2020). This is consistent with our study in terms of the higher resolution for *ITS2* (high sequence identity with database sequences). However, the number of detected OTUs was less than that for other plant markers, such as the chloroplast *trnL* P6 loop region (e.g., Sato et al. 2019, 2022). Thus, further characterization of the *ITS2* marker is needed.

Second, the DNA databases contain some erroneous sequences. An OTU that accounted for half of reads from a fecal sample obtained in August 2021 in Yamanashi was identified as a species of Scorpiones (Supplementary Table S3). The sequence identity to the database sequence (accession no. KM838535) was high (96.8%). However, species of Scorpiones are observed only in the Ryukyu Islands in Japan (two species in Ischnuridae and Buthidae), not in the study area (Yamanashi). We have never used the nest boxes to hold species of Scorpiones. A possible explanation is erroneous registration of database sequences. The second hit sequence was a Tarsonemidae mite species (sequence identity was 90.2%). If this is accurate, these data would not provide dietary information for the Japanese dormouse. Another explanation is that dormice consumed exotic Scorpiones sp. artificially released into the wild. However, no such artificial release has been reported and the dormouse, with its poor mastication power, is unlikely to be able to consume armed Scorpiones spp. Researchers at our institute have not studied Scorpiones spp., making contamination unlikely. We also used special care when interpreting plant dietary taxa. We frequently detected Actinidia sp. (kingdom Viridiplantae; phylum Streptophyta; class Magnoliopsida; order Ericales; family Actinidiaceae), A. scolopendrium (Viridiplantae; Streptophyta; Polypodiopsida; Polypodiales; Aspleniaceae), and A. chinensis (Viridiplantae; Streptophyta; Magnoliopsida; Sapindales; Sapindaceae) with the same sequence identities, meaning that different classes or orders have identical sequences. In this study, we assumed Actinidia sp. to be correct based on the abundance of its data in the database.

Third, the sampling procedure was an issue. Although the noninvasive analysis provides insight into the ecology of protected animals, fecal samples must be collected with caution to prevent contamination (Sato et al. 2019). The Japanese dormouse collects plant materials, such as birch (*Betula* spp.) or bryophytes (Fig. 2B), to construct nests for reproduction (Minato 2018). In fact, we detected *Frullania* bryophytes in samples obtained in June and August 2021. Moreover, Japanese dormice share artificial nest boxes with other animals like the small Japanese wood mouse *A. argenteus* or the Japanese tit *P. minor* (Minato 2018). These animals also bring plant materials into nest boxes (Minato 2018). Because DNA metabarcoding has higher sensitivity than traditional microscopic analyses for detecting dietary species in feces, care should be taken not to collect such materials brought by dormice or other animals. Of final note, flies gathering around fruits may be accidentally consumed (Tercel et al. 2021).

Fourth, our procedure using the mitochondrial *Cytb* gene marker cannot discriminate dormouse individuals. This precludes investigation of whether an obtained diet is from an individual. Because multiple dormice likely share a nest box (Minato 2018); we detected two *Cytb* haplotypes from the same nest box (Y2020_2 and Y37). Therefore, we recommend that a camera be set near the nest box or a genetic method capable of individual identification from feces be applied simultaneously.

Conclusions

We developed a NIG method to assess the diet of the protected Japanese dormouse from its feces in artificial nest boxes. To test the dietary trends of this species, more sampling of feces and more information on local fauna and flora are required. Our noninvasive DNA metabarcoding method provided insight into the diet of elusive, endangered, and protected animals. It may apparently provide more superior data to the traditional direct observation based on fecal analysis (Ochiai et al. 2015; Takatsuki and Suzuki 2022). However, the latter enables determination of the relative abundances of invertebrates and plants in fecal samples or the developmental stages of detected species (e.g., larvae or adults), which are difficult to determine via DNA metabarcoding because no universal primers target invertebrate and plant species simultaneously and all tissues have basically the same DNA contents. Combining these methods would enable clarification of the ecological role of the Japanese dormouse in forest ecosystems.

Supplementary data

Supplementary data are available at *Mammal Study* online. Supplementary Table S1. Numbers of reads for each invertebrate OTU detected from feces of dormice Dor1–

10 in 2020.

Supplementary Table S2. Numbers of reads for each invertebrate OTU detected from feces of dormice DorGA5 and DorGA7 in 2020.

Supplementary Table S3. Numbers of reads for each invertebrate OTU detected from feces of dormice in 2021. **Supplementary Table S4.** Numbers of reads for each plant OTU detected from feces of dormice Dor1–10 in 2020.

Supplementary Table S5. Numbers of reads for each plant OTU detected from feces of dormice DorGA5 and DorGA7 in 2020.

Supplementary Table S6. Numbers of reads for each plant OTU detected from feces of dormice in 2021.

Acknowledgments: We are grateful to Mitsuo Nunome for his help on the sample collection. This study was financially supported by the research fund from Keidanren Committee on Nature Conservation (granted to Shusaku Minato) and the Green Science Research Center in Fukuyama University (granted to Jun J. Sato).

References

- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.
- Ando, H., Mukai, H., Komura, T., Dewi, T., Ando, M. and Isagi, Y. 2020. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environmental DNA 2: 391–406.
- Aoki, Y. and Moriya, H. 2009. Notes on gut contents of Japanese dormouse at the Tanzawa Mountains. Natural History Report of Kanagawa 30: 103–105 (in Japanese).
- Banchi, E., Ametrano, C., Greco, S., Stanković, D., Muggia, L. and Pallavicini, A. 2020. PLANITS: a curated sequence reference dataset for plant ITS DNA metabarcoding. Database: The Journal of Biological Databases and Curation 2020: 1–9.
- Buglione, M., Maselli, V., Rippa, D., de Filippo, G., Trapanese, M. and Fulgione, D. 2018. A pilot study on the application of DNA metabarcoding for non-invasive diet analysis in the Italian hare. Mammalian Biology 88: 31–42.
- Castle, S. T., Allan, N., Clifford, D., Aylward, C. M., Ramsey, J., Fascetti, A. J., Pesapane, R., Roy, A., Statham, M., Sacks, B., et al. 2020. Diet composition analysis provides new management insights for a highly specialized endangered small mammal. PLOS ONE 15: e0240136.
- Ceballos, G., Ehrlich, P. R. and Raven, P. H. 2020. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proceedings of the National Academy of Sciences of the United States of America 117: 13596–13602.
- Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y. and Zhou, S. 2016. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources 16: 138–49.

- de Sousa, L. L., Silva, S. M. and Xavier, R. 2019. DNA metabarcoding in diet studies: unveiling ecological aspects in aquatic and terrestrial ecosystems. Environmental DNA 1: 199–214.
- Ferreira, C. M., Sabino-Marques, H., Barbosa, S., Costa, P., Encarnação, C., Alpizar-Jara, R., Pita, R., Beja, P., Mira, A., Searle, J. B., et al. 2018. Genetic non-invasive sampling (gNIS) as a cost-effective tool for monitoring elusive small mammals. European Journal of Wildlife Research 64: 46.
- Gil-Delgado, J. A., Mira, O., Viñals, A., Gómez, J., Banyuls, N. and Vives-Ferrándiz, C. 2010. Diet of the garden dormouse (*Eliomys quercinus* Linnaeus 1766) in orange groves: seasonal variation and use of available resources. Mammalia 74: 147–151.
- Iwabuchi, M., Minato, S., Aiba, H. and Tetsuo, M. 2017. Body temperature and microhabitat use in the hibernating Japanese dormouse (*Glirulus japonicus*). Mammalia 81: 23–32.
- Iwabuchi, M., Sugiyama, S., Minato, C., Wakabayashi, C. and Minato, S. 2008. Food habits of the Japanese dormouse, *Glirulus japonicus* and their seasonal variations. Japanese Journal of Environmental Entomology and Zoology 19: 85–89 (in Japanese with English abstract).
- Johnson, R. J., Stenvinkel, P., Andrews, P., Sánchez-Lozada, L. G., Nakagawa, T., Gaucher, E., Andres-Hernando, A., Rodriguez-Iturbe, B., Jimenez, C. R., Garcia, G., et al. 2020. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts. Journal of Internal Medicine 287: 252–262.
- Juškaitis, R. and Baltrūnaitė, L. 2013a. Seasonal variability in the diet of the forest dormouse, *Dryomys nitedula*, on the north-western edge of its distributional range. Folia Zoologica 62: 311–318.
- Juškaitis, R. and Baltrūnaitė, L. 2013b. Feeding on the edge: the diet of the hazel dormouse *Muscardinus avellanarius* (Linnaeus 1758) on the northern periphery of its distributional range. Mammalia 77: 149–155.
- Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.
- Lopes, C. M., De Barba, M., Boyer, F., Mercier, C., Galiano, D., Kubiak, B. B., Maestri, R., da Silva Filho, P. J. S., Gielly, L., Coissac, E., et al. 2020. Ecological specialization and niche overlap of subterranean rodents inferred from DNA metabarcoding diet analysis. Molecular Ecology 29: 3144–3154.
- Minato, S. 2018. The Japanese Dormouse–Conservation of Wild Animals and Environmental Education. Tokyo University Press, Tokyo, 272 pp. (in Japanese).
- Minato, S., Wakabayashi, M. and Hidaka, T. 1997. Ecology of the Japanese dormouse, *Glirulus japonicus*. Natura Croatic 6: 263–269.
- Moorhouse-Gann, R. J., Dunn, J. C., de Vere, N., Goder, M., Cole, N., Hipperson, H. and Symondson, W. 2018. New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Scientific Reports 8: 8542.
- Murano, C., Sato, J. J., Wada, T., Kasahara, S. and Azuma, N. 2023. Genetic analyses of Japanese field vole *Alexandromys (Microtus) montebelli* winter diet in apple orchards with deep snow cover. Mammal Study 48: 219–229.
- Naoe, S., Tayasu, I., Sakai, Y., Masaki, T., Kobayashi, K., Nakajima, A., Sato, Y., Yamazaki, K., Kiyokawa, H. and Koike, S. 2019. Downhill seed dispersal by temperate mammals: a potential threat to plant escape from global warming. Scientific Reports 9: 14932.
- Nowakowski, W. K. and Godlewska, M. 2006. The importance of animal food for *Dryomys nitedula* (pallas) and *Glis glis* (L.) in Białowieża forest (East Poland): analysis of faeces. Polish Journal

of Ecology 54: 359–367.

- Nunome, M., Yasuda, S. P., Sato, J. J., Vogel, P. and Suzuki, H. 2007. Phylogenetic relationships and divergence times among dormice (Rodentia, Gliridae) based on three nuclear genes. Zoologica Scripta 36: 537–546.
- Ochiai, N., Kadowaki, S., Tamaki, E. and Sugiyama M. 2015. Food habits of Japanese dormouse (*Glirulus japonicus*) by fecal analysis in Nagano Prefecture. Honyurui Kagaku (Mammalian Science) 55: 209–214 (in Japanese with English abstract).
- Ohdachi, S. D., Ishibashi, Y., Iwasa, M. A., Fukui, D. and Saitoh. T. 2015. The Wild Mammals of Japan, 2nd edition. Shoukadoh, Kyoto, 506 pp.
- Querejeta, M. and Castresana, J. 2018. Evolutionary history of the endemic water shrew *Neomys anomalus*: Recurrent phylogeographic patterns in semi-aquatic mammals of the Iberian Peninsula. Ecology and Evolution 8: 10138–1014.
- Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin 3rd, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., et al. 2009. A safe operating space for humanity. Nature 461: 472–475.
- Rodrigues, N. T., Saranholi, B. H., Angeloni, T. A., Pasqualotto, N., Chiarello, A. G. and Galetti, P. M. 2020. DNA mini-barcoding of leporids using noninvasive fecal DNA samples and its significance for monitoring an invasive species. Ecology and Evolution 10: 5219–5225.
- Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.
- Sato, J. J. 2017. A review of the process of mammalian faunal assembly in Japan insight from the molecular phylogenetics. In (Motokawa, M. and Kajihara, H., eds.) Species Diversity of Animals in Japan, pp. 49–116. Springer, Japan.
- Sato, J. J., Kyogoku, D., Komura, T., Maeda, K., Inamori, C., Yamaguchi, Y. and Isagi, Y. 2019. Potentials and pitfalls of the DNA metabarcoding analyses for the dietary study of the large Japanese wood mouse *Apodemus speciosus* on Seto Inland Sea islands. Mammal Study 44: 221–231.
- Sato, J. J., Ohtsuki, Y., Nishiura, N. and Mouri, K. 2022. DNA metabarcoding dietary analyses of the wood mouse *Apodemus speciosus* on Innoshima Island, Japan, and implications for primer choice. Mammal Research 67: 109–122.
- Sato, J. J., Shimada, T., Kyogoku, D., Komura, T., Uemura, S., Saitoh, T. and Isagi, Y. 2018. Dietary niche partitioning between sympatric wood mouse species (Muridae: *Apodemus*) revealed by DNA meta-barcoding analysis. Journal of Mammalogy 99: 952–964.
- Shibata, F. 2000. The Japanese dormouse. In (Kawamichi, T., Kondo, Y. and Morita T., eds.) Hibernation in Mammals, pp. 162–186. University of Tokyo Press, Tokyo (in Japanese).
- Shibata, F., Kawamichi, T. and Nishibayashi, K. 2004. Daily rest-site selection and use by the Japanese dormouse. Journal of Mammalogy 85: 30–37.
- Shiozuka, N., Katano, I., Kanzaki, T., Kikuchi, R., Sato, N., Nakashita, R., Kudo, S., Ikeda, H. and Azuma, N. 2023. Isotopic diet analysis of the Japanese water shrew *Chimarrogale platycephala* to estimate their feeding habits and the usefulness of body hair samples. Mammal Study 48: 19–29.
- Takatsuki, S., Ohnuki, S., Kako, N., Suzuki, S. and Minami, M. 2022. Use of nest boxes, with reference to height selection, by Japanese dormouse at Mt. Yatsugatake, central Japan. Honyurui Kagaku (Mammalian Science) 62: 61–67 (in Japanese).
- Takatsuki, S. and Suzuki, S. 2022. Food habits of the Japanese dormouse in the Yatsugatake Mountains, Japan. Zoological Science

39: 193–197.

- Tanabe, A. S. and Toju, H. 2013. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plant. PLOS ONE 8: e76910.
- Tercel, M. P. T. G., Symondson, W. O. C. and Cuff, J. P. 2021. The problem of omnivory: a synthesis on omnivory and DNA metabarcoding. Molecular Ecology 30: 2199–2206.
- Yasuda, S. P., Iwabuchi, M., Aiba, H., Minato, S., Mitsuishi, K., Tsuchiya, K. and Suzuki, H. 2012. Spatial framework of nine distinct local populations of the Japanese dormouse *Glirulus japonicus* based on matrilineal cytochrome b and patrilineal SRY gene sequences. Zoological Science 29: 111–120.
- Yasuda, S. P., Minato, S., Tsuchiya, K. and Suzuki, H. 2007. Onset of cryptic vicariance in the Japanese dormouse *Glirulus japonicus* (Mammalia, Rodentia) in the Late Tertiary, inferred from mito-

chondrial and nuclear DNA analysis. Journal of Zoological Systematics and Evolutionary Research 45: 155–162.

- Yasuda, S. P., Vogel, P., Tsuchiya, K., Han, S. H., Lin, L. K. and Suzuki, H. 2005. Phylogeographic patterning of mtDNA in the widely distributed harvest mouse (*Micromys minutus*) suggests dramatic cycles of range contraction and expansion during the mid- to late Pleistocene. Canadian Journal of Zoology 83: 1411–1420.
- Yasumoto, Y. and Takatsuki, S. 2015. The Japanese marten favors Actinidia arguta, a forest edge liane as a directed seed disperser. Zoological Science 32: 255–259.
- Zeale, M. R., Butlin, R. K., Barker, G. L., Lees, D. C. and Jones, G. 2011. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology 11: 236–244.

Received 17 January 2023. Accepted 5 June 2023. Editor was Junco Nagata.