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Abstract: The use of DNA sequence data in plant systematics has brought us closer than ever to formulating well-
founded hypotheses about phylogenetic relationships, and phylogenetic research keeps on revealing that plant genera 
as traditionally circumscribed often are not monophyletic. Here, we assess the monophyly of all genera of vascular 
plants found in Germany. Using a survey of the phylogenetic literature, we discuss which classifications would be 
consistent with the phylogenetic relationships found and could be followed, provided monophyly is accepted as the 
primary criterion for circumscribing taxa. We indicate whether and which names are available when changes in ge-
neric assignment are made (but do not present a comprehensive review of the nomenclatural aspects of such names).
Among the 840 genera examined, we identified c. 140 where data quality is sufficiently high to conclude that they 
are not monophyletic, and an additional c. 20 where monophyly is questionable but where data quality is not yet 
sufficient to reach convincing conclusions. While it is still fiercely debated how a phylogenetic tree should be trans-
lated into a classification, our results could serve as a guide to the likely consequences of systematic research for the 
taxonomy of the German flora and the floras of neighbouring countries.
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Introduction

“All a taxonomist’s decisions are subject to revision in 
time” (Davis & Heywood 1973), and indeed even the 
most cursory comparison of taxa at any rank through 
the history of plant systematics reveals that their circum-
scription has changed again and again. For example, as 
regards Rothmaler’s “Exkursionsflora von Deutsch-
land”, used as basis for the present paper, well over 40 
genera have been subject to changes in circumscription 
when comparing the 19th and 20th editions of the Grund-
band (Jäger 2012). Major reasons for changes in taxon 
circumscription, as described and discussed in great de-
tail by e.g. Davis & Heywood (1973) and Stuessy (2009), 
include the discovery of new species, availability of new 
data (characters), new approaches in data analysis, and, 
often related to the preceding point, changes in concepts 
of classification. At any point in time an author suggest-
ing change of taxon circumscription will have believed 
to provide something “better”, where “better” had to be 
evaluated against the aim and purpose of the classifica-
tion.

Post-Linnaean plant systematists (and indeed some 
systematists before Linnaeus) increasingly aimed at 
producing a “natural system” in which a priori selec-
tion of characters used for classification was replaced by 
the simultaneous evaluation of many characters (Davis 
& Heywood 1973; Stuessy 2009). With the publication 
of Darwin’s (1859) “Origin of Species”, introducing the 
concept of evolution, “natural” obtained a new meaning, 
and “natural” taxa were interpreted as groups of com-
mon ancestry. Although “Post-Darwinian systems have 
differed little in content, though they have differed in ar-
rangement, from those of the later pre-Darwinian taxono-
mists” (Davis & Heywood 1973), “After Darwin, virtu-
ally all comprehensive systems of classification of plants 
were avowedly phylogenetic” (Stuessy 2009).

We are far from having DNA sequences of all spe-
cies, and probably even farther from resolving all rela-
tionships among species and higher level lineages. How-

ever, most plant systematists (hopefully) will agree that 
the use of DNA sequence data in plant systematics has 
brought us closer than ever to formulating solid hypoth-
eses about phylogenetic relationships, which could serve 
as basis for classification. Perhaps ironically, exactly 
how to translate a phylogenetic tree into a classification 
has resulted in fierce debates. Probably the majority of 
authors will argue that the branching pattern of a phy-
logenetic tree should be the primary criterion for clas-
sification and that only monophyletic taxa (consisting 
of ALL descendants of one common ancestor) should 
be accepted. Some nevertheless maintain that non-
monophyletic taxa should also be accepted in order for 
classification to depict not only patterns of phylogenetic 
relationship, i.e. tree topology, but also degree of (phe-
notypic) divergence. (Most of these latter authors will 
describe the taxa they think of as paraphyletic; however, 
as is evident from Fig. 1, assessments of taxa as either 
paraphyletic or as polyphyletic based on tree topology 
alone are alternative ways to read a phylogenetic tree.) 
It is not our aim here to summarize or add to that discus-
sion. For that, the reader is referred to a recent review 
by Schmidt-Lebuhn (2012), a proponent for recognizing 
only monophyletic taxa, and a response to that review 
by Stuessy & Hörandl (2014), opponents to that view. It 
is also not the aim of this paper to provide a general re-
view of changes of genus concepts through time, which 
have been reviewed and discussed repeatedly (e.g. Hum-
phreys & Linder 2009 and references therein).

Instead, our aims are: (1) Taking the generic circum-
scriptions of the 19th edition of the Grundband of Roth-
maler (Jäger 2005) as starting point, to identify genera 
which are not or not unequivocally monophyletic. Such 
conclusions are based on a thorough survey of the phy-
logenetic literature. We make an effort to assess the qual-
ity of published phylogenies in terms of taxon sampling, 
DNA regions analysed and support for relationships 
identified. This sometimes results in the conclusion that 
a given genus may or may not be monophyletic, but that 
the data available are too preliminary for drawing taxo-
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nomic conclusions. Genera not included in our compi-
lation below either are monophyletic or have not been 
investigated in detail sufficient to draw conclusions on 
the matter. Some of the changes that we discuss have 
already been incorporated in the most recent, 20th edi-
tion of the Grundband of Rothmaler (Jäger 2011), and a 
proportion of those have been justified by Jäger (2012). 
We nevertheless base our discussion on the previous, 
19th edition (Jäger 2005) in order to explain the phy-
logenetic basis for all of these recent changes. (2) We 
will discuss, with reference to discussions in the litera-
ture, which classifications would be consistent with the 
phylogenetic relationships found and could be followed 

provided monophyly is accepted as the pri-
mary criterion for circumscribing genera 
(and taxa in general). In general, these op-
tions are either to expand genera in order 
to include former satellites (based, as it 
turned out, on single or few autapomorphic 
characters), or to split genera into smaller 
generic entities. Recent trends with respect 
to these two strategies have been discussed 
by Humphreys & Linder (2009). Where 
easily available, we indicate whether and 
which names could be used when changes 
in generic assignment are made. We do 
not, however, present a comprehensive re-
view of the nomenclatural aspects of such 
names.

It is our aim to convince the users of 
Floras, who want to name plant species for 
very different reasons and perhaps more of-
ten than not are rather reluctant to accept 
new names, that the name changes dis-
cussed here reflect the progress of system-
atic botany and should be considered just 
as the results of other branches of biology 
or of any other science are considered when 
based on solid evidence.

We follow family circumscriptions and 
the linear order of families as found in Jäger 
(2011) and will not discuss these further. 
For more information on angiosperm fam-
ily circumscriptions the reader is referred 
to Stevens (2001 onwards) and APG III 
(2009).

As already indicated above, several 
changes of the generic circumscriptions 
used in the 19th edition of Rothmaler (Jäger 
2005) have been made in the 20th edi-
tion of that work (Jäger 2011), and some 
of these changes have been discussed 
and justified by Jäger (2012). Similarly, 
some changes resulting from novel phy-
logenetic work have been implemented 
by Buttler & Hand (2008a, 2008b, 2011, 
2013) and Hand & Buttler (2009, 2012, 

2014) in their “Liste der Gefäßpflanzen Deutschlands”. 
Work similar to that presented here has been pre-
sented for other European Floras (British Isles: Stace 
2010; Italy: Banfi & al. 2005, 2011; Nordic countries:  
http://euphrasia.nu/checklista/ and http://www.slu.se/en/
collaborative-centres-and-projects/dyntaxa/) and some 
Floras of other parts of the world have explicitly accepted 
only presumably monophyletic taxa (e.g. Baldwin & al. 
2012, 2015).

In the end, it is left to the authors of Floras to decide 
which principles and strategies they follow when circum-
scribing genera (and other taxa). However, as pointed out 
at various times in history (for references see Humphreys 

Fig. 1. Phylogenetic relationships among Meconopsis, Papaver, Roemeria and 
Stylomecon (simplified after Kadereit & al. 2011). Based on tree topology alone, 
Papaver can be interpreted either as paraphyletic (in relation to Asian Meco­
nopsis 2, Roemeria, Stylomecon and Meconopsis cambrica) or as polyphyletic 
with P. sect. Meconella, P. sect. Argemonidium, P. aculeatum, P. californicum 
and Papaver s.str. as independent lineages. Interpretation of Papaver as both 
poly- and paraphyletic is also possible.
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& Linder 2009), judgement should always be based on 
global and not regional knowledge. For example, it may 
appear shocking from a German perspective that Anagal­
lis L. (incl. Centunculus L.), Glaux L. and Trientalis L. 
are all nested in a highly paraphyletic Lysimachia L. and 
should be included in the latter genus (Manns & Ander-
berg 2009; see below for details), but from a global per-
spective it is rather less so. Anderberg & al. (2007) point-
ed out similarities between, e.g. Anagallis arvensis  L. 
and Lysimachia nemorum L., between Trientalis and the 
North American Lysimachia subg. Seleucia Bigelow and 
the South American Lysimachia subg. Theopyxis (Grise-
bach) J. D. Ray, and, while acknowledging their mor-
phological distinctness, between Glaux and Lysimachia 
mauritiana Lam.

In the following, we describe and discuss the results 
of our literature survey. We looked at ALL genera con-
tained in Jäger (2005) but present results only for gen-
era that are not or not unequivocally monophyletic. The 
work presented here is work in progress. Any comment 
on what we have written is highly welcome and will help 
us in future updates of this paper.

Lycophytes and ferns

Lycopodiaceae (L.-B. Zhang)
Diphasiastrum was resolved as embedded within Lyco­
podium L. (Wikström & Kenrick 1997, 2001). Thus rec-
ognition of Diphasiastrum Holub as a separate genus 
would make Lycopodium paraphyletic, and Zhang & 
Iwatsuki (2013) suggested inclusion of Diphasiastrum 
in Lycopodium. However, this finding was based on 
plastid rbcL data and limited sampling only, and a final 
decision should await better sampling and use of addi-
tional DNA sequences.

Hymenophyllaceae (L.-B. Zhang)
A new classification of the family recognized only nine 
genera (Ebihara & al. 2006), and Trichomanes speciosum 
Willd. should now be known as Vandenboschia speciosa 
(Willd.) G. Kunkel. Trichomanes L. in a new circumscrip-
tion is a mainly neotropical genus with a few species in 
continental Africa, Madagascar and the Indian Ocean 
(Ebihara & al. 2006) and was resolved as sister to Vanden­
boschia Copel. based on plastid rbcL data (Ebihara & al. 
2007).

Aspleniaceae (L.-B. Zhang)
Plastid data resolved the family into two well-supported 
clades, Asplenium L. and Hymenasplenium Hayata (van 
den Heede & al. 2003; Schneider & al. 2004), which 
have different chromosome base numbers as well as dis-
tinct root characters (Murakami 1995; Schneider 1996). 
All other small segregate genera are nested within Asple­
nium (van den Heede & al. 2003; Schneider & al. 2004). 
Thus, synonymization of Ceterach Willd. and Phyllitis 

Hill with Asplenium is advocated (e.g. Smith & al. 2006; 
Lin & Vianne 2013). Consequently, P. scolopendrium (L.) 
Newman should be A. scolopendrium L. and C. offici­
narum Willd. should be A. ceterach L.

Thelypteridaceae (L.-B. Zhang)
Lastrea Bory was resolved as part of Oreopteris Holub 
based on plastid markers (He & Zhang 2012), and L. lim­
bosperma (All.) Ching should now be known as O. lim­
bosperma (All.) Holub.

Flowering plants

Hydrocharitaceae (J. W. Kadereit)
A phylogenetic analysis of the family based on nuclear, 
plastid and mitochondrial DNA sequences (Chen & al. 
2012) provides some evidence that Egeria Planch. may 
not be monophyletic when Elodea Michx. is treated as 
a distinct genus. As only two of five species of Elodea 
were included in that study, and support in the relevant 
part of the tree is not entirely convincing, treatment of 
the two genera as separate is acceptable for the time be-
ing. If combined, as has been done in the past (for dis-
cussion see Les & al. 2006), Elodea would be the name 
to be used.

Zosteraceae (J. W. Kadereit)
The finding that Heterozostera tasmanica (M. Martens 
ex Asch.) Hartog is deeply nested in Zostera L. (Les & 
al. 1997; Les & al. 2002; Kato & al. 2003; Tanaka & 
al. 2003) opens the option to maintain Zostera including 
Heterozostera (Setch.) Hartog as one genus, or to divide 
this group into two or three genera. In both latter op-
tions Z. marina L. would remain in Zostera and Z. noltii 
Hornem. would have to be combined in Nanozostera 
Toml. & Posl. as N. noltii (Hornem.) Toml. & Posl. Sub-
division into three genera has been advocated and justi-
fied with morphological distinctness in inflorescence and 
vegetative characters by Tomlinson & Posluzny (2001), 
and maintainance of Zostera as one genus has been rec-
ommended by Les & al. (2002).

Potamogetonaceae (J. W. Kadereit)
It has been shown that species of Potamogeton subg. Co­
leogeton (Rchb.) Raunk. constitute a monophyletic line-
age which is well-supported sister to the remainder of 
Potamogeton L. (Lindqvist & al. 2006). As this lineage is 
morphologically well characterized, as well summarized 
by Preston (2005; but see also Wiegleb & Kaplan 1998), 
it could be separated at generic rank as Stuckenia Börner, 
as argued by Lindqvist & al. (2006) and other authors 
(Les & Haynes 1996; Holub 1997; Haynes & al. 1998; 
Kaplan 2008), or could be maintained within Potamoge­
ton as argued by Wiegleb & Kaplan (1998). If treated 
as a distinct genus, P. pectinatus L. should be known as 
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S. pectinata (L.) Börner and P. filiformis Pers. as S. fili­
formis (Pers.) Börner.

Dioscoreaceae (J. W. Kadereit)
Tamus L. is clearly nested in Dioscorea L. (Caddick & al. 
2002a, 2002b; Wilkin & al. 2005). In consequence, T. com­
munis L. should be treated as D. communis (L.) Caddick 
& Wilkin. An alternative option, to split Dioscorea into 
many smaller genera, as suggested by Huber (1998), was 
discussed but rejected by Caddick & al. (2002b).

Liliaceae (J. W. Kadereit)
According to studies by Peterson & al. (2008; see also 
Peterson & al. 2004) and Zarrei & al. (2009), all based 
on a broad species sample and both nuclear and plastid 
sequences, a non-monophyletic Lloydia Rchb. is nested 
in Gagea Salisb. If Lloydia should be included in Gagea, 
as suggested by Peruzzi & al. (2008) and Zarrei & al. 
(2011), a name for L. serotina (L.) Rchb. in Gagea would 
be available (G. serotina (L.) Ker Gawl.).

Orchidaceae (M. Kropf)
Initiated by molecular phylogenetic studies by Pridgeon 
& al. (1997) and Bateman & al. (1997), European orchids, 
and especially the genus Orchis L. s.l., have become a 
prime example for recent rearrangements in generic de-
limitations (Stace 2010). Although subsequent phyloge-
netic studies (cf. Cozzolino & al. 1998, 2001; Aceto & al. 
1999; Bateman 2001; Pridgeon & al. 2001; Bateman & 
al. 2003) generated support for (most of) these rearrange-
ments (but almost exclusively based on ITS sequence 
variation only), most remained subject to fierce debates 
in the orchid community (cf. Wucherpfennig 1999, 2002, 
2005; Bateman 2001, 2009, 2012a, 2012b; Buttler 2001; 
Devos & al. 2006; Kretzschmar & al. 2007; Tyteca & 
Klein 2008, 2009; Scopece & al. 2010; Paulus 2012; 
Tyteca & al. 2012). Possible and partially implemented 
rearrangements (cf. Jäger 2012) include either splitting 
of polyphyletic genera into smaller genera (e.g. Orchis 
s.l.), or inclusion of genera, either with several species 
(e.g. Nigritella Rich. in Gymnadenia R. Br.) or monospe-
cific (e.g. Aceras anthropophorum (L.) R. Br. in Orchis 
s.str.), in (otherwise) paraphyletic genera in order to ob-
tain monophyletic entities.

Phylogenetic studies placed the (previously) mono-
specific Aceras anthropophorum close to Orchis italica 
Poir. (Pridgeon & al. 1997; Bateman & al. 2003). This 
close relationship at the base of the Orchis s.str. group 
(see below) was not only supported by the original ITS 
sequence data, but also by seed ornamentation patterns 
(Gamarra & al. 2012), hybridization patterns (Klein 1989, 
2004; Scopece & al. 2007), and the nuclear OrcLFY, 
OrcPI, OrcP2 loci (Montieri & al. 2004; Cantone & al. 
2009, 2011), although support by the mitochondrial cox1 
marker (Inda & al. 2010a) and chloroplast rpl16 intron 
data (Inda & al. 2012) was ambiguous due to low res-
olution. Therefore, Bateman (2012a: 111 – 114) noted 

that the “most obviously problematic taxa are the read-
ily recognized anthropomorphic species Orchis (Aceras) 
anthropophora (L.) All. and O. italica … shown as the 
two earliest-diverging species, making the anthropomor-
phic species paraphyletic relative to a monophyletic non-
anthropomorphic group”. Given the absence of a final 
solution to the question which taxon is indeed basally 
branching in Orchis s.str. (i.e. a sister group relationship 
between A. anthropophorum and Orchis s.str. is still pos-
sible; see Pridgeon & al. 1997; Bateman & al. 2003; see 
also Jacquemyn & al. 2011), and the still debated future 
treatment of Orchis s.str. in general (see below), one 
could also retain A. anthropophorum as the only species 
of Aceras and the only Orchis-like species without a spur. 
On the other hand, the inclusion of Aceras in Orchis s.str. 
is one of the most widely accepted changes of contro-
versial generic circumscriptions in European orchids (see 
Bateman 2009: Tab. 1).

ITS phylogenies implied inclusion of Coeloglossum 
viride (L.) Hartm. in an otherwise paraphyletic Dacty­
lorhiza Necker ex Nevski (as Dactylorhiza viridis (L.) 
R. M. Bateman & al.; see Bateman & al. 1997, 2003; 
Pillon & al. 2007). Further molecular markers, especially 
chalcone synthase variation (Inda & al. 2010b; see also 
Inda & al. 2010a, 2012), supported this inclusion because 
C. viride was found nested in Dactylorhiza. However, 
evidence against its inclusion exists, and a combined ITS 
and ETS phylogenetic tree resolved C. viride as sister 
to Dactylorhiza (Devos & al. 2006). The latter authors 
also compiled morphological characters differing be-
tween the two groups (Devos & al. 2006: Table 1; see 
also Wucherpfennig 1999). Most strikingly, C. viride 
has a nectariferous spur (van der Pijl & Dodson 1966), 
whereas Dactylorhiza has food-deceptive flowers. As 
Coeloglossum Hartm. is the earlier name, a proposal to 
conserve Dactylorhiza over Coeloglossum was needed 
(Cribb & Chase 2001).

As a consequence of studies uncovering the (mor-
phological) heterogeneity and the phylogenetic inter-
mingling of different infrageneric species groups of the 
closely related genera Liparis Rich. and Malaxis Sol. 
ex Sw., the monospecific Hammarbya paludosa (L.) 
Kuntze, certainly a close relative of these two genera 
(although not sampled in the respective studies; e.g. 
Cameron 2005), “has often been included in a broadly 
defined genus Malaxis” (Pridgeon & al. 2005: 464 – 465). 
There are a number of unique features characteriz-
ing H. paludosa (e.g. incumbent anthers (Szlachetko & 
Margońska 2002), vegetative reproduction by bulbils at 
the leaf margin), which, however, have been doubted to 
be sufficient for differentiation at the generic level given 
the high variation in Malaxis s.l. (Wucherpfennig 2005). 
Independently, and referring to recent (but still unpub-
lished) phylogenetic analyses by G. A. Salazar, Pridgeon 
& al. (2005: 464 – 465) stated that H. paludosa “does not 
lie in the main Malaxis clade (Salazar, pers. comm.) but 
rather is sister to a large clade that includes both Malaxis 
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s.str. and Liparis s.str.” Until comprehensive phylogenet-
ic evidence on relationships among Malaxis and Liparis 
becomes available (see below), H. paludosa presently 
can be maintained in a monospecific genus.

The monospecific Chamorchis alpina (L.) Rich. 
and the dispecific Traunsteinera Rchb., represented by 
the widespread T. globosa (L.) Rchb. in Germany, form 
an independent, well-supported clade (Cozzolino & al. 
2001; Bateman & al. 2003). This surprising result refutes 
the originally hypothesized sister group relationship be-
tween the latter taxon and Orchis s.str. (Pridgeon & al. 
1997) and induced Pridgeon & al. (2005: 228) to state: 
“However, the two morphologically distinct genera are 
sufficiently similar in ITS sequences to be potentially 
viewed as congeneric”. If treated as congeneric, Chamor­
chis represents the older genus name (cf. Alrich & Hig-
gins 2011).

In (still unpublished) molecular phylogenetic analy-
ses by Bateman and colleagues, Neottia nidus-avis (L.) 
Rich. is nested within a paraphyletic Listera R. Br. as sis-
ter to L. ovata (L.) R. Br. (illustrated by Pridgeon & al. 
2005: 492). Already Chase & al. (2003) had considered 
Listera species as photosynthetic members of Neottia 
Guett. (without presenting the respective phylogenetic 
analysis, except for a “summary”, i.e. Fig. 1 on p. 73) and 
suggested that the two genera should be combined (see 
also Tesitelová & al. 2015, where Neottia (n = 2) is nest-
ed within Listera (n = 3) based on ITS, 18S and trnL(UAA) 
intron data). A close relationship between the two gen-
era has long been documented (e.g. Dressler 1990), and 
a combined generic treatment as Neottia, which is the 
older name, has already been published by Szlachetko 
(1995). In this treatment, however, Neottia ovata Bluff & 
Fingerh. is placed in N. subg. Listera (R. Br.) Szlach. The 
third species of a newly circumscribed Neottia native in 
Germany is N. cordata (L.) Rich. (L. cordata (L.) R. Br.).

Pridgeon & al. (1997) “took the controversial step of 
sinking the morphologically distinct Nigritella back into 
synonymy with Gymnadenia s.str., which would other-
wise have been paraphyletic.” (Pridgeon & al. 2001: 229). 
These authors stressed that “despite superficial differences 
in flower form and resupination, Nigritella shares several 
morphological characters with Gymnadenia: palmate-
digitate tubers; two lateral, lobe-like stigmas; and two pol-
linia each with a caudicle…” (Pridgeon & al. 2001: 298). 
However, other authors, especially Wucherpfennig (1999, 
2002), advocated maintaining Nigritella as a genus based 
on at least ten (“superficial”) morphological characters, but 
also based on allozyme data (Hedrén & al. 2000). It was 
noted that a study of character evolution across Orchidinae 
clearly showed that Nigritella is a morphologically derived 
lineage (Wucherpfennig 2002) arguing for keeping the ge-
nus Nigritella even within a paraphyletic Gymnadenia. 
However, in a more recent molecular analysis of ITS and 
rpl16 intron sequences, Pillon & al. (2006) documented a 
sister group relationship between their Nigritella (n = 2) 
and Gymnadenia (n = 5) samples. This illustrates that mo-

lecular phylogenetic relationships obtained obviously de-
pend on taxon sampling, type of data analyses performed 
and outgroup selection (see Pillon & al. 2007). In conse-
quence, Nigritella can still be recognized as a morphologi-
cally well-defined genus, until more comprehensive analy-
ses are available.

Finally, species of Orchis s.l. were placed in at least 
three major and only distantly related groups based on 
ITS data (Bateman & al. 1997, 2003; Pridgeon & al. 
1997). These three groups in principle correspond to hy-
bridization patterns (Klein 1989, 2004; Scopece & al. 
2007). As regards the first group, the formerly monospe-
cific Neotinea Rchb. f. was expanded by Pridgeon & al. 
(1997) and Bateman & al. (1997) to encompass the “… 
small-flowered, essentially trilobed-lipped species of the 
ustulata-group that were formerly included in Orchis s.l. 
These could in theory have been treated as a genus sepa-
rate from the more narrowly delimited original concept of 
Neotinea, given the relatively long molecular branch and 
distinct vegetative markings of N. maculata…” (Pridgeon 
& al. 2001: 228). Relevant for the German flora, the com-
binations N. ustulata (L.) R. M. Bateman & al. (O. ustu­
lata L.) and N. tridentata (Scop.) R. M. Bateman & al. (O. 
tridentata Scop.) were provided (Bateman & al. 1997). 
However, the small flowers of N. maculata (Desf.) Stearn 
are different from the ustulata-group by producing nectar 
(Pridgeon & al. 2001; Duffy & al. 2009), and by being 
100 % autogamous (Duffy & al. 2009), while the species 
of the deceptive ustulata-group depend on pollinator-
mediated outcrossing. This would provide arguments 
for treating N. maculata as an independent genus. If this 
approach is taken, the names Odontorchis ustulata (L.) 
D. Tyteca & E. Klein and Odontorchis tridentata (L.) D. 
Tyteca & E. Klein are available (Tyteca & Klein 2008).

The second fairly well-supported clade encompasses 
all species of former Orchis that have 2n = 36 (or 2n = 32 
in the case of O. papilionacea L.) chromosomes as well 
as Anacamptis pyramidalis (L.) Rich. (Pridgeon & al. 
1997). Pridgeon & al. (2001: 255) stated that while “A. 
pyramidalis is distinctive… The other members of this 
newly circumscribed genus Anacamptis Rich. are dif-
ficult to distinguish morphologically from Orchis s.str., 
but their flowering stems bear cauline sheathing leaves.” 
Members of Anacamptis in this new circumscription in 
the German flora are A. coriophora (L.) R. M. Bateman 
& al. (O. coriophora L.), A. morio (L.) R. M. Bateman & 
al. (O. morio L.) and A. palustris (Jacq.) R. M. Bateman 
& al. (O. palustris Jacq.).

The remaining Orchis s.l. taxa should then, follow-
ing Pridgeon & al. (1997) and Bateman & al. (1997), be 
treated as Orchis s.str. comprising an anthropomorphic 
species group (with flowers shaped like “little men”, 
i.e. sepals and petals forming a compact head and the 
labellum showing “arms” and “legs”; e.g. O. militaris 
L., the type of Orchis) plus Aceras R. Br. (see above) 
and a non-anthropomorphic group (e.g. O. mascula (L.) 
L.). However, suggestions have been put forward to split 
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Orchis s.l. further (Tyteca & Klein 2008, 2009), partly ig-
noring problems of paraphyly (criticized, e.g. by Scopece 
& al. 2010; Bateman 2012a). However, the two supported 
species groups within Orchis s.str. (Bateman & al. 2003) 
could be treated as O. subg. Orchis (i.e. O. militaris, O. 
purpurea Huds. and O. simia Lam.) and O. subg. Mascu­
lae H. Kretzschmar & al. (i.e. O. mascula, O. pallens 
L. and O. spitzelii Saut. ex W. D. J. Koch; Kretzschmar 
& al. 2007). Tyteca & al. (2012) compiled morphologi-
cal and pollinator assemblage data for these two groups 
and concluded that all their information as well as mo-
lecular (Bateman & al. 2003) and seed micromorphology 
data (Gamarra & al. 2012) are in favour of a separation at 
the generic level, i.e. as Orchis and Androrchis D. Tyteca 
& E. Klein (Tyteca & al. 2012; see also Tyteca & Klein 
2008 for respective names, i.e. Androrchis mascula (L.) 
D. Tyteca & E. Klein, A. pallens (L.) D. Tyteca & E. Klein 
and A. spitzelii (Saut. ex W. D. J. Koch) D. Tyteca & E. 
Klein).

Several orchid genera have been shown not to be 
monophyletic: Liparis and Malaxis, both comprising 
about 250 species (Mabberley 2008), are to some extent 
intermingled (Cameron 2005); Platanthera Rich. should 
include Piperia Rydb. (Bateman & al. 2003; already im-
plemented there); and Herminium L. is phylogenetically 
intermingled with Peristylus Blume or Habenaria Willd. 
(Douzery & al. 1999; Bateman & al. 2003). However, ir-
respective of exact phylogenetic relationships, which are 
not yet completely resolved, the nomenclature of the spe-
cies occurring in the German flora will not be influenced 
if their respective monophyletic clades are preserved at 
the generic level, as Liparis loeselii (L.) Rich., Platan­
thera bifolia (L.) Rich. and Herminium monorchis (L.) R. 
Br. are the types of the respective genus names (Alrich & 
Higgins 2011), and Platanthera montana (F. W. Schmidt) 
Rchb. f. (P. chlorantha Cust. ex Rchb.), the second native 
species of this genus, is definitely closely related to the 
type, P. bifolia (Bateman & al. 2003). However, Malaxis 
monophyllos (L.) Sw. might be affected by future chang-
es: a BLAST search of recently published matK barcodes 
of this species (Kim & al. 2014; Xiang & al. 2014) re-
vealed higher DNA sequence similarity to a group of 
Liparis species around the type, L. loeselii, than to the 
Malaxis species group around the type, M. spicata Sw. 
(cf. Cameron 2005). On the other hand, this critical point 
in the systematics of Malaxideae could alternatively be 
solved by choosing a wide genus concept. In this case, 
Malaxis would be an older name than Liparis (and Ham­
marbya; see above).

In summary, one major problem with respect to sev-
eral recently suggested changes in generic circumscrip-
tion in European orchids is that new molecular phyloge-
netic hypotheses often are based on only one molecular 
marker (i.e. ITS; Bateman & al. 2003). Other molecular 
markers often resulted in limited phylogenetic resolution 
given the probably young age of several European orchid 
lineages (cf. Inda & al. 2010a, 2010b, 2012). Although 

sometimes combined evidence of ITS plus cpDNA vari-
ation seems to improve results (e.g. Pillon & al. 2006), it 
does not in other cases, indicating the dominance of the 
ITS information (e.g. Inda & al. 2012). Moreover, it is 
striking that the overall taxon sampling, some 20 years 
after the first molecular phylogenetic publications, is still 
incomplete. Also, multiple samples of single taxa have 
rarely been included. In consequence, many molecular 
phylogenetic relationships have still not been solved sat-
isfactorily, and some nomenclatural changes accordingly 
are premature, giving rise to frequent debate.

Amaryllidaceae (J. W. Kadereit)
Using a broad sample of Galanthus L. and Leucojum 
L., Lledó & al. (2004) reported that the former genus 
is deeply nested in the latter. In order to maintain these 
two genera, the authors recommend to recognize the ad-
ditional genus Acis Salisb. for large parts of Leucojum. 
Generic allocation of G. nivalis L., L. aestivum L. and 
L. vernum L. would remain unaffected if this approach 
would be taken.

Cyperaceae (B. Gehrke)
Carex L. has been found to be paraphyletic and to in-
clude all other members of the Cariceae, i.e. Cymophyl­
lus Mack., Kobresia Willd., Schoenoxiphium Nees and 
Uncinia Pers. (Roalson & al. 2001; Starr & al. 2004). 
The results of the molecular phylogenetic work are un-
ambiguous. Retaining Kobresia would lead to the neces-
sity of describing a myriad of morphologically indis-
tinguishable smaller genera and would also mean that 
Kobresia would have to be either greatly extended to 
include many species of Carex subg. Psyllophora (Degl.) 
Peterm. (= Primocarex Kük.) or that Kobresia (and Un­
cinia) would have to be split into various smaller lineag-
es. Combination of all names of Cymophyllus, Kobresia, 
Schoenoxiphium and Uncinia in Carex are currently un-
derway (Global Carex Group 2015). The names Carex 
myosuroides Vill. for Kobresia myosuroides (Vill.) Fiori 
and Carex simpliciuscula Wahlenb. for K. simpliciuscula 
(Wahlenb.) Mack. should be used.

Eleogiton (L.) Link was recently discovered to be nest-
ed in Isolepis R. Br. (Muasya & al. 2001). Isolepis was 
thought to be characterized by having one or more pseu-
dolateral spikelets and an erect culm, but the nodding 
culm of the single terminal spikelet, believed to char-
acterize Eleogiton, is now known to have evolved from 
within Isolepis (Muasya & al. 2001). Eleogiton fluitans 
(L.) Link was therefore recently changed to I. fluitans 
(L.) R. Br.

Recent studies suggest that Schoenoplectus mucro­
natus (L.) Palla and S. supinus (L.) Palla are not part of 
Schoenoplectus (Rchb.) Palla, but belong to Schoeno­
plectiella Lye, a cosmopolitan group, which is most 
closely related to the African Pseudoschoenus (C. B. 
Clarke) Oteng-Yeb. (Shiels & al. 2014). Schoenoplec­
tiella differs morphologically from Schoenoplectus by 
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having an unbranched inflorescence (Jung & Choi 2010), 
whereas Schoenoplectus has a pseudo-lateral branched 
inflorescence. Both genera have culm-like primary bracts 
opposed to the inflorescence with leafy bracts in Scirpus 
L. (Jung & Choi 2010). If recognition of Schoenoplec­
tiella as suggested by Lye (2003) should be accepted, 
both S. mucronatus and S. supinus must be excluded from 
Schoenoplectus as Schoenoplectiella mucronata (L.) J. 
Jung & H. K. Choi and Schoenoplectiella supina (L.) 
Lye. However, final decisions must await a better under-
standing of relationships between Pseudoschoenus and 
Schoenoplectiella.

Poaceae (M. Röser)
A number of molecular phylogenetic studies employing 
nuclear and chloroplast DNA markers have shown that 
Festuca L. s.l. is a large paraphyletic group that encom-
passes Lolium L., Micropyrum (Gaudin) Link, Vulpia C. 
C. Gmelin and a number of further genera (Torrecilla & 
Catalán 2002; Catalán & al. 2004, 2007; Torrecilla & al. 
2004; Inda & al. 2008). Lolium is nested within a more 
ancestral broad-leaved clade, whereas Micropyrum and 
Vulpia belong to the presumably more recently derived 
fine-leaved Festuca lineages. Vulpia additionally appears 
to be polyphyletic and encompasses separate diploid and 
tetraploid/hexaploid lineages, which are not sufficiently 
understood to date. Because of several uncertainties con-
cerning limited sampling of intermediate taxa and miss-
ing representation of several Festuca groups, Catalán 
& al. (2007) argued for maintenance of Lolium, Micro­
pyrum and Vulpia. This would require no name changes 
for taxa of the German flora. Micropyrum and Vulpia 
were included in Festuca by Soreng & al. (2015), but Lo­
lium was kept separate and considered congeneric with 
Schedonorus P. Beauv. (syn. F. subg. Schedonorus (P. 
Beauv.) Peterm.), which was segregated from Festuca.

Polyploidy and hybridization play an important role 
in the evolution of Sesleria Scop. and allies. Preliminary 
data from Amplified Fragment Length Polymorphisms 
(AFLPs) and plastid DNA (trnL-ndhF) sequences sup-
port the recognition of Oreochloa Link as a separate 
genus (with only O. disticha (Wulfen) Link represented 
in the German flora) and underline that Psilathera ovata 
(Hoppe) Deyl diverges from the remainder of Sesleria 
(Lakušić 2013). Further study including a more com-
prehensive taxon sampling is needed to clarify whether 
the monospecific Psilathera Link (only P. ovata (Hoppe) 
Deyl in the German flora) can be maintained or should be 
merged with Sesleria as was done in Jäger (2011) and by 
Lazarević & al. (2015).

Delimitation of genera allied with Helictotrichon 
Besser ex Schult. & Schult. f. is a long-term matter of 
debate. Molecular phylogenetic studies using different 
chloroplast DNA and nuclear ITS sequences of a suffi-
ciently broad sample of relevant taxa suggest to acknowl-
edge three genera occurring in the German flora, namely 
Avenula (Dumort.) Dumort., Helictochloa Romero Zarco 

and Helictotrichon s.str. (Döring & al. 2007; Quintanar & 
al. 2007; Schneider & al. 2009; Röser & al. unpubl. data). 
Avenula is represented by A. pubescens (Huds.) Dumort., 
Helictochloa by H. pratensis (L.) Romero Zarco and H. 
versicolor (Vill.) Romero Zarco and Helictotrichon s.str. 
by H. parlatorei (Woods) Pilg. The description of the 
new genus Helictochloa, type designations and transfer 
of species to Helictochloa have been published by Rome-
ro Zarco (2011).

The distinctiveness of Anthoxanthum L. and Hiero­
chloe R. Br. has repeatedly been questioned due to the 
occurrence of seemingly intermediate species in Africa 
and SE Asia. Following Schouten & Veldkamp (1985), 
the two genera have been merged by some authors (Wu & 
Phillips 2006; Allred & Barkworth 2007; Kellogg 2015; 
Soreng & al. 2015). The study by Pimentel & al. (2013), 
using AFLPs, chloroplast and nuclear DNA sequences, 
suggests that the intermediate taxa originated by ancient 
hybridization between the two genera. The question as 
to whether Anthoxanthum and Hierochloe should be kept 
separate or amalgamated in a single genus thus remains 
unanswered.

Ranunculaceae (E. Welk)
Traditionally Aconitum L., Consolida (DC.) Gray and 
Delphinium L. (and Aconitella Spach, see Soják 1969) 
were grouped in tribe Delphinieae. Molecular phylo-
genetic research revealed three Delphinium species (D. 
subg. Staphisagria J. Hill) to form the sister clade to all 
other Delphinieae (Jabbour & Renner 2011a; 2011b), 
and Consolida incl. Aconitella to be nested in Delphini­
um excl. D. subg. Staphisagria. The position of D. subg. 
Staphisagria is supported by biochemical, karyological 
and morphological characters. Furthermore, Wang & al. 
(2013) found a sister position of the Chinese Aconitum 
gymnandrum Maxim. to Delphinium (sensu Jabbour & 
Renner 2012). In order to arrive at monophyletic Aco­
nitum and Delphinium, name changes are required. Of 
these, inclusion of Consolida (and Aconitella) into Del­
phinium (Jabbour & Renner 2012) is relevant for the 
German flora. In consequence, C. ajacis (L.) Schur, C. 
hispanica (Costa) Greuter & Burdet and C. regalis Gray 
should be listed as D. ajacis L., D. hispanicum Costa and 
D. consolida L., respectively.

Based on molecular phylogenetic analyses, Bittkau & 
Comes (2009) found Garidella L. to be clearly mono-
phyletic while Nigella L., its sister group, was not well 
supported as monophyletic. This may imply future inclu-
sion of Garidella in Nigella, which, however, would not 
affect naming of the German species of Nigella.

Combined analyses of DNA sequence data, bio-
chemical data and morphology by Compton & al. (1998) 
suggested to include Cimicifuga Wernisch and Souliea 
Franch. in Actaea L. (also Compton & Culham 2002; 
Gao & al. 2008). However, it has also been argued to 
keep the genera separate based on the fleshy fruits of 
Actaea (e.g. Wang & al. 1997; Lee & Park 2004). Ac­
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taea and Cimicifuga can also be distinguished using seed 
morphology and seed anatomical features (Ghimire & 
al. 2015). If Cimicifuga and Souliea should be included 
in Actaea based on phylogenetic relationships, German 
Actaea will not be affected because Actaea L. is the old-
est genus name.

Hoot & al. (1994) suggested that Hepatica Mill., 
Knowltonia Salisb. and Pulsatilla Mill. should be includ-
ed in Anemone L. s.l. (cf. Ehrendorfer & Samuel 2001; 
Schuettpelz & al. 2002). However, Pfosser & al. (2011) 
argued that these genera could also be retained because 
of unsuitable outgroup selection (Clematis L.) in Hoot 
& al. (1994) and Schuettpelz & al. (2002). Using Ra­
nunculus ficaria L. as outgroup in their study, a position 
of Clematis within Anemone s.l. became probable. The 
sister-group relationship of species of A. subg. Anemo­
nidium (Spach) Juz. (A. subsect. Anemonidium Spach, A. 
subsect. Himalayicae (Ulbr.) Tamura, A. subsect. Keiskea 
Tamura and A. subsect. Omalocarpus (DC.) Tamura) to 
Hepatica found in all studies renders Anemone para-
phyletic in relation to the embedded Hepatica and Pul­
satilla. Similar to combined karyological and molecular 
phylogenetic analyses by Mlinarec & al. (2012), Hoot & 
al. (2012) found, again with Clematis as outgroup, that 
A. subg. Anemonidium contains Anemonastrum Holub 
and Hepatica, while Pulsatilla is positioned within A. 
subg. Anemone. Accordingly, they suggested to incor-
porate Hepatica in Anemone as A. sect. Hepatica (Mill.) 
Spreng. or A. subg. Hepatica (Mill.) Peterm. For Pulsa­
tilla they suggested inclusion in Anemone as A. sect. Pul­
satilloides DC. or A. subg. Pulsatilloides (DC.) Juz. An 
alternative solution might be splitting Anemone into at 
least two genera corresponding to the x = 7/8 divergence 
seen in Anemoninae. At the moment, it seems best to wait 
for further analyses before combining the large number 
of taxa affected. However, from the results of all studies 
cited it seems inevitable for Anemonastrum Holub to be 
subsumed in Anemone again. The resulting combination 
is Anemone narcissiflora L.

Caltha L. has been divided into two sections: the 
monophyletic C. sect. Psychrophila (DC.) Bercht. & J. 
Presl in the S hemisphere and the paraphyletic C. sect. 
Caltha in the N hemisphere (Schuettpelz & Hoot 2004). 
Based on a broader sampling, Cheng & Xie (2014) 
showed that Thacla Spach (Caltha natans Pall.) diverged 
first in the genus, and that the other species fall into two 
monophyletic clades, i.e. Caltha s. str. and Psychrophila. 
Thus, it would be possible to raise Psychrophila to genus 
rank, but this would inevitably require C. natans to be 
raised to Thacla. Any decision here will not affect the 
name of C. palustris L.

A number of molecular phylogenetic studies revealed 
that Ranunculus L. in a wide sense is polyphyletic (Leh-
nebach & al. 2007; Hoot & al. 2008; Wang & al. 2009). 
Although the entire tribe Ranunculeae could be recog-
nized as a very broadly circumscribed Ranunculus, this 
would result in a morphologically highly heterogeneous 

group. The morphological and geographical independ-
ence of Ficaria Huds. and Ceratocephala Moench is 
comparable to that of Myosurus L. It thus seems to be 
justified to follow Emadzade & al. (2010) who proposed 
to recognize Ceratocephala, Ficaria and Myosurus (plus 
several other small genera) as separate genera, but to 
include Batrachium (DC.) Gray and Aphanostemma A. 
St.-Hil., sometimes recognized as separate genera in the 
past, in a then monophyletic Ranunculus.

Berberidaceae (J. W. Kadereit)
Monophyletic Berberis L. with simple leaves clearly is 
nested in a paraphyletic grade of Mahonia Nutt. with 
compound leaves (Kim & al. 2004; Adhikari & al. 2015), 
a pattern of relationship already postulated by Ahrendt 
(1961). As the two genera are very similar to each other 
in many respects (for discussion see Adhikari & al. 2012), 
and the different lineages of Mahonia would be difficult 
to justify at generic rank, they probably are best treated 
as one genus, Berberis, as was done by these authors. 
Mahonia aquifolium (Pursh) Nutt. had originally been de-
scribed as B. aquifolium Pursh.

Papaveraceae (J. W. Kadereit)
Papaver L. is part of a group of four genera distributed al-
most entirely in the Old World (Schwarzbach & Kadereit 
1995). The other three genera are Meconopsis Vig., 
Roemeria Medik. and Stylomecon G. Taylor. Subdivision 
into these four genera is based largely on capsule mor-
phology. Various analyses of these four genera (Kadereit 
& al. 1997; Carolan & al. 2006; Kadereit & al. 2011; 
Xiao 2013; Liu & al. 2014) revealed that patterns of rela-
tionship cut across traditional generic delimitations (see 
also Fig. 1). First, three subgroups of Papaver, i.e. (1) 
Papaver s.str. (all sections except P. sect. Argemonidium 
Spach, P. sect. Californica Kadereit, P. sect. Horrida El-
kan and P. sect. Meconella Spach), (2) P. californicum A. 
Gray (P. sect. Californica) and (3) P. aculeatum Thunb. 
(P. sect. Horrida) form a clade together with Meconopsis 
cambrica (L.) Vig. and Stylomecon heterophylla (Benth.) 
G. Taylor. Second, P. sect. Argemonidium is most close-
ly related to Roemeria. Third, P. sect. Meconella Spach 
is most closely related to one of three subgroups of 
Meconopsis. While this pattern of relationships allows 
several classifications, the following option has partly 
been followed (Kadereit & Baldwin 2011; Kadereit & al. 
2011). A newly circumscribed Papaver should contain 
Meconopsis cambrica, Papaver s.str., P. aculeatum, P. 
californicum and Stylomecon heterophylla. Of the spe-
cies found in Germany, P. confine Jord., P. dubium L., 
P. lecoqii Lamotte and P. rhoeas L. would remain in Pa­
paver. Meconopsis cambrica was originally described as 
P. cambricum L., and the name P. heterophyllum (Benth.) 
Greene is available for Stylomecon heterophylla. Papa­
ver sect. Argemonidium, represented by P. argemone and 
P. hybridum in the German flora, should be united with 
Roemeria, with which it shares sepal and pollen charac-

Downloaded From: https://complete.bioone.org/journals/Willdenowia on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



48 Kadereit & al.: Rendering all genera of the German flora monophyletic

ters (Kadereit & al. 1997). The combination R. argemone 
(L.) C. Morales & al. is available for P. argemone.

Although Papaver alpinum L. as part of P. sect. 
Meconella should clearly be excluded from Papaver, the 
exact relationships of P. sect. Meconella to Himalayan 
Meconopsis are not sufficiently clear yet to suggest a for-
mal name. However, it seems to be sister clade to a newly 
circumscribed Meconopsis (excl. Cathcartia Hook. f. 
and M. cambrica) and probably is best treated as a dis-
tinct genus.

Crassulaceae (J. T. Klein)
Sedum L. has repeatedly been shown to be highly 
polyphyletic (van Ham & al. 1994; van Ham & ’t Hart 
1998; Mort & al. 2001; Mayuzumi & Ohba 2004; 
Gontcharova & al. 2006; Carrillo-Reyes & al. 2009). In 
the most recent phylogenetic analysis of Crassulaceae 
based on combined nuclear ITS and chloroplast DNA 
(Klein & Kadereit in prep.), the 20 species of Sedum 
found in Germany fall into several lineages.

(1) Sedum rosea (L.) Scop. represents a lineage that is 
often accepted as the genus Rhodiola L., with c. 60 spp. 
mostly found in C and E Asia, in which S. rosea should 
be known as R. rosea L.

(2) Sedum spurium M. Bieb. represents a lineage that 
is often accepted as the genus Phedimus Raf., with c. 20 
spp. mostly found in SW to E Asia, in which S. spurium 
should be known as P. spurius (M. Bieb.) ’t Hart. Phe­
dimus and Rhodiola are sister to each other and could 
be combined in one genus. However, among other mor-
phological differences, Phedimus spp. have hermaphro-
dite flowers, whereas most Rhodiola spp. have unisexual 
flowers.

(3) Sedum maximum (L.) Hoffm., S. telephium L. and 
S. vulgare (Haw.) Link represent a lineage that is often 
accepted as the genus Hylotelephium H. Ohba, with c. 30 
spp. distributed mainly in C and E Asia, and should be 
known as H. maximum (L.) Holub, H. telephium (L.) H. 
Ohba and H. vulgare (Haw.) Holub, respectively. Hylo­
telephium is closely related to the C to E Asian genera 
Meterostachys Nakai, Orostachys Fisch. (non-mono-
phyletic, see below) and Sinocrassula A. Berger.

(4) Sedum forsterianum Sm., S. ochroleucum Chaix 
and S. rupestre L. represent a lineage that should be ac-
cepted as the genus Petrosedum Grulich, as was done, 
e.g., by Thiede & Eggli (2007). Petrosedum is closely re-
lated to a small group of SW Asian Sedum spp. that has 
not yet been excluded from Sedum (S. ser. Nana ’t Hart 
& Alpinar).

The remaining species, including the type, Sedum 
acre L., fall into a large clade of the family that contains 
a large number of other genera (see below). If the spe-
cies discussed above were to remain in a monophyletic 
Sedum, essentially two thirds of the family would have 
to be included in that genus. Accordingly, segregation 
of three of the above four genera, i.e. Rhodiola, Phe­
dimus and Petrosedum, is likely to be stable irrespective 

of future name changes in other parts of the family. As 
regards Hylotelephium, future name changes are conceiv-
able because relationships between this genus and Me­
terostachys, Orostachys and Sinocrassula are not yet fully 
resolved.

The large clade of the family containing the type con-
sists of two subclades, known as the Leucosedum-clade 
and the Acre-clade (van Ham & ’t Hart 1998), respec-
tively.

The Leucosedum-clade, which also includes Dudleya 
Britton & Rose, Mucizonia A. Berger, Pistorinia DC., 
Prometheum (A. Berger) H. Ohba, Rosularia Stapf, Tel­
missa Fenzl and Sedella Britton & Rose, contains seven 
species of German Sedum, i.e. S. album L., S. atratum L., 
S. cepaea L., S. dasyphyllum L., S. hispanicum L., S. ru­
bens L. and S. villosum L. These seven species are scat-
tered across a number of subclades, which partly contain 
one or more of the genera listed above.

The remaining five species of German Sedum, i.e. 
S. acre, S. alpestre Vill., S. annuum L., S. sexangulare 
L. and S. sarmentosum Bunge fall into the Acre-clade, 
which also includes Cremnophila Rose, Echeveria DC., 
Graptopetalum Rose, Lenophyllum Rose, Pachyphytum 
Link, Klotsch & Otto, Thompsonella Britton & Rose and 
Villadia Rose. In this Acre-clade, S. acre is supported 
sister to all remaining taxa, and S. alpestre, S. annuum, 
S. sarmentosum and S. sexangulare again are scattered 
across a number of subclades.

In view of the relationships described above, several 
potential options exist for a monophyletic Sedum. (1) Se­
dum could be treated as monospecific with only its type, 
S. acre. Of course, species that have not been sampled 
yet may fall into this clade. (2) The entire Acre-clade 
could be treated as Sedum. This, however, would imply 
inclusion of Cremnophila, Echeveria, Graptopetalum, 
Lenophyllum, Pachyphytum, Thompsonella and Villadia. 
Sedum in such circumscription would contain c. 500 spe-
cies. (3) The Acre-clade and the Leucosedum-clade (with 
c.  160 species) could be combined into Sedum, which 
would require additional inclusion of Dudleya, Mucizo­
nia, Pistorinia, Prometheum, Rosularia, Telmissa and 
Sedella.

Whereas recognition of a monospecific Sedum (op-
tion 1) would require description of a large number of 
genera for former species of that genus, options 2 and 
3 would require combination in one genus of morpho-
logically very different genera that are geographically 
widely distributed. Of these three options, option 1 ap-
pears best to us, although the new genera that will have 
to be described partly may not be easy to differentiate 
morphologically or geographically. However, as Sedum 
has not yet been completely sampled, and many relation-
ships within the Acre- and Leucosedum-clades are not 
supported, I recommend to retain all Sedum species of 
the Acre- and Leucosedum-clades in Sedum until rela-
tionships are understood better. However, such Sedum 
clearly is not monophyletic.
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Saxifragaceae (J. W. Kadereit)
The non-monophyly of Saxifraga L., first shown by 
Soltis & al. (1993), has been confirmed in several studies 
(for discussion see Fernández Prieto & al. 2013; Tkach 
& al. 2015). In particular, a group of 70 – 90 species from 
North America and Eurasia is only very distantly related 
to the remainder of Saxifraga and has to be treated as the 
genus Micranthes Haw. The one species affected in the 
German flora is Saxifraga stellaris L., which should be 
treated as M. stellaris (L.) Galasso & al. Following Soltis 
(2007), the two genera are clearly distinct in pollen and 
ovule characters.

Linaceae (J. W. Kadereit)
A broadly sampled phylogeny of Linum L. and relatives 
by McDill & al. (2009) showed that the South Ameri-
can Cliococca Bab., the North American Hesperolinon 
(A. Gray) Small and Sclerolinon C. M. Rogers and the 
Eurasian Radiola Hill (with only R. linoides Roth) are 
nested within Linum. McDill & al. (2009) proposed to 
return these four genera to Linum, in which they have 
been classified before. Radiola linoides should then be 
L. radiola L.

Euphorbiaceae (J. W. Kadereit)
Following Webster (2014; see discussion of literature 
there), Euphorbia L. is best treated as one large genus 
with >2000 spp. as the four major clades recognized 
(Chamaesyce, Esula, Euphorbia and Rhizanthium), 
partly treated as subgenera (see, e.g., Bruyns & al. 2006; 
Zimmermann & al. 2010; Horn & al. 2012; Yang & al. 
2012), cannot be defined morphologically. Accordingly, 
segregation of subclades, e.g. the Chamaesyce Clade 
(Webster 2014; E. subg. Chamaesyce Raf., e.g. Yang & 
al. 2012), at genus rank would result in a paraphyletic 
Euphorbia. In consequence, all species of Euphorbia 
growing in Germany should be retained in that genus.

Fabaceae (C. M. Ritz)
The circumscription of the genera Cytisus Desf. (40 spp.) 
and Genista L. (90 spp.) has been subject to long-stand-
ing discussions. The first published molecular phyl-
ogenies based on plastid (rbcL) and ITS data revealed 
two well-supported lineages, Cytisus and Genista, each 
containing numerous segregate taxa of uncertain posi-
tion (Käss & Wink 1995, 1997). Reviewing the published 
phylogenies, Cristofolini and Troia (2006) proposed a 
new sectional classification of Cytisus. Since raising all 
monophyletic entities within Cytisus s.l. to generic rank 
would lead to an impracticably high number of small and 
often monospecific genera, the authors advocated inclu-
sion of Chamaecytisus Link. (30 spp.), Lembrotropis 
Griseb. (monospecific) and Sarothamnus Wimm. (five 
spp.) in Cytisus. Molecular studies did indeed not sep-
arate Chamaecytisus from Cytisus s.str. (Käss & Wink 
1995; Cubas & al. 2002; Pardo & al. 2004), and species 
with an intermediate morphology blur the boundaries be-

tween the two genera (Cristofolini & Conte 2002). Lem­
botropis nigricans (L.) Griseb. (Cytisus nigricans L.) is 
morphologically very distinct by its elongate racemes, 
calyx shape and naviculate hairs, but is phylogenetically 
nested within Cytisus (Käss & Wink 1995, 1997). Saro­
thamnus scoparius (L.) W. D. J. Koch (C. scoparius (L.) 
Link), which is widespread in Europe, is part of C. sect. 
Spartiopsis Dumort. with four more species distributed 
in the Iberian Peninsula (Cristofolini & Troia 2006).

Molecular phylogenies based on plastid and ITS 
markers support the monophyly of three subgenera 
of Genista, but the segregate genera Genistella Ortega 
(Genista sagittalis L. / Genistella sagittalis (L.) Gams) 
and Ulex L. (20 spp.; U. europaeus L. in Germany) are 
nested in the Genista clade (Pardo & al. 2004). However, 
a comprehensive revision of the complex is still missing.

The neophytic Amorpha fruticosa L. represents a 
poorly understood polyploid complex within the North 
American genus Amorpha L. (16 spp.). The monophyly 
of the genus is questionable: it is supported by plastid 
sequences, while phylogenies based on nuclear genes 
suggest its paraphyly because the clade also contains the 
North American shrubs Errazurizia rotundata (Wooton) 
Barneby and Parryella filifolia Torr. & A. Gray (Mc-
Mahon & Hufford 2004, 2005; Straub & Doyle 2014). 
However, Amorpha is a Linnaean genus, and accord-
ingly the name of the introduced A. fruticosa will remain 
unchanged if the above-named species are included in 
Amorpha.

Planted as ornamentals in Europe, Wisteria Nutt. 
contains four to seven deciduous lianas distributed in E 
Asia and North America. Phylogenetic reconstructions 
based on plastid and nuclear genes suggest the inclusion 
of the evergreen lianas Afgekia Craib and Callerya Endl. 
in Wisteria (Li & al. 2014). Since Wisteria is the oldest 
name, the names of the cultivated species in Germany 
will be not affected.

Coronilla L. (nine spp.) and Securigera DC. (13 spp.) 
each represent monophyletic entities in a highly sup-
ported clade that is sister to Hippocrepis L. according to 
an ITS-based phylogeny (Sokoloff & al. 2007). However, 
detailed analyses based on other genetic markers so far 
are missing. Based on present knowledge, two options, 
either adopting a large Coronilla s.l. including Securi­
gera (Sokoloff 2003) or recognizing two genera (Lassen 
1989), are equally possible. In the first case the name 
C. varia L. and in the second case S. varia (L.) Lassen 
should be used.

The most comprehensive study of Anthyllis L., based 
on plastid and nuclear markers, support its monophyly 
when Hymenocarpus Rchb. is included in Anthyllis and 
the Mediterranean genera Dorycnopsis Boiss. (two spp.) 
and the monospecific Tripodion Medik. are segregated 
(Degtjareva & al. 2012). Contradicting results were re-
ported in an ITS-based phylogenetic study with a rela-
tively small taxon sampling (Nanni & al. 2004). This 
study placed two annual species of Anthyllis, which were 
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clearly part of Anthyllis in the study by Degtjareva & al. 
(2012), together with Tripodion near Lotus L. However, 
this result is questionable because resolution and taxon 
sampling were much lower than in the study by Deg
tjareva & al. (2012). In any case, the name of the German 
A. vulneraria L. would not be affected. Lotus (190 spp.) 
in its traditional circumscription is polyphyletic and di-
vided into an Old World clade and several New World 
lineages (Allan & Porter 2000; Allan & al. 2003). The 
latter have now been recognized as four genera (Aram
barri & al. 2005). Studies focusing on the highly support-
ed Old World clade revealed that the segregate genera 
Tetragonolobus Scop. (five spp.) and Dorycnium Mill. 
(ten spp.) should be returned to Lotus (Degtjareva & al. 
2006; Degtjareva & al. 2008), a result already suggested 
by morphological studies (Polhill 1981). However, the 
phylogenies published so far rely on nuclear ribosomal 
DNA only. Since incongruencies between markers are 
a common phenomenon in Fabaceae, additional genetic 
data are required. When Dorycnium and Tetragonolobus 
are included in Lotus, the names L. germanicus (Gremli) 
Peruzzi (D. germanicum (Gremli) Rikli), L. herbaceus 
(Vill.) Jauzein (D. herbaceum Vill.), L. hirsutus L. (D. 
hirsutum (L.) Ser.) and L. maritimus L. (T. maritimus (L.) 
Roth) should be used.

All phylogenies based on plastid and nuclear markers 
published so far suggest a close relationship between Ca­
lophaca Fisch., Caragana L. and the monospecific Asian 
Halimodendron DC. (Sanderson & Wojciechowski 1996; 
Wojciechowski & al. 2000; Zhang & al. 2009; Duan & 
al. 2015). The morphologically distinct Calophaca and 
Halimodendron are probably nested within Caragana, 
but statistical support for this was low and more research 
is needed (Zhang & al. 2009). In any case, the name of 
the introduced Caragana arborescens Lam. will not be 
affected by any changes in generic circumscriptions be-
cause Caragana is the oldest genus name.

The monophyly of Hedysarum L., containing c. 180 
spp. distributed in the N hemisphere, still remains ques-
tionable. Two N African species have been excluded 
from Hedysarum and recognized as Greuteria Ami-
rahmadi & Kaz. Osaloo (Amirahmadi & al. 2014). Ac-
cording to plastid phylogenies, Hedysarum (including 
the monospecific genus Sartoria Boiss. from Turkey) 
is monophyletic (Amirahmadi & al. 2014; Duan & al. 
2015). The close relationship of Hedysarum and Sarto­
ria has also been corroborated by biochemical analyses 
(Arslan & Ertuğrul 2010). In contrast, trees based on ITS 
sequences separated H. sect. Hedysarum (containing the 
type, H. alpinum L.) from H. sect. Multicaulia (Boiss.) B. 
Fedtsch. and H. sect. Stracheya (Benth.) B. H. Choi. The 
latter two were sister to a clade comprising Onobrychis 
Mill. (Amirahmadi & al. 2014; Duan & al. 2015). Further 
studies including sequences of nuclear low-copy genes 
are needed to unravel the reasons for these incongruen-
cies. If non-monophyly of Hedysarum should obtain fur-
ther support, either all species of Onobrychis and some 

other smaller genera should be transferred to a very large 
Hedysarum, or Hedysarum should be split into several 
genera. In the latter case the name H. hedysaroides (L.) 
Schinz & Thell. would remain unchanged because this 
species is closely related to the type of the genus name.

Similar results were obtained for Onobrychis Mill. 
Plastid phylogenies supported Onobrychis as a mono-
phyletic entity but ITS phylogenies failed to do so (Ami-
rahmadi & al. 2014; Duan & al. 2015).

All published phylogenies revealed a close rela-
tionship between Trigonella L. (60 spp.) and Melilotus 
Mill. (20 spp.), which is supported by morphology (e.g. 
incised margin of stipules, notched apex of standard, 
smooth surface of seed coat). Most reconstructions based 
on either plastid, ITS or nuclear low-copy genes revealed 
Trigonella as paraphyletic in relation to Melilotus (Bena 
2001; Steele & Wojciechowski 2003; Steele & al. 2010; 
Dangi & al. 2015). In contrast, a combined analysis of 
ITS and plastid data showed well-supported monophyly 
of both genera (Dangi & al. 2015). However, taxon sam-
pling in both genera has not been sufficiently exhaustive 
to solve this problem. The so-called medicagoid species 
of Trigonella (23 spp.) distributed in the Mediterranean 
area share a complex explosive tripping mechanism of 
pollination with Medicago (Small & al. 1987). In support 
of this, nuclear ribosomal sequences corroborate the in-
clusion of these species in Medicago (Bena 2001).

A recent comprehensive study of tribe Vicieae based 
on plastid and ITS sequences revealed that neither Vi­
cia L. (140 spp.) nor Lathyrus L. (160 spp.) are mono-
phyletic in their current delimitation (Schaefer & al. 
2012). Comparable results were also obtained by earlier 
studies based on matK sequences of a small number of 
species (Steele & Wojciechowski 2003; Wojciechowski 
& al. 2004). Lathyrus is paraphyletic in relation to two 
monophyletic groups: the Caucasian Vavilovia Fed. 
(two spp.) and Pisum L. (three spp.; Smykal & al. 2011; 
Schaefer & al. 2012). Vicia appears to be paraphyletic 
because annual species of V. sect. Ervum (L.) Taub. (e.g. 
V. tetrasperma (L.) Schreb.) and V. sect. Ervilia (Link.) 
W. Koch (including V. sect. Ervoides (Godr.) Kupicha 
and Trigonellopsis Rech. f. and V. hirsuta (L.) Gray) 
were sister to Lathyrus s.l. and the remaining species 
of Vicia including Lens Mill. (four spp.; Schaefer & al. 
2012). Schaefer & al. (2012) recommended the inclusion 
of Pisum and Vavilovia in Lathyrus. Vicia could be then 
recognized as a monophyletic entity by including Lens 
and re-transferring V. articulata Hornem., V. ervilia (L.) 
Willd., V. hirsuta (L.) Gray, V. parviflora Cav.,V. sylvatica 
L. and V. tetrasperma (L.) Schreber to either Ervilia Link 
or Ervum L.

Polygalaceae (J. W. Kadereit)
Several studies (Eriksen 1993; Persson 2001; Forest 
& al. 2007; Abbott 2011), of which the study by Ab-
bott (2011), although not including full results, used a 
large sample and both nuclear and plastid sequences, 
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have shown that the large genus Polygala L. is highly 
polyphyletic. In consequence, several segregate genera 
of groups formerly included in Polygala have been pro-
posed (for summary see Pastore 2012). Of the species of 
Polygala known in Germany, P. chamaebuxus L. should 
be removed from Polygala. According to Abbott (2011), 
this species is part of a lineage which should be called 
Polygaloides Haller and be treated as P. chamaebuxus 
(L.) O. Schwarz. Although not all other German species 
of the genus were sampled in any of the published phy-
logenies, their close relationship to each other has been 
documented (Lack 1995) and it seems safe to assume that 
they all will remain in Polygala.

Rosaceae (B. Gehrke)
Many genera of the Potentilleae, such as Comarum L., 
Dasiphora Raf., Duchesnea Sm. and even Fragaria L., 
have at some point been included in Potentilla L. (Mab-
berley 2002). However, recent molecular phylogenetic 
work clearly showed that Fragariinae and Potentillinae 
are distinct lineages. Based on molecular work authors 
tend to recognize Potentillinae as comprising only two 
genera. These are (1) Potentilla s.str. excluding P. fru­
ticosa L., P. palustris (L.) Scop. and P. rupestris L. (see 
below) and including, amongst others, Duchesnea indica 
(Andrews) Teschem (as P. indica (Andrews) Th. Wolf), 
which is deeply nested in Potentilla s.str., and (2) Argen­
tina Hill (Feng & al. 2015), a mostly Asian group, includ-
ing P. anserina L. (as A. anserina (L.) Rydb.). The sepa-
ration of Argentina s.l. and Potentilla s.str., which are 
sister lineages, is based on differences in the insertion of 
the styles, with Potentilla s.str. having subterminal styles, 
whereas Argentina has lateral ones (Dobes & Paule 2010; 
Sojak 2010; Feng & al. 2015). However, considering the 
relationship between these two genera, it would also be 
possible not to recognize Argentina as a separate genus 
and use the name Potentilla for all species of the Poten­
tillinae (Eriksson & al. 2015).

The other monophyletic subtribe in the Potentilleae, 
the Fragariinae, has its highest species diversity in Asia 
and includes numerous smaller lineages as well as Al­
chemilla L., Fragaria and Sibbaldia L. Well nested in 
Fragariinae and more closely related to Fragaria than 
to Alchemilla or even Potentilla are P. fruticosa and P. 
rupestris. These should be treated as Dasiphora fruti­
cosa (L.) Rydb., a monospecific genus, and Drymocallis 
rupestris (L.) Soják. Drymocallis Soják is a small genus 
confined to the N hemisphere. Alternatively, Fragaria 
could be extended to include Dasiphora and Drymocal­
lis, amongst some other Asian groups, but the genus then 
would no longer be united by its characteristic fleshy 
receptacle. Leaving D. fruticosa and D. rupestris in Po­
tentilla would necessitate including Alchemilla, Fragaria 
and Sibbaldia in Potentilla as well, which is obviously 
not desirable. Most authors therefore seem to prefer to 
recognize Dasiphora and Drymocallis as genera separate 
from Fragaria.

Alchemilla forms a clade with Aphanes L. and the 
mainly South American Lachemilla Rydb., easily rec-
ognizable by the lack of petals and the presence of only 
four calyx and epicalyx lobes (Notov & Kusnetzova 2004; 
Gehrke & al. 2008). Molecular phylogenetic work re-
vealed the existence of a fourth, previously unknown clade 
with Alchemilla species from Africa (Gehrke & al. 2008). 
Aphanes is clearly nested among Alchemilla, Lachemilla 
and African Alchemilla (Gehrke & al. 2008). As there are 
no obvious morphological features to separate the Afri-
can clade of Alchemilla from the European clade, and the 
entire clade is readily recognizable by floral morphology 
despite differences in life cycle, size and leaf morphol-
ogy, I would like to recommend to include Aphanes in 
Alchemilla leading to reusing the names Alchemilla ar­
vensis (L.) Scop. for Aphanes arvensis L. and Alchemilla 
microcarpa Boiss & Reut. for Aphanes inexspectata W. 
Lippert. Irrespective of this, Alchemilla, Aphanes, and 
Lachemilla in their traditional circumscriptions differ in 
habit and some details of floral morphology. Whereas Al­
chemilla and Lachemilla species are perennial and usually 
have four introrse stamens inserted at the outer side of the 
discus (Alchemilla) or 2( – 4) extrorse stamens inserted at 
the inner side of the discus (Lachemilla), Aphanes species 
are annual or short-lived and have only a single extrorse 
stamen at the inner side of the discus.

Potentilla palustris is most closely related to Al­
chemilla as circumscribed above according to chloroplast 
data and to Sibbaldia using nuclear data. Unless included 
in either of these two genera, which is not desirable from 
a morphological point of view, it should be reinstated as 
Comarum palustre L. It seems that especially the Asian 
species of Sibbaldia require more work (Eriksson & al. 
2015), but it is most likely that S. procumbens L. can re-
tain its name.

Molecular phylogenetic work in combination with 
morphological character optimization has shown that 
Rosaceae contain only three major lineages (Potter & al. 
2007): Dryadoideae, Rosoideae and Spiraeoideae. The 
last includes the formerly recognized Amygdaloideae, 
Maloideae, Prunoideae as well as Pyrinae. Evolution 
of derived fruit types (pome, drupe, achene) has been 
shown to be more complex than traditionally hypoth-
esized (Morgan & al. 1994; Potter & al. 2002; Potter & 
al. 2007).

In the newly defined Spiraeoideae, the most promi-
nent result of molecular phylogenetic work is the recog-
nition that the species of Sorbus L. fall into two major 
clades. As part of the first major clade, Sorbus s.str., 
which is closely related to Pyrus L., should include only 
pinnate-leaved species (Campbell & al. 2007; Potter & 
al. 2007; Lo & Donoghue 2012). In this clade, S. domes­
tica L. should be placed in the monospecific genus Cor­
mus Spach according to Lo & Donoghue (2012) because 
this species is sister to a clade formed by Sorbus s.str. 
and Micromeles Decne. according to chloroplast data, 
with a weakly supported incongruent placement of Mi­
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cromeles as sister to Aria (Pers.) Host (see below) ac-
cording to nuclear ITS sequences. If this approach were 
taken, the only species remaining in Sorbus found in 
Germany would be the type, S. aucuparia L. Chloroplast 
and combined chloroplast and nuclear data suggest that 
Sorbus species with simple leaves are not closely related 
to Sorbus s.str., but are a subclade of the second major 
clade also including Cydonia Mill., Malus Mill. and oth-
ers. In this subclade of simple-leaved Sorbus species, Lo 
& Donoghue (2012) suggested to recognize the mono-
specific genera Aria (with S. aria (L.) Crantz apparent-
ly as A. nivea Host), Chamaemespilus Medik. (with S. 
chamaemespilus (L.) Crantz as C. alpina (Mill.) K. R. 
Robertson & J. B. Phipps) and Torminalis Medik. (with 
S. torminalis (L.) Crantz as T. clusii (M. Roem.) K. R. 
Robertson & J. B. Phipps). However, Chamaemespilus 
and Torminalis form a well-supported clade together with 
Aria and could also be included in Aria (Li & al. 2012a; 
Lo & Donoghue 2012; Sennikov 2014). Lo & Donoghue 
(2012) pointed out that the former inclusion of Aria and 
satellite genera in Sorbus reflects the finding that numer-
ous apomictic microspecies in Europe and W Asia are 
of apparent hybrid origin involving species of Aria (incl. 
Torminalis) and Sorbus s.str. (Aas & al. 1994; Nelson-
Jones & al. 2002). Maintainance of Sorbus as one genus 
would require sinking Cotoneaster Medik., Crataegus 
L., Malus Mill. and many other genera in Pyrus L. (Sen-
nikov 2014), which is evidently even less desirable.

Rhamnaceae (J. W. Kadereit)
Phylogenetic studies in Rhamnaceae, focusing on Fran­
gula Mill. and Rhamnus L., suggested that Frangula and 
Rhamnus are distinct genera, and that Rhamnus is best 
divided into Rhamnus s.str., the Old World genus Oreo­
herzogia W. Vent and the New World genus Ventia Hauen-
schild (Hauenschild & al. 2016). Of the German species 
of Rhamnus, R. pumila Turra falls into Oreoherzogia, in 
which it should be known as O. pumila (Turra) W. Vent. 
Following Hauenschild & al. (2016), Rhamnus s.str. and 
Oreoherzogia can be distinguished by the number of lat-
eral leaf vein pairs (3 – 5 in Rhamnus, 6 – 20 in Oreoherzo­
gia) and by the position of a seed furrow (lateral-medial 
in Rhamnus, dorso-medial in Oreoherzogia).

Urticaceae (J. W. Kadereit)
Evidence has been presented that the generic circum-
scription of Parietaria L. in relation to Gesnouinia Gau-
dich. and Soleirolia Gaudich. may require modification 
(Wu & al. 2013). However, no sufficiently well-sampled 
phylogeny is available yet to tackle this problem.

Myricaceae (J. W. Kadereit)
Myrica L. has been found to be diphyletic by Huguet & 
al. (2005). Following these authors (for discussion of no-
menclature see their paper), M. gale L. lectotypifies the 
genus name Myrica, and M. pensylvanica Mirb. should 
be treated as Morella pensylvanica (Mirb.) Kartesz.

Onagraceae (C. M. Ritz)
Heterogeneity of Epilobium L. in stamen characters 
had already been noticed by Linnaeus. Several sec-
tions are recognized in the genus, of which only E. sect. 
Chamaenerion Ség. and E. sect. Epilobium grow in Ger-
many. While the former has alternate leaves, weakly zy-
gomorphic flowers with only a very short hypanthium, 
almost entire petals, recurved stamens of almost equal 
length, a recurved style and pollen in monads (type: E. 
angustifolium L.), E. sect. Epilobium has opposite leaves, 
actinomorphic flowers with a distinct hypanthium, emar-
ginate petals, erect stamens of different length, an erect 
style and pollen in tetrads (lectotype: E. hirsutum L.). All 
phylogenetic analyses of the family, partly using a broad 
taxon sampling and both nuclear and plastid sequences 
(Baum & al. 1994; Levin & al. 2003, 2004) invariably 
demonstrated that E. sect. Chamaenerion is sister to the 
remainder of the genus. Considering this pattern of rela-
tionship, it is both possible to treat E. sect. Chamaenerion 
at generic rank on account of its morphological distinct-
ness, as was done in most North American Floras, or to 
include it in Epilobium. If treated as a distinct genus, this 
would affect classification of E. angustifolium, E. dodo­
naei Will. and E. fleischeri Hochst. The name Chamaene­
rion has long been discussed controversially. Chamaene­
rion Ség. instead of Chamaenerion Hill or Chamerion 
Raf. has to be used according to Sennikov (2011).

As shown in the well-sampled phylogeny of Ona­
graceae by Levin & al. (2004), Oenothera L. is only 
monophyletic when Calylophus Spach, Gaura L. and Ste­
nosiphon Spach are included, as was done by Wagner & 
al. (2007).

Lythraceae (J. W. Kadereit)
A phylogenetic analysis of Lythraceae including sever-
al species of Lythrum L. and Peplis portula L. (Morris 
2007) clearly showed that Peplis L. is deeply nested in 
Lythrum and should, as already done by Webb (1967), be 
treated as L. portula (L.) D. A. Webb.

Malvaceae (J. W. Kadereit)
A well-sampled phylogenetic analysis of Alcea L., Al­
thaea L., Lavatera L. and Malva L. using nuclear and 
plastid sequences by Escobar García & al. (2009) re-
vealed that, probably with the exception of Alcea, these 
genera are not monophyletic. This had been shown be-
fore for Lavatera and Malva by Ray (1995). The two 
species of Althaea found in Germany fall into two only 
distantly related clades, with Althaea hirsuta L. as rep-
resentative of one clade more closely related to Malva 
/ Lavatera and Althaea officinalis L. as representative 
of the second clade more closely related to Alcea. Spe-
cies of Malva fall into three separate clades, of which the 
one containing M. alcea L. and M. moschata L. is more 
closely related to one of two clades of Lavatera that con-
tains L. thuringiaca L. than to a second clade of Malva 
with M. verticillata L., M. sylvestris L. and M. neglecta 
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Wallr. As is evident, these patterns of relationship require 
taxonomic changes. Escobar García & al. (2009) did not 
present a new classification of this “Malva alliance”, but 
both Banfi & al. (2005, 2011) and Stace (2010) suggested 
to recognize an enlarged Malva containing Lavatera and 
Althaea hirsuta and relatives.

Resedaceae (J. W. Kadereit)
A phylogenetic analysis of a broad sample of Resedace­
ae using nuclear and plastid sequences by Martín-Bravo 
& al. (2007) demonstrated that Reseda L. is paraphyletic 
in relation to the genera Ochradenus, Oligomeris and 
Randonia. This group of genera consists of two major 
lineages, and the four species of Reseda found in Ger-
many fall into both. Reseda alba L. and R. luteola L. 
fall into two different subclades of the lineage that also 
contains Oligomeris, whereas R. lutea L. and R. odorata 
L. fall into two different subclades of the lineage that 
also contains Ochradenus and Randonia. Although the 
authors argued that Ochradenus and Randonia should be 
recognized at generic rank, they do not propose subdivi-
sion of Reseda into smaller genera. If this should even-
tually be proposed, the name Reseda would have to be 
applied to a clade containing R. lutea, the type of the 
genus name.

Brassicaceae (M. A. Koch)
Brassicaceae, currently recognized to contain 325 genera 
in 51 tribes (Al-Shehbaz 2012; Koch & al. 2012; Kiefer 
& al. 2014), show high levels of homoplasy in almost 
every morphological character used in the circumscrip-
tion of tribes and genera in the past. Consequently, reli-
able systematic concepts often have to be obtained from 
molecular data, and many changes of tribal and generic 
circumscriptions have become necessary.

Based on molecular data, Erophila DC. is nested in 
Draba L. (Jordon-Thaden & al. 2010) and should be in-
cluded in that genus, and E. verna (L.) Chevall. should 
be known as D. verna L. If recognized at species rank, 
E. praecox (Stev.) DC. and E. spathulata Lang should 
be D. praecox (Stev.) and D. spathulata (Lang) Sadler, 
respectively.

Several species of a formerly widely defined Arabis 
L. have to be transferred to other genera: A. glabra (L.) 
Bernh. has to be treated as Turritis glabra L., A. pauciflo­
ra Garcke as Fourraea alpina (L.) Greuter & Burdet and 
A. turrita L. as Pseudoturritis turrita (L.) Al-Shehbaz 
(Koch & al. 1999, 2000, 2001; Karl & Koch 2014). None 
of these three genera groups in tribe Arabideae any long-
er (Koch & al. 2007; Couvreur & al. 2010). Even after 
these changes, Arabis is still a paraphyletic taxon. Since 
A. alpina L. is the type of the genus name, all remaining 
Arabis species might be transferred to newly introduced 
genera in the future.

Cardaminopsis Hayek is the sister group of Arabi­
dopsis thaliana (L.) Heynh. (Koch & Matschinger 2007; 
Hohmann & al. 2014), and it has been widely accepted to 

include Cardaminopsis in Arabidopsis Heinh. The Ger-
man species of Cardaminopsis will be A. arenosa (L.) 
Lawalrée, A. halleri (L.) O’Kane & Al-Shehbaz and A. 
lyrata subsp. petraea (L.) O’Kane & Al-Shehbaz (Al-
Shehbaz 2012; Kiefer & al. 2014).

A new classification of Thlaspi L. was proposed 
four decades ago (Meyer 1973, 1979), recognizing the 
genera Microthlaspi F. K. Mey., Noccaea Moench and 
Thlaspi for species of Thlaspi s.l. in the German flora. 
This concept has been confirmed by a series of molecu-
lar studies (e.g. Mummenhoff & al. 1997a, 1997b; Koch 
& Mummenhoff 2001). Microthlaspi and Noccaea do 
not group in tribe Thlaspideae, but are members of 
tribe Coluteocarpeae (Koch & German 2013). For the 
German flora, T. caerulescens J. Presl & C.  Presl, T. 
cepaeifolia (Wulfen) Koch and T. montanum L. were 
transferred to Noccaea and should be recognized as N. 
caerulescens (J. Presl & C.  Presl) F. K. Mey., N. ce­
paeifolia (Wulfen) Rchb. and N. montana (L.) F. K. 
Mey., respectively. Thlaspi perfoliatum, with its two 
morphologically slightly differentiated cytotypes (T. er­
raticum Jord. and T. improperum Jord.; Koch & Bern-
hardt 2004), has to be included in Microthlaspi as M. 
perfoliatum (L.) F. K. Mey. It has also been proposed 
to combine most genera of tribe Coluteocarpeae in a 
broadly defined Noccaea (Al-Shehbaz 2012). However, 
since comprehensive molecular analyses of the entire 
tribe with its more than 125 species (Koch & German 
2013) are lacking, this concept should not be followed 
at the moment.

Considering the German flora, Alyssum saxatile L. has 
been shown to be member of a clade including various 
species of Aurinia Desv., which is sister to Bornmuellera 
Hausskn. and Clypeola L. (Cecchi & al. 2010; Resetnik 
& al. 2013). Consequently, A. saxatile is best treated as 
Aurinia saxatilis (L.) Desv. All other Alyssum species in 
Germany belong to a then monophyletic Alyssum.

Integration of Dentaria L. in Cardamine L. (Carlsen 
& al. 2009) and of Coronopus Mill. in Lepidium L. (Al-
Shehbaz & al. 2002; Mummenhoff & al. 2008) is strong-
ly supported and both are nested in the respective genera 
in molecular analyses. The four Dentaria species of the 
German flora should be known as Cardamine bulbifera 
(L.) Crantz, C. enneaphyllos (L.) Crantz, C. heptaphyl­
los (Vill.) O. E. Schulz and C. pentaphyllos (L.) Crantz. 
Coronopus didymus (L.) Sm. and C. squamatus (Forrsk.) 
Asch. are now best treated as Lepidium didymum L. and 
L. coronopus (L.) Al-Shehbaz, respectively.

Pritzelago Kuntze and Hymenolobus Nutt. of tribe 
Erysimeae are best included in Hornungia Bernh. These 
three genera form a well-supported clade (Mummenhoff 
& al. 2001; Kropf & al. 2003), and it has been demon-
strated that there is no single character that reliably dis-
tinguishes the three genera (Al-Shehbaz & Appel 1997). 
Consequently, the following names should be used: Hor­
nungia alpina (L.) O. Appel, H. petraea (L.) Rchb. and 
H. procumbens (L.) Hayek.
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Maximum-likelihood trees derived from ITS1 and 
ITS2 sequences available from BrassiBase (Koch & 
al. 2012; Kiefer & al. 2014; http://brassibase.cos.uni-
heidelberg.de/ clearly show that Cheiranthus cheiri 
L. is nested in Erysimum L., where it should be called 
E. cheiri (L.) Crantz. Hirschfeldia Moench of tribe 
Brassiceae consists of one species only: H. incana (L.) 
Lagr.-Fossat is most closely related to Erucastrum C. 
Presl. (including its type, E. virgatum C. Presl.; Arias & 
al. 2014). However, since Erucastrum as currently treat-
ed is a polyphyletic genus, and various other Erucastrum 
species might be transferred to different genera in future 
(Arias & Pires 2012), it seems best to keep Hirschfeldia 
separate until various phylogenetic hypotheses have 
been tested in more detail.

Santalaceae (J. W. Kadereit)
Thesium L. was found to be monophyletic only when the 
genera Austroamericum Hendrych and Thesidium Sonder 
are included (Moore & al. 2010). Discussing the options 
of either sinking these two genera into Thesium or main-
taining them, requiring splitting of Thesium in its tradi-
tional circumscription into several smaller genera, Moore 
& al. (2010) preferred the former option for morphologi-
cal reasons.

Polygonaceae (K. Wesche)
In Rumex L. two monophyletic subgenera can be distin-
guished: R. subg. Acetosa (Mill.) Rech.  f. and R. subg. 
Rumex. This is the approach currently chosen in most 
C European floras, although it is possible (but not man-
datory) to raise these subgenera to generic rank (Hejný & 
Slavik 1990). According to molecular analyses, R. subg. 
Acetosa includes the sometimes separately treated R. 
subg. Acetosella (Meisn.) Rech. f. (Schuster & al. 2015). 
This is supported by shared morphological characters, 
e.g. the presence of hastate leaves.

The taxonomy of Polygonum L. has posed particular 
challenges. The traditional broad concept had survived 
two centuries in spite of repeated criticism including calls 
to split the genus into up to nine sections, which com-
menced as early as 1856 (Meisner 1856). Based on mor-
phological evidence, Haraldson (1978) reinforced these 
earlier proposals for splitting Polygonum, which have 
since been confirmed by studies of both plastid and nu-
clear DNA markers (Lamb Frye & Kron 2003; Galasso & 
al. 2009; Schuster & al. 2015). Polygonum s.l. clearly is 
polyphyletic and should be split into several genera, partly 
even belonging to different tribes. Some details, however, 
are still controversial, given that new molecular studies 
continue to differ from preceding ones, and no final con-
clusions have been reached. Accordingly, all inferences 
remain somewhat tentative.

Species of tribe Polygoneae have outer tepals with 
one primary vein and include a range of life forms. Poly­
gonum s.str. is characterized by a distinct pollen mor-
phology and by outer tepals that do not develop large 

appendages in fruit (Schuster & al. 2011a). In Germany 
it comprises few, mainly ruderal species (P. aviculare L. 
agg. – including P. arenastrum Boreau, P. oxyspermum 
Ledeb. and P. raii Bab., the latter sometimes treated as a 
subspecies of P. oxyspermum). In our context, these spe-
cies are distinct by having essentially solitary or at the 
most approximate flowers in axillary glomerules and a 
silvery ochrea. Genetic studies support the monophyly 
of Polygonum L. s.str. (Schuster & al. 2015).

A clade related to Polygonum L. s.str. contains the 
genera Reynoutria Houtt. and Fallopia Adans. Their tax-
onomy is notorious for frequent changes and their treat-
ment is inconsistent among C European Floras (Fischer 
& al. 2008; Jäger 2011; Tison & de Foucoult 2014). Fal­
lopia in its traditional circumscription contains mostly 
lianas, while Reynoutria includes extremely tall herbs 
that are invasive in many regions. Both taxa share the 
presence of extrafloral nectaries and have wings on the 
floral bracts. Viable intergeneric hybrids are known, and 
polyploidy and extreme morphological variability add to 
the taxonomic difficulties. In consequence, Reynoutria 
has often been included in a broader Fallopia s.l., where 
it was treated as a section. Uncertainty about the treat-
ment of the two genera pertains, although molecular ap-
proaches have used both chloroplast and nuclear markers 
for a very good taxonomic coverage. These studies sup-
port the monophyly of each of the two genera (Schuster 
& al. 2011b, 2015). The S hemisphere Muehlenbeckia 
Meisn., however, has been identified as closely related 
(Haraldson 1978), and recent molecular studies implied 
that it is indeed sister to Fallopia (Schuster & al. 2011b, 
2015). This is in line with the fact that both Fallopia and 
Muehlenbeckia share a base chromosome number of 10 
(11 in Reynoutria) and contain flavones (absent in Rey­
noutria). Including Reynoutria but not Muehlenbeckia 
in a broadly circumscribed Fallopia would thus result in 
a polyphyletic group. In view of this, keeping Fallopia, 
Muehlenbeckia and Reynoutria as separate genera cur-
rently is the best – but not necessarily final – solution.

The second large tribe relevant for relationships of 
Polygonum s.l. in Germany are the Persicarieae, which 
are monophyletic and morphologically distinct by the 
presence of three veins arising from the base of the tepals, 
of nectaries and of non-dilated stamen filaments (Lamb 
Frye & Kron 2003; Kim & Donoghue 2008; Sanchez & 
Kron 2008). The tribe includes Aconogonon (Meisn.) 
Rchb., Bistorta Mill. and Persicaria (L.) Mill. Persicaria 
is characterized by spicate or capitate panicles, a usually 
entire but often ciliate or pectinate ochrea, and has 4 – 8 
stamens and 4 or 5 tepals. All recent treatments agree 
that it is monophyletic and should be excluded from tribe 
Polygoneae (Kim & Donoghue 2008; Fan & al. 2013). 
Thus, the following combinations should be used for the 
German species: Persicaria amphibia (L.) Delarbre, P. 
hydropiper (L.) Delarbre, P. lapathifolia (L.) Delarbre, P. 
maculosa Gray, P. minor (Huds.) Opiz, P. mitis (Schrank) 
Assenov and P. pensylvanica (L.) M. Gómez. Except 
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for P. maculosa (formerly Polygonum persicaria L.), 
epithets could be directly adopted from former names in 
Polygonum. Although the highly variable P. amphibia is 
a morphologically distinct taxon within Persicaria (Kim 
& Donoghue 2008), there is no need to raise it to genus 
level (Galasso & al. 2009).

Bistorta Mill. is morphologically distinct (with a ro-
sette of basal leaves and usually only one terminal, spi-
cate panicle), and both chloroplast and nuclear data im-
ply that it is monophyletic within Persicarieae (Kim & 
Donoghue 2008; Fan & al. 2013). Molecular approaches, 
however, are not fully consistent with respect to its ex-
act relationships to Aconogonon and Koenigia L. None-
theless, most current Floras and also molecular studies 
(Galasso & al. 2009; Sanchez & al. 2011; Schuster & al. 
2011a) accept its generic rank. The German species thus 
have to be named B. officinalis Delarbre and B. vivipara 
(L.) Delarbre (formerly Polygonum bistorta L. and P. vi­
viparum L., respectively).

The taxonomy of Aconogonon is particularly com-
plicated. Species in this group have been placed in Per­
sicaria, Polygonum or Rubrivena M. Král (the last for 
A. polystachyum (Meisn.) Small as the only species of 
Aconogonon s.l. occurring in Germany). Recent mo-
lecular studies implied that Aconogonon species are 
distinct from Bistorta and Persicaria, but also revealed 
their close relationship with the mostly boreal and po-
lar Koenigia (Galasso & al. 2009; Sanchez & al. 2009). 
Aconogonon and Koenigia have broadly similar pollen, 
and the two genera cannot easily be separated by mor-
phological characters. Studies based on cpDNA have 
suggested that Koenigia in its traditional circumscrip-
tion may be nested between Aconogonon and Rubrivena 
(Sanchez & al. 2011). The so-far most comprehensive 
study covering many taxa and employing both cpDNA 
and nuclear markers (Schuster & al. 2015) confirms this 
close relationship and finds one large clade that compris-
es all analysed species of Aconogonon and Koenigia (and 
Rubrivena). While most Koenigia species form a distinct 
group, some (but not all!) accessions of K. delicatula 
(Meisn.) H. Hara are sister group to a clade comprising 
other Aconogonon and Koenigia species (incl. A. poly­
stachyum). This implies that Koenigia in its traditional 
sense is not monophyletic. Relationships of Aconogonon 
are even more puzzling, with a number of polyploid Aco­
nogonon species being more closely related to Koenigia 
than to other members of the genus. Moreover, differ-
ent accessions of some Aconogonon species appear on 
very different branches in the Aconogonon / Koenigia 
clade. Details of the evolution of this group clearly are 
not fully understood, and thus Schuster & al. (2015) ad-
vocate the fusion of all taxa in one large genus. They 
propose to unite them under the name Koenigia, which 
was chosen for priority reasons. These authors also draw 
the necessary taxonomic consequences and provide the 
new combination K. polystachya (Meisn.) T. M. Schust. 
& Reveal.

Though using a somewhat smaller species set, Fan 
& al. (2013) also presented a comprehensive molecular 
study, which confirmed the odd position of K. delica­
tula (plus one Aconogonon species). In their analysis, A. 
polystachyum is nested within other Aconogonon species, 
which jointly form the sister clade to the core Koenigia 
species. Fan & al. (2013) also discussed the possibility 
to adopt a broad concept of Koenigia. However, they 
acknowledged that merging the larger Aconogonon in 
the smaller Koenigia is somewhat impractical and also 
remarked on the apparently different chromosome base 
numbers in the two groups. They advocated keeping the 
two genera independent and placing the odd K. delicatula 
in a new monospecific genus, for which no valid name is 
available yet. This would also be supported by some of 
its morphological features that are transient to Persica­
ria. Splitting the whole complex into several, partly new 
genera indeed is an alternative solution to the problem 
implied by the tree of Schuster & al. (2015), but would 
presumably result in the formation of many small genera 
such as Rubrivena. Given that details of the evolution of 
Acononogon / Koenigia remain unclear, I opt for an in-
termediate position. The special position of Aconogonon 
and Koenigia in Persicarieae is undebated, but instead of 
drawing far-reaching taxonomic consequences, I rather 
acknowledge the level of uncertainty by keeping Aco­
nogonon as a separate genus for the time being. In line 
with Fan & al. (2013), I regard evidence for a separate 
genus Rubrivena as questionable and maintain the estab-
lished name A. polystachyum for the taxon occurring in 
C Europe.

Caryophyllaceae (M. S. Dillenberger)
Regarding generic delimitations in the Caryophyllaceae, 
Greenberg & Donoghue (2011) stated: “none of the eight 
largest genera (Arenaria, Cerastium, Dianthus, Gyp­
sophila, Minuartia, Paronychia, Silene, Stellaria) appear 
to be strictly monophyletic”. For some genera taxonomic 
adjustments have already been made (e.g. Dillenberger 
& Kadereit 2014), but not for all. All taxonomic changes 
that were recently made for taxa in the German flora, or 
that need to be made in the future, are related to these 
eight genera.

There are several problems concerning the mono-
phyly of Cerastium L. and Stellaria L. Cerastium is 
an almost cosmopolitan genus with about 100 species. 
Stellaria is cosmopolitan, too, and contains c. 120 spe-
cies (Mabberley 2008). Both genera have emarginate 
to deeply lobed petals, but this character is shared with 
other genera, e.g. Myosoton Moench (Bittrich 1993). 
Myosoton is a monospecific genus, with M. aquaticum 
(L.) Moench as its only species. This species has re-
cently (Jäger 2011; Seybold 2011) been treated as part 
of Stellaria, as S. aquatica L. This is congruent with the 
findings of Greenberg & Donoghue (2011), where S. 
aquatica is nested with good support in a clade of several 
Stellaria species, including S. media (L.) Vill. but not the 
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type of Stellaria, S. holostea L., and is closely related to 
S. bungeana Fenzl. Unfortunately, Stellaria does not be-
come monophyletic by including Myosoton. With good 
support, S. holostea is sister to a clade containing the 
largest part of Stellaria, but also Cerastium, Holosteum 
L. and Moenchia Ehrh. Furthermore, Cerastium is not 
monophyletic since a well-supported clade of two spe-
cies, C. cerastoides (L.) Britton and C. dubium (Bastard) 
Guépin, is sister to Holosteum. This position is poorly 
supported, but Moenchia is sister to the rest of Cerastium 
with good support, making it impossible to retain the two 
Cerastium species in Cerastium without including at least 
Moenchia. To amend these various violations of mono-
phyly there are at least two possible solutions:

(1) The first solution is to merge Cerastium, Holos­
teum, Moenchia and Stellaria (including Myosoton) in one 
large genus with c. 230 species. Which name among those 
with equal priority (i.e. Cerastium, Holosteum and Stel­
laria) is correct for this genus needs further investigation. 
This genus combines most species with deeply lobed pet-
als, but also some species with entire or emarginate petals.

(2) The second solution is to change generic circum-
scriptions and to describe new genera. On the basis of the 
phylogeny of Greenberg & Donoghue (2011), it is clear 
that Stellaria needs to be split into different genera. Stel­
laria retains only S. holostea and probably closely related 
species that were not included in the phylogeny of Green-
berg & Donoghue (2011). The largest number of Stellaria 
species have to be transferred to a new genus. This new 
genus contains all former German Stellaria species ex-
cept S. holostea. This genus is then sister to a clade con-
taining Cerastium, Holosteum and Moenchia. Moenchia 
can be retained unmodified and is sister to Cerastium. 
Cerastium contains all German species with four or more 
styles. The two species with three styles that are sister to 
Holosteum, i.e. C. cerastoides and C. dubium, are best 
included in Holosteum, which also has three styles, or 
those two species (and maybe other Cerastium species 
from other regions with three styles) should be treated 
as a new genus. Both solutions require a large number of 
taxonomic changes and a decision between them cannot 
be easily made. However, changes in the circumscription 
of the above genera are inevitable.

In Gypsophila L. and relatives of interest (i.e. Dian­
thus L., Petrorhagia (Ser.) Link and Vaccaria Wolf.) two 
issues need to be discussed. The first is the treatment of 
Vaccaria. Vaccaria is a monospecific genus containing 
only V. hispanica (Mill.) Rauschert. This species is native 
to Eurasia, especially the Mediterranean region, but has 
become naturalized in large parts of the world (S Africa, 
Australia and North and South America). The phylogeny 
of Greenberg & Donoghue (2011) unambiguously placed 
Vaccaria within Gypsophila. It differs from Gypsophila 
mainly by its calyx wings. The position in the phylogeny 
allows two alternative solutions.

(1) Vaccaria remains a monospecific genus that is sis-
ter to the largest part of Gypsophila. Therefore at least 

G. takhtadzhanii Schischk. ex Ikonn. has to be excluded 
from Gypsophila because it is sister to Vaccaria and the 
rest of Gypsophila.

(2) Vaccaria hispanica is included in Gypsophila as 
G. vaccaria (L.) Sm.

I prefer the second solution for different reasons. Vac­
caria is quite similar to Gypsophila and its inclusion in 
that genus will not require large changes in the circum-
scription of Gypsophila. The other point is that it is dif-
ficult to justify splitting Gypsophila into different gen-
era only to retain Vaccaria as an independent genus. As 
Greenberg & Donoghue (2011) included only few of the 
150 Gypsophila species in their phylogeny, I cannot fore-
see to what extent an independent Vaccaria would affect 
subdivision of Gypsophila.

The second issue concerns the paraphyly of Petrorhagia 
in relation to Dianthus, and the position of Gypsophila mu­
ralis L. and several other Gypsophila species from outside 
Germany as sister to Dianthus and Petrorhagia instead of 
being part of the rest of Gypsophila. Petrorhagia is a ge-
nus with 33 species distributed from the Canary Islands 
across the Mediterranean region to Kashmir (Mabberley 
2008). Although the phylogeny of Greenberg & Donoghue 
(2011) contains only three species of Petrorhagia, it unam-
biguously shows that the genus is paraphyletic. Two solu-
tions seem possible:

(1) Dianthus, Petrorhagia and Gypsophila muralis (and 
some more Gypsophila species from outside Germany) are 
included in a more broadly circumscribed Dianthus.

(2) Petrorhagia is split into at least two genera, and 
G. muralis is transferred into a new, probably monospe-
cific genus. Regarding the other Gypsophila species in 
this group from outside Germany, this solution would re-
quire establishing additional small to monospecific gen-
era for those Gypsophila species. Dianthus, Petrorhagia 
and the Gypsophila species of this clade show some 
morphological variation. It is difficult to decide whether 
this variation is sufficient to justify splitting Petrorhagia 
into different genera that can be distinguished from each 
other and from Dianthus and the small genera containing 
former Gypsophila species, or whether all species of this 
clade are sufficiently alike to be merged into one genus, 
i.e. Dianthus. Linnaeus (1753a) described the type of 
Petrorhagia, P. saxifraga (L.) Link, as D. saxifragus L., 
P. prolifera (L.) P. W. Ball & Heywood as D. prolifer L., 
but no name for G. muralis is available in Dianthus.

Minuartia L. (sensu McNeill 1962) comprises about 
175 species that are distributed in the N hemisphere. It 
was delimited from most other genera of Caryophyl­
laceae by a combination of three styles and three capsule 
valves. Molecular phylogenies revealed that the genus 
consists of ten independent lineages (Fior & al. 2006; 
Harbaugh & al. 2010; Greenberg & Donoghue 2011; 
Dillenberger & Kadereit 2014), each of which is closest 
relative of another genus or group of genera. According 
to Dillenberger & Kadereit (2014) the genus is best di-
vided into 11 genera instead of including other genera 

Downloaded From: https://complete.bioone.org/journals/Willdenowia on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



57Willdenowia 46 – 2016

in Minuartia. The ten lineages were divided into 11 gen-
era because in one case there was no morphological or 
karyological character or combination of characters to 
define this clade as one genus. Therefore two subclades 
with more uniform morphologies were described as gen-
era. Including other genera in Minuartia would have af-
fected most genera of subfam. Alsinoideae or subfam. 
Alsinoideae and subfam. Caryophylloideae. In conse-
quence, several species of Minuartia in the C European 
flora need to be treated as part of other genera. Minu­
artia species transferred to other genera are: Cherleria 
sedoides L. (M. sedoides (L.) Hiern), Facchinia cher­
lerioides (Sieber) Dillenb. & Kadereit (M. cherlerioides 
(Sieber) Bech.), present in the German flora only with 
F. cherlerioides subsp. aretioides (Port. ex J. Gay) Dil-
lenb. & Kadereit, F. rupestris (Scop.) Dillenb. & Kadereit 
(M. rupestris (Scop.) Schinz & Thell.), Sabulina austri­
aca (Jacq.) Rchb. (M. austriaca (Jacq.) Hayek), S. stricta 
(Sw.) Rchb. (M. stricta (Sw.) Hiern), S. tenuifolia (L.) 
Rchb. (M. hybrida (Vill.) Schischk.), S. verna (L.) Rchb. 
(M. verna (L.) Hiern) and S. viscosa (Schreb.) Rchb. (M. 
viscosa (Schreb.) Schinz & Thell.). The only two spe-
cies in Germany that remain in Minuartia are M. rubra 
(Scop.) McNeill and M. setacea (Thuill.) Hayek.

Silene L. contains c. 700 species that are restricted 
to the N hemisphere (Mabberley 2008). Although the 
genus is large, there exist only small problems with its 
monophyly. One point concerns Lychnis L., which con-
tains c. 20 species distributed in N-temperate and arctic 
regions (Bittrich 1993). Its treatment as separate from Si­
lene L. has repeatedly been regarded as doubtful (see Ox-
elman & Lidén 1995). Lychnis has usually five styles and 
five capsule teeth, whereas Silene has three or five styles 
and six or ten capsule teeth. Even the most recent phyl-
ogeny of the Caryophyllaceae could not unambiguously 
determine the position of Lychnis (Greenberg & Dono-
ghue 2011). In that study Silene seems to be paraphyletic 
in relation to Lychnis. However, this position is not well 
supported, and a change of position is possible. For the 
moment, the species of Lychnis in the German flora, i.e. 
L. coronaria (L.) Desr. and L. flos-cuculi L., should be 
maintained, but future inclusion in Silene, as S. coronaria 
(L.) Clairv. and S. flos-cuculi (L.) Clairv., seems likely.

The second problem is related to Cucubalus baccifer 
L. Although Silene is not sufficiently well supported, the 
position of C. baccifer seems to be clearly within Silene 
(Greenberg & Donoghue 2011). Therefore it seems advis-
able to treat this species as S. baccifera (L.) Roth.

Several problems hinge on the acceptance of Helio­
sperma Rchb. and other smaller genera. When accepting 
Heliosperma, several smaller genera need to be recog-
nized in order to keep Silene monophyletic. One of these 
genera is Atocion Adans. Based on a molecular phylog-
eny, Lidén & al. (2001) excluded five species, including 
S. armeria L. and S. rupestris L., from Silene and includ-
ed them in Atocion. These results were verified with a 
large sample of Silene and related genera by Greenberg 

& Donoghue (2011) and should have taxonomic con-
sequences. Atocion is sister to Viscaria Bernh. and the 
names for the two species are A. armeria (L.) Raf. and A. 
rupestre (L.) Oxelman. An inclusion of Atocion in Silene 
would also affect Eudianthe Rchb., Heliosperma and Vis­
caria and is therefore not desirable. Atocion is glabrous, 
has elliptic or oblanceolate leaves, a regular dichasium, 
and flowers with entire or emarginate petals and three 
stigmas (Lidén & al. 2001). Silene species with the same 
character combination of hairiness, inflorescence type 
and stigma number have lower leaves that are spathulate 
and petals that are usually lobed. Furthermore, these Si­
lene species have anastomosing calyx veins, but Atocion 
has non-anastomosing veins (Lidén & al. 2001).

Irrespective of the inclusion of Lychnis in Silene or its 
separate treatment, L. viscaria L. is not part of either of 
these two genera. The species clearly belongs to a well-
supported clade that is sister to Atocion (Greenberg & 
Donoghue 2011). The correct genus name for the species 
of this clade is Viscaria Bernh., and L. viscaria should be 
known as V. vulgaris Bernh. Viscaria vulgaris is the type 
of Viscaria.

Another problem is related to Silene pusilla Waldst. & 
Kit., which is nested in the well-supported Heliosperma 
(Rchb.) Rchb. The inclusion of S. pusilla in Heliosperma 
as H. pusillum (Waldst. & Kit.) Rchb. is justified and 
necessary.

Chenopodiaceae (G. Kadereit)
Chenopodium L. in its traditional wide circumscription, 
comprising c. 150 spp. worldwide, has been shown to be 
highly polyphyletic with Chenopodium lineages spread all 
over the phylogeny of subfam. Chenopodioideae (Kade-
reit & al. 2010; Fuentes-Bazán & al. 2012a, 2012b). Ac-
cording to Fuentes-Bazán & al. (2012a, 2012b), species 
of Chenopodium belong to six different genera: Blitum 
L., Chenopodiastrum S. Fuentes & al., Chenopodium L. 
s.str., Dysphania R. Br., Lipandra Moq. and Oxybasis Kar. 
& Kir. Although the sampling for the molecular analyses 
was far from complete, the polyphyly of Chenopodium 
seems well supported and future studies will reveal where 
unsampled species belong. Twenty of the 23 species of 
former Chenopodium occurring in the German flora were 
included in the molecular studies by Fuentes-Bazán & 
al. (2012a, 2012b), and these are distributed among all 
six genera. Blitum is represented by three species: B. 
bonus-henricus (L.) Rchb. (C. bonus-henricus L.), B. 
capitatum L. (C. capitatum (L.) Aschers.) and B. virga­
tum L. (C. foliosum Aschers.). Chenopodiastrum is rep-
resented by Chenopodiastrum hybridum (L.) S. Fuentes 
& al. (Chenopodium hybridum L.) and Chenopodiastrum 
murale (L.) S. Fuentes & al. (Chenopodium murale L.). 
Species with glandular hairs and an aromatic odour clear-
ly need to be classified in Dysphania, which is only dis-
tantly related to core Chenopodium. In the German flora 
these are D. ambrosioides (L.) Mosyakin & Clemants (C. 
ambrosioides L.), D. botrys (L.) Mosyakin & Clemants 
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(C. botrys L.), D. pumilio (R. Br.) Mosyakin & Clem
ants (C.  pumilio R. Br.) and D. schraderiana (Schult) 
Mosyakin & Clemants (C. schraderianum Schult). Lipan­
dra is represented by L. polysperma (L.) S. Fuentes & al. 
(C. polyspermum L.) and Oxybasis by O. chenopodioides 
(L.) S. Fuentes & al. (C. botryodes Sm.), O. glauca (L.) 
S. Fuentes & al. (C. glaucum L.), O. rubra (L.) S. Fuentes 
& al. (C. rubrum L.) and O. urbica (L.) S. Fuentes & al. 
(C. urbicum L.). Of the remaining species present in the 
German flora, Chenopodium album L., C. berlandieri 
Moq., C. ficifolium Sm., C. opulifolium Schrader ex Koch 
& Ziz, C. patericola Rydb. and C. vulvaria L. belong to 
Chenopodium s.str. Chenopodium hircinum Schrader, 
C. strictum Roth and C. suecicum Murr have not yet been 
included in molecular analyses. Chenopodium aristatum 
L. (Dysphania aristata (L.) Mosyakin & Clemants) is a 
neophyte in the German flora and should be treated as Te­
loxys aristata (L.) Moq. This monospecific genus is close-
ly related to Cycloloma Moq., Dysphania and Suckleya A. 
Gray (Kadereit & al. 2010; Fuentes-Bazán & al. 2012a).

Halimione Aellen is well-supported sister group of 
the large genus Atriplex L., from which it can be distin-
guished by unique seed and fruit characters (Kadereit & 
al. 2010). Inclusion of Halimione into Atriplex as pro-
posed in Sukhorukov (2006) is possible, but not recom-
mended by the present author (G. Kadereit).

Bassia All. and Kochia Roth were both found to be 
polyphyletic in molecular studies (Kadereit & Freitag 
2011; Kadereit & al. 2014). Most species of Kochia in-
cluding the two species present in Germany, K. laniflora 
(S. G. Gmelin) Borbás and K. scoparia (L.) Schrader, 
have been included in Bassia, and the remaining species 
were classified in two new genera, Eokochia Freitag & 
G. Kadereit and Grubovia Freitag & G. Kadereit. Other 
species of Bassia (B. dasyphylla Kuntze, B. hirsuta (L.) 
Kuntze and B. sedoides (Schrad.) Asch.) needed to be 
transferred to new genera (Grubovia dasyphylla (Fisch. 
& C. A. Mey.) Freitag & G. Kadereit, Spirobassia hir­
suta (L.) Freitag & G. Kadereit and Sedobassia sedoides 
(Schrad.) Freitag & G. Kadereit) in order to define mono-
phyletic genera in Camphorosmeae (Kadereit & Freitag 
2011). Of these new genera only Spirobassia (S. hirsuta) 
occurs in Germany.

Salsola L. is a large and highly polyphyletic genus 
(Akhani & al. 2007). Unfortunately there is disagree-
ment among experts concerning the typification of Sal­
sola. Mosyakin & al. (2014) proposed a conserved type, 
S. kali L., while Akhani & al. (2014) argued in favour of 
the current type, S. soda L. If S. soda is accepted as type 
of Salsola, S. kali has to be included in Kali Mill., as Kali 
soda Moench (Akhani & al. 2007).

Nyctaginaceae (J. W. Kadereit)
As shown by Levin (2000), Oxybaphus Willd. is clearly 
part of Mirabilis L. where it should have the rank of sec-
tion. Accordingly, O. nyctagineus (Michx.) Sweet should 
be treated as M. nyctaginea (Michx.) MacMill.

Hydrangeaceae (J. W. Kadereit)
Although Philadelphus L. appears to be paraphyletic in 
relation to the monospecific Carpenteria Torr. (Guo & 
al. 2013), classification of P. coronarius L. as a Philadel­
phus would not be affected as P. coronarius is the type of 
the genus name. Philadelphus inodorus L. falls into the 
same clade as P. coronarius.

Primulaceae (J. W. Kadereit)
Mast & al. (2001) demonstrated that Cortusa L. is deeply 
nested in Primula L. Accordingly, it should be treated as 
P. matthioli (L.) V. A. Richt.

As summarized by Manns & Anderberg (2009), sev-
eral studies using either nuclear, plastid or both nuclear 
and plastid sequences have shown that a non-mono-
phyletic Anagallis L. (incl. Centunculus L.), Glaux L. 
and Trientalis L. (as well as the non-C-European genera 
Asterolinon Hoffsgg. & Link and Pelletiera A. St. Hil.) 
are all nested in a highly paraphyletic Lysimachia L. 
Based on a careful consideration of morphological vari-
ation in this group of genera, and facing the choice be-
tween including all in Lysimachia or splitting Lysimachia 
in such a way that at least some of the above genera can 
be maintained, Manns & Anderberg (2009) argue: “It is, 
however, difficult to establish morphological characters 
to distinguish between different subgroups within Lysi­
machia and the morphological distinctiveness of these 
subgroups is not very high. Furthermore, the characters 
used to recognize Lysimachia are also present in Ana­
gallis and to large extent also in Asterolinon, Pelletiera 
and Trientalis. Consequently, proposal of new genera for 
some Lysimachia (e.g. L. nemorum L. and L. serpyllifo­
lia Schreb.), or transfer of L. nemorum and allied taxa 
to Anagallis would inevitably result in poorly diagnosed 
genera. Choosing among alternatives, we find it better 
to merge the smaller segregate genera with Lysimachia, 
rather than splitting Lysimachia further.” Through earlier 
work and the work by Banfi & al. (2005) and Manns & 
Anderberg (2009) combinations are available for C Eu-
ropean Anagallis (plus Centunculus), Glaux and Trientalis 
as species of Lysimachia. These would be L. arvensis (L.) 
U. Manns & Anderb. (Anagallis arvensis L.), L. europaea 
(L.) U. Manns & Anderb. (Trientalis europaea L.), L. foe­
mina (Mill.) U. Manns & Anderb. (A. foemina Mill.), L. 
maritima (L.) Galasso & al. (Glaux maritima L.) and L. 
tenella L. (A. tenella (L.) L.).

Ericaceae (M. D. Pirie)
Three genera have been recently re-delimited to make 
them monophyletic. The first is Kalmia L., which be-
comes monophyletic only after inclusion of Loiseleuria 
Desv. (Gillespie & Kron 2013). Accordingly, Loiseleu­
ria procumbens (L.) Desv. should be known as Kalmia 
procumbens (L.) Gift & al. ex Galasso & al.

The second is Rhododendron L., with c. 850 species, 
which should include Ledum L. based on morphological 
evidence by Kron & Judd (1990) and molecular evidence 

Downloaded From: https://complete.bioone.org/journals/Willdenowia on 01 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



59Willdenowia 46 – 2016

by, e.g., Goetsch & al. (2005). In Germany, the native L. 
palustre L. should be known as R. tomentosum Harmaja 
and the introduced L. groenlandicum Oeder as R. groen­
landicum (Oeder) Kron & Judd.

The third is Monotropa L., which is replaced by Hy­
popitys Hill. in Jäger (2011). Evidence from nuclear en-
coded markers suggests that the type of Monotropa, M. 
uniflora L., and that of Hypopitys, H. monotropa Crantz 
(M. hypopitys L.), are more closely related to other 
monotropoid genera than to each other (Bidartondo & 
Bruns 2001). Species delimitation within Hypopitys is 
controversial, but resolution of the precise number and 
delimitation of species (including H. hypophegea G. Don 
in Germany) across its broad geographic range seems un-
likely to further affect generic boundaries.

Problems in generic delimitation remain in Vac­
cinium L. A number of different genera are apparently 
nested between its c. 450 species, with no evidence to 
suggest that the type, V. uliginosum L., is closely re-
lated to any of the other species of the German flora, 
and clear indication that V. myrtillus L. is more closely 
related to species elsewhere (Powell & Kron 2002). As 
the specialists are apparently not in favour of expanding 
the circumscription of Vaccinium it is likely that name 
changes will yet be required, but the current phyloge-
netic hypothesis is insufficiently resolved and sampled to 
offer a solution.

Rubiaceae (F. Ehrendorfer)
Since more than 20 years ago, DNA-analytical phylo-
genetic studies on the critical tribe Rubieae (Rubiaceae) 
have become available (e.g. Ehrendorfer & al. 1994; 
Manen & al. 1994; Natali & al. 1995, 1996; Soza & 
Olmstead 2010a, 2010b; and particularly Ehrendorfer & 
Barfuss 2014: Fig. 1 & 2, with clades and their refer-
ence numbers). These studies have made it increasingly 
clear that the traditional genera Asperula L. and Galium 
L., both well represented in the flora of Germany (Jäger 
2005), are polyphyletic in their present circumscriptions. 
Monophyly was documented only for Cruciata Mill., 
Rubia L. and Sherardia L. In order to achieve mono-
phyly for Asperula and Galium, one would have to lump 
all these genera (and several others except Rubia) into a 
giant Galium s.latiss. with about 900 species worldwide 
and a very complex infrageneric classification.

If a more narrow generic concept for C European Ru­
bieae is preferred, Asperula would have to be restricted 
to its type, the annual A. arvensis L., and its perennial 
sister taxon A. taurina L. (clade V-B). The large A. sect. 
Cynanchicae (DC.) Boiss. (with A. cynanchica L. and 
A. neilreichii Beck), centred in the Mediterranean area, 
is more closely related to Sherardia (both in clade V-A) 
than to Asperula s.str. and might also deserve separate 
generic status. This also applies to A. tinctoria L., a mem-
ber of the traditional A. sect. Glabella Griseb. (clade V-C) 
with a disjunct Eurasian distribution. Also into clade V-C 
falls Galium sect. Aparinoides (Jord.) Gren., a subclade 

of limnic habitats with a worldwide distribution, typified 
by G. palustre L., a well-known element of the European 
flora. The morphological distinctness and deviating chro-
mosome base number x = 12 (otherwise mostly x = 11 in 
Rubieae) also suggest generic separation of this subclade.

It was no surprise to find two Galium species (G. 
boreale L. and G. rotundifolium L.) from G. sect. Platy­
galium (DC.) W. D. J. Koch in the same clade (V-D) as 
the generally recognized genera Cruciata and Valantia 
L.: they all are characterized by whorls of two leaves and 
only two additional leaf-like stipules. This and the rel-
evant DNA data could justify the transfer of G. boreale 
and G. rotundifolium to a separate genus, corresponding 
to G. sect. Platygalium s.latiss. (also including the former 
European genus Trichogalium Fourr., the American ge-
nus Relbunium (Endl.) Benth. & Hook. and probably also 
the monotypic Microphysa Schrenk from C Asia) with a 
worldwide distribution and up to 230 other, clearly re-
lated former Galium and Relbunium species centred in E 
Asia and the Americas.

The majority of the remaining C European Galium spe-
cies (24 in Germany; Jäger 2005) always have leaves and 
leaf-like stipules in whorls of more than four (and up to 
12). They are clearly verified as members of a worldwide 
“monophylum” that corresponds to clade VI and the ge-
nus Galium s.str. with about 350 predominantly Old World 
species. The relationships of its species in Germany cor-
respond quite well with the following more or less DNA-
supported taxonomic sections: G. sect. Aparine W. D. J. 
Koch (G. aparine L. and G. spurium L.), G. sect. Aspera 
(DC.) W. D. J. Koch, syn.: G. sect. Microgalium Griseb. 
(G. parisiense L.), G. sect. Galium (G. album Mill., G. 
aristatum L., G. glaucum L., G. intermedium Schultes [G. 
schultesii Vest], G. lucidum All., G. mollugo L., G. ×po­
meranicum Retz., G. sylvaticum L., G. truniacum (Ronn.) 
Ronn. and G. verum L.), G. sect. Hylaea (Griseb.) Ehrend. 
(G. odoratum (L.) Scop.), G. sect. Kolgyda Dumort. (G. 
tricornutum Dandy and G. verrucosum Huds.), G. sect. 
Leptogalium (G. anisophyllon Vill., G. megalospermum 
All., G. noricum Ehrend., G. pumilum Murray, G. saxatile 
L., G. sterneri Ehrend. and G. valdepilosum H. Braun) 
and G. sect. Trachygalium K. Schum. (G. uliginosum L.).

A more detailed presentation of our current knowl-
edge concerning relationships within tribe Rubieae in C 
Europe can be found in Kästner & Ehrendorfer (in press). 
Before one can begin to execute the possible and DNA-
supported taxonomic and nomenclatural changes within 
the Rubieae discussed above, further critical research ap-
pears obligatory.

Gentianaceae (J. W. Kadereit)
Several phylogenetic studies of Gentianaceae–Swerti­
inae (Chassot & al. 2001; von Hagen & Kadereit 2001, 
2002) have shown that generic circumscriptions in this 
group require substantial revision. Thus, it is evident that 
Gentianella ciliata (L.) Borkh. and G. tenella (Rottb.) 
Börner are only distantly related to Gentianella s.str., 
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and should be treated as Gentianopsis ciliata (L.) Ma 
and Comastoma tenellum (Rottb.) Toyok., respectively. 
Even after exclusion of these (and related) species, Gen­
tianella is polyphyletic, as is Swertia L. If this eventually 
should result in the recognition of several smaller genera, 
the generic identity of the remaining German species of 
Gentianella would remain unaffected as they fall into the 
same clade as the type of the genus name, G. campestris 
(L.) Börner. As S. perennis L. is the type of Swertia, rec-
ognition of segregate genera will not affect the generic 
identity of S. perennis. For descriptions and discussion 
of genera see Struwe & al. (2002). Inclusion of Coma­
stoma (Wettst.) Toyok. and Lomatogonium A. Braun in 
Gentianella, as suggested by Banfi & al. (2005), who in 
consequence provided a combination for L. carinthiacum 
(Wulfen) Rchb. in Gentianella, is not justified by the data 
available unless a much larger number of lineages, in-
cluding several lineages of Swertia, are included in Gen­
tianella.

Oleaceae (J. W. Kadereit)
As first suspected by Wallander & Albert (2000) on the 
basis of plastid sequences, a monophyletic Ligustrum 
L. was found deeply nested in a paraphyletic Syringa 
L. using nuclear sequences (Li & al. 2002). In conse-
quence, inclusion of Ligustrum in Syringa may have to 
be considered once stronger evidence for such relation-
ship is available. Interestingly, one species of Ligustrum, 
L. sempervirens (Franch.) Lingelsh., sometimes classified 
as a separate genus, is intermediate in fruit morphology 
between Syringa (capsules) and Ligustrum (berries or 
drupes) by having berries that become leathery and even-
tually dehisce.

Plantaginaceae (D. C. Albach)
A hundred years ago, Veronica L. included all Scrophu­
lariaceae with a tetramerous flower and short corolla 
tube, two stamens and a flattened capsule. In that circum-
scription the genus included approximately 300 species. 
Subsequent authors treated more and more groups of 
distinct species as separate genera, such as Hebe Juss. 
mainly from Australasia, Pseudolysimachion Opiz from 
Eurasia (V. longifolia L. and V. spicata L. in the German 
flora) and Veronicastrum Farw. from E Asia and E North 
America. The first DNA-based phylogenetic analyses 
(e.g. Albach & Chase 2001; Wagstaff & al. 2002; Albach 
& al. 2004a) supported the separation of some genera 
(Paederota L. and Veronicastrum), but demonstrated that 
most genera split off in the 19th and 20th centuries are 
nested in a lineage that should be recognized as a mono-
phyletic Veronica. These results caused a sometimes 
heated discussion on whether autapomorphies need to 
be considered as important as symplesiomorphies (e.g. 
Brummitt 2006). However, subsequent analyses added 
support to the molecular results and demonstrated that 
autapomorphies of these segregate genera are not as clear 
as sometimes believed, and that morphological transi-

tions between Veronica and groups considered distinc-
tive commonly exist. For example, such transitional spe-
cies between Pseudolysimachion and Veronica occur in E 
Asia and Japan (Albach 2008). Thus, based on molecular 
and morphological arguments, these analyses suggest in-
clusion of these genera in Veronica rather than further 
splitting (Albach & al. 2004b; Garnock-Jones 2007). In 
C Europe, reintegration of Australasian Hebe and rela-
tives and North American Synthyris Benth. will be of 
interest mainly to horticulturists, but reintegration of 
Pseudolysimachion, the species of Veronica with dense, 
spicate inflorescences, reverses a split adopted by many 
European Floras since the 1960s (Holub & Pouzar 1967). 
All European species of Pseudolysimachion were origi-
nally described as species of Veronica. Therefore, only 
taxonomic changes at the intraspecific level were neces-
sary (Albach 2008).

Lamiaceae (M. S. Dillenberger)
Ballota L. contains c. 30 species that occur in Europe, the 
Mediterranean area, W Asia and, with one species, S Af-
rica (Mabberley 2008). Several species of Ballota were 
included in a phylogenetic analysis of subfam. Lami­
oideae (Bendiksby & al. 2011b). This phylogeny unam-
biguously showed that Ballota is not monophyletic. The 
type of Ballota, B. nigra L. (the only species of the genus 
in Germany), is well-supported sister to Marrubium L., 
represented in the German flora by M. peregrinum L. and 
M. vulgare L. The other Ballota species are sister to this 
B. nigra–Marrubium clade. Only two other Ballota spe-
cies, B. frutescens (L.) Woods and B. integrifolia Benth., 
form a separate clade that is sister to the former clade and 
a clade containing species of Moluccella L., Otostegia 
Benth. and Sulaimania Hedge & Rech. f. There are two 
solutions to obtain a monophyletic Ballota. The first is to 
merge all species of this clade (i.e. Ballota, Marrubium, 
Moluccella, Otostegia and Sulaimania) in one genus. The 
second solution is to exclude B. frutescens and B. integri­
folia from Ballota and to combine the rest of Ballota in-
cluding B. nigra and Marrubium in one genus. In order 
to avoid creation of one very large and heterogeneous 
genus, it seems reasonable to take the second approach. 
Since both genera were described by Linnaeus (1753b), 
it remains unclear at this point which genus name should 
be used. Marrubium contains 40 species (Mabberley 
2008), so that a comparable number of new combinations 
would be needed when using either name.

The treatment and circumscription of Clinopodium L. 
is very different in different Floras of Germany (e.g. Jäger 
& Werner 2005; Jäger 2011; Seybold 2011). Clinopodi­
um in its broad circumscription, including Acinos Mill., 
Bancroftia Billb., Calamintha Mill., New World Micro­
meria Benth. and Satureja L. contains c.  100 species 
and is almost cosmopolitan (Mabberley 2008). Seybold 
(2011) included Acinos and Calamintha, but not Satureja, 
in Clinopodium, and Jäger & Werner (2005) treated Aci­
nos, Calamintha, Clinopodium and Satureja as separate 
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genera. A molecular phylogeny of subtribe Menthinae 
illustrates the whole dimension of the problem (Bräuch-
ler & al. 2010). In this phylogeny, Clinopodium is highly 
polyphyletic and numerous genera are nested among dif-
ferent Clinopodium clades. The species of Acinos form a 
well-supported clade together with Ziziphora L., a genus 
of c. 20 species distributed from the Mediterranean area 
to C Asia, Afghanistan and Himalaya (Mabberley 2008). 
In this clade, Acinos and Ziziphora are not supported as 
monophyletic. Calamintha species are in a well-support-
ed clade with the type and other species of Clinopodium. 
Another genus that causes problems with respect to the 
monophyly of Clinopodium is Monarda L., a small ge-
nus of c. 16 mostly North American species (Mabberley 
2008) occurring in Germany with one introduced spe-
cies, M. didyma L. (Jäger & Werner 2005). The large 
number of genera, species and clades makes several solu-
tions possible. For the German species only two solutions 
need to be discussed. The first is to include all species of 
Acinos, Calamintha, Clinopodium and Monarda in one 
genus, together with the whole or parts of Acanthomintha 
(A. Gray) A. Gray, Blephilia Raf., Bystropogon L’Hér., 
Conradina A. Gray, Cuminia Colla, Cunila D. Royen ex 
L., Cyclotrichium Mandenova & Schengelia, Dicerandra 
Benth., Glechon Spreng., Hedeoma Pers., Hesperozygis 
Epling, Hoehnea Epling, Killickia Bräuchler & al., Men­
tha L., New World Micromeria Benth., Minthostachys 
(Benth.) Spach, Monardella Benth., Obtegomeria Doro
szenko & P. D. Cantino, Piloblephis Raf., Poliomintha 
A. Gray, Pycnanthemum Michx., Rhododon Epling, 
Stachydeoma (Benth.) Small and Ziziphora. Alternative-
ly, Clinopodium can be split into clades which could be 
treated as morphologically recognizable genera. In view 
of substantial morphological variation of the lineages 
concerned it is not meaningful to merge so many genera 
only to prevent Clinopodium from being split. Although 
it is not clear how exactly Clinopodium will be split in 
the future, the impact of this approach on German species 
can easily be seen. Since Calamintha is very closely re-
lated to the type of Clinopodium, and this relationship is 
well supported, there is no other solution than to transfer 
Calamintha to Clinopodium. The Calamintha species in 
Germany, C. menthifolia Host and C. nepeta (L.) Savi, 
will have to become known as Clinopodium menthifolium 
(Host) Stace and Clinopodium nepeta (L.) Kuntze. No 
species name in Clinopodium is available for the hybrid 
taxon Calamintha ×foliosa Opiz; at subspecies level Cli­
nopodium nepeta nothosubsp. subisidoratum (Borbás) 
Govaerts has been used. It is not possible to treat the 
species of Acinos as part of Clinopodium without includ-
ing in Clinopodium all genera listed above. Although 
the relationships between Acinos and Ziziphora are not 
fully resolved, it seems necessary to combine these two 
genera in one genus. Ziziphora has priority over Acinos, 
and the species of Acinos accordingly need new names in 
Ziziphora. These are not yet available. The only German 
Clinopodium species, C. vulgare L., is the type of the ge-

nus name and will therefore most likely not be affected 
by any changes of generic circumscriptions. The only 
genus of this group that seems to be unproblematic is Sa­
tureja. This genus, together with Gontscharovia Boriss., 
is part of a polytomy with the Clinopodium-clade (the 
numerous genera listed above) and a clade of Old World 
Micromeria (Bräuchler & al. 2010). Even if Satureja is 
paraphyletic in relation to Gontscharovia, Satureja has 
priority over Gontscharovia and no taxonomic changes 
will be necessary in the German flora.

A long-discussed problem is the correct placement 
and naming of species belonging to Galeobdolon Adans. / 
Lamiastrum Heist. ex Fabr. (Dandy 1967; Holub 1970; 
Rauschert 1974; Mennema 1989; Krawczyk & al. 2013). 
Choice of genus name is a nomenclatural problem, which 
will not be dicussed here. In recent Floras of or cover-
ing Germany, either both names were used: Galeobdolon 
(Jäger & Werner 2005; Jäger 2011) and Lamiastrum (Hey-
wood & Richardson 1972; Seybold 2009), or the species 
of Galeobdolon / Lamiastrum were included in Lamium 
L. (Seybold 2011). Molecular phylogenies of subfam. 
Lamioideae (Bendiksby & al. 2011b) and of Lamium 
(including species of Galeobdolon  / Lamiastrum; Ben
diksby & al. 2011a) clearly showed that a well-supported 
clade of species of Galeobdolon  / Lamiastrum is sister 
to a well-supported Lamium. Accordingly, both inclusion 
of Galeodolon / Lamiastrum in Lamium and treatment as 
two distinct genera would result in monophyletic gen-
era. When included in Lamium, G. argentatum Smejkal, 
G. flavidum (F. Herm.) Holub, G. luteum Huds. and G. 
montanum (Pers.) Pers. ex Rchb. should be L. argentatum 
(Smejkal) Henker ex G. H. Loos, L. flavidum F. Herm., L. 
galeobdolon (L.) L. and L. montanum (Pers.) Hoffm. ex 
Kabath, respectively. The treatment of these four taxa at 
species level has been questioned. When treated as sub-
species of Lamium galeobdolon (e.g. by Bendiksby & al. 
2011a), the names to be used would be L. galeobdolon 
subsp. argentatum (Smejkal) J. Duvign., L. galeobdolon 
subsp. flavidum (F. Herm.) Á. Löve & D. Löve, L. gale­
obdolon subsp. galeobdolon and L. galeobdolon subsp. 
montanum (Pers.) Hayek, respectively.

Majorana Mill. and Origanum L. are two genera con-
taining commonly used spices. Origanum is distributed 
in Eurasia and contains c. 38 species (Mabberley 2008). 
Majorana hortensis Moench was first described as O. 
majorana L. A phylogenetic analysis by Katsiotis & al. 
(2009) showed that M. hortensis is nested among other 
species of Origanum, so that recognition of M. hortensis 
would make Origanum paraphyletic. Therefore the inclu-
sion of M. hortensis in Origanum, as O. majorana, is ap-
propriate.

Salvia L. in its traditional circumscription is a large 
genus of 800 – 900 tropical to temperate species (Mab-
berley 2008). Recent molecular studies in the genus 
clearly showed that Salvia is highly polyphyletic (Walker 
& Sytsma 2007; Will & Claßen-Bockhoff 2014) and will 
have to be split into several genera (Will & Claßen-Bock-
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hoff 2014; M. Will pers. comm.). The only alternative 
would be to include several smaller genera in Salvia, e.g. 
Rosmarinus L., which would inflate this large genus even 
more. The German flora is largely unaffected by these 
changes. According to the different phylogenies available, 
only one species of the German flora, S. glutinosa L., will 
have to be transferred to a new genus.

Stachys L. is a large genus of c. 450 species distribut-
ed in temperate and warm regions of the world, including 
tropical mountains but excluding Australasia (Mabberley 
2008). Molecular phylogenies have shown that Stachys 
is highly polyphyletic, with many different genera nested 
among different Stachys clades (Bendiksby & al. 2011b; 
Salmaki & al. 2013). In Germany eight species and one 
hybrid taxon of Stachys can be found. These fall into four 
larger Stachys clades (Salmaki & al. 2013). Only S. ar­
vensis L. and S. palustris L. fall into the clade containing 
the type of Stachys, S. sylvatica L. This clade also con-
tains Haplostachys Hillebr., Phyllostegia Benth., Steno­
gyne Benth. and Suzukia Kudô. Sideritis L. is one of those 
genera nested among different Stachys clades (Bendiksby 
& al. 2011b; Salmaki & al. 2013). This genus of c. 140 
N-temperate species of the Old World and Macaronesia 
(Mabberley 2008) occurs in Germany with only one 
species, S. montana L. Relationships among the genera 
listed above and several others are complicated and not 
fully resolved. At this point two solutions seem possible. 
One is to include all species of a clade called Eurystachys 
Salmaki & Bendiksby (including Stachys and Sideritis; 
Salmaki & al. 2013) in one genus. The other is to split 
Stachys into a large number of smaller genera. Both so-
lutions are problematic. The first would result in a large 
genus that is morphologically heterogeneous and, accord-
ing to Salmaki & al. (2013), c.  194 new combinations 
would have to be made. The second solution would allow 
maintaining morphologically distinct genera. However, it 
would require dividing Stachys into several genera that 
would be difficult to delimit (Salmaki & al. 2013). In this 
second approach a similarly high number of combinations 
would be necessary. The first solution would allow keep-
ing all German species of Stachys in Stachys, which, how-
ever, would also have to include Sideritis. In the second 
solution, Stachys alpina L., S. annua L., S. byzantina K. 
Koch, S. germanica L. and S. recta L. most likely would 
need to be excluded from Stachys. The relationships of 
Sideritis are unresolved. It therefore remains unclear 
whether Sideritis montana would need a new name when 
opting for the second solution. A further difficulty of the 
second solution is a high level of incongruence between 
the nuclear and plastid data sets analysed (Salmaki & al. 
2013). Future changes in this group are clearly neces-
sary. They will affect large numbers of species on a global 
scale, but only few species of the German flora.

Orobanchaceae (D. C. Albach)
There has been some debate about the monophyly of 
Orobanche L., and some publications re-used the name 

Phelipanche Pomel, introduced for some morphologi-
cally deviant species more commonly treated as O. sect. 
Trionychon Wallr. (in Germany O. arenaria Borkh., O. 
purpurea Jacq. and O. ramosa L.; see lead 1 in the key 
to Orobanche in Jäger 2011). The group differs from the 
type section not only in flower morphology but also in 
seed ultrastructure (Plaza & al. 2004) and pollen morphol-
ogy (Abu Sbaih & al. 1994). Whereas first cpDNA-based 
phylogenetic analyses suggested O. ramosa to be nested 
in the rest of Orobanche (Young & al. 1999; Manen & 
al. 2004), subsequent analyses using ITS (Schneeweiss & 
al. 2004) revealed a biphyletic Orobanche with O. sect. 
Trionychon and New World species of the genus form-
ing a clade and O. sect. Orobanche sister to Diphelypaea 
Nicolson. More detailed analyses of cpDNA sequences 
demonstrated that the nested position of O. sect. Triony­
chon is due to horizontal gene transfer (Park & al. 2007). 
However, analyses of another nuclear marker (PhyA; 
Bennett & Mathews 2006) as well as cpDNA analyses 
removing introgressed sequences (Park & al. 2008) agree 
on phylogenetic relationships with Orobanche being 
monophyletic and O. sect. Trionychon and New World 
species being sister to O. sect. Orobanche. Thus, no taxo-
nomic changes will be necessary.

Linderniaceae (D. C. Albach)
Only two species of Linderniaceae occur in Germany 
and are commonly still recognized under Lindernia L., 
one being the type of the genus name, L. procumbens 
(Krock.) Borbás. Lindernia dubia (L.) Pennell, though, 
has been demonstrated to be more closely related to 
Micranthemum Michx. than to Lindernia (Fischer & al. 
2013). However, no generic realignment has been pro-
posed so far. Lindernia dubia had been recognized as 
separate from Lindernia before under the names Gratiola 
dubia L. or Ilysanthes riparia Raf., but was included in 
Lindernia by Pennell (1935). Ilysanthes Raf. had been 
separated from Lindernia based on the reduction of the 
androecium to two stamens, which Pennell (1935) did 
not consider stable enough to merit generic rank. Fischer 
& al. (2013) seemed to favour inclusion of Micranthe­
mum in Lindernia. However, since Micranthemum also 
has only two stamens and occurs sympatrically with L. 
dubia in North America, combining L. dubia in Micran­
themum remains a possibility.

Convolvulaceae (J. W. Kadereit)
A monophyletic Calystegia R. Br. is clearly nested within 
Convolvulus L. (Stefanović & al. 2002; Carine & al. 2004; 
Williams & al. 2014) and should be classified in Convol­
vulus following Stefanović & al. (2002). Combinations 
are available for most German species of Calystegia, and 
C. pulchra Brummitt & Heywood should be Convolvulus 
dubius J. L. Gilbert, C. sepium (L.) R. Br. should be Con­
volvulus sepium L., C. silvatica (Kit.) Griseb. should be 
Convolvulus silvaticus Kit. and C. soldanella (L.) Roem. 
& Schult. should be Convolvulus soldanella L.
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Solanaceae (J. W. Kadereit)
Lycopersicon Mill. is clearly nested in Solanum L. (Spoon-
er & al. 1993) and should be treated in that genus. Accord-
ingly, the tomato should be called S. lycopersicum L.

Whitson & Manos (2005) demonstrated that the two 
species of Physalis L. listed for Germany, P. alkekengi 
L. and P. peruviana L., fall into two distantly related 
clades of Physalinae. The authors argued: “To correct 
the paraphyly of Physalis, nomenclatural changes are re-
quired. Options include restricting the name Physalis to 
P. alkekengi, the type, and renaming the 75+ species of 
New World Physalis, or broadening the circumscription 
of Physalis by uniting the majority of the Physalinae into 
a single genus. However, the least taxonomically disrup-
tive approach for dealing with this problem is to re-typify 
Physalis using a Linnaean species that is a member of the 
morphologically typical Rydbergis clade, such as P. pu­
bescens. The atypical species could then be recognized as 
four small genera (for P. carpenteri, P. alkekengi, P. mi­
crophysa, and subgenus Physalodendron), which would 
produce a morphologically homogeneous Physalis. A 
proposal to re-typify Physalis is currently in progress.” 
This proposal has been made by Whitson (2011), and con-
servation of Physalis L. with conserved type has been rec-
ommended (Applequist 2012). If accepted, P. alkekengi 
should be known as Alkekengi officinarum Moench.

Boraginaceae (M. Weigend)
Generic limits in the large family Boraginaceae (1500 – 
1600 spp.) are highly problematic and numerous re-align-
ments of generic limits are required, but few of these prob-
lems concern the German flora. The genus Omphalodes 
Moench is represented only by two species in Germany: 
O. scorpioides (Haenke) Schrank and O. verna Moench. 
Omphalodes scorpioides has been shown to be more 
closely related to Mertensia Roth than to the typical rep-
resentatives of Omphalodes (Weigend & al. 2013), and is 
now accommodated in the monospecific genus Memore­
mea A. Otero & al. as Memoremea scorpioides (Haenke) 
A. Otero & al. (Otero & al. 2014). This is clearly sup-
ported by molecular data, but also by gross differences 
in habit and its aberrant fruit morphology (circular wing 
of the nutlet forming a hollow ring, not a flat appendage). 
Omphalodes in the narrowest sense is restricted to those 
perennial, rhizomatous herbs which are closely related to 
O. verna, the type of the genus name. This group ranges 
from N Spain to N Iran. Other groups from Asia and the 
Americas previously assigned to Omphalodes either have 
already been segregated from the genus (Otero & al. 2014) 
or will likely be removed to other genera.

The genus Buglossoides Moench is also represented 
by only two species in Germany. Buglossoides arvensis 
(L.) I. M. Johnst., an annual weed with tiny white flow-
ers and four triangular-ovate, verrucose nutlets and B. 
purpurocaerulea (L.) I. M. Johnst., a perennial herb with 
large, blue, hypocrateriform flowers and single, smooth, 
spherical nutlets. They represent the C European repre-

sentatives of two highly natural and monophyletic spe-
cies groups, which are retrieved as sister groups in mo-
lecular studies (Weigend & al. 2009; Cecchi & al. 2014). 
These species groups have recently been segregated into 
two different, easily distinguished genera (Cecchi & al. 
2014): Buglossoides s.str., essentially comprising the two 
species B. arvensis and B. incrassata and largely restrict-
ed to the circum-Mediterranean region and Europe (and 
introduced as weeds elsewhere), and Aegonychon Gray 
with a total of three species, one narrow S Italian endemic 
and the widespread A. purpurocaeruleum (L.) Holub. in 
W Eurasia as sister to the morphologically barely distin-
guishable Japanese endemic A. zollingeri (A. DC.) Holub 
(Cecchi & al. 2014). The clear morphological differences 
between these two groups justify their separation into 
two well-defined genera, but phylogenetic data would 
equally permit a broader delimitation of Buglossoides, 
including Aegonychon.

The genera Eritrichium Schrad. ex Gaudin, Hackelia 
Opiz and Lappula Moench have a confused taxonomic 
history, but Hackelia was finally segregated from Lap­
pula by Johnston (1923). The only C European species 
of Hackelia and Lappula and the types of those names, 
H. deflexa (Wahlenb.) Opiz and L. squarrosa (Retz.) 
Dumort., have recently often been treated as belonging 
to a single genus, i.e. Lappula. Recent molecular stud-
ies retrieved these two species in widely separate clades 
in tribe Eritrichieae, together with the bulk of the spe-
cies currently assigned to the respective genera. There 
is therefore both morphological (Johnston 1923) and 
molecular (Weigend & al. 2013) evidence supporting 
the recognition of the two genera. The exact limits be-
tween Eritrichium and Hackelia and Lappula still require 
additional work, with several extra-European segregate 
genera apparently nested in them, and some species in-
correctly placed. This, however, does not concern the 
German or European flora.

The delimitation of Anchusa L., characterized by radi-
ally symmetrical flowers, from Lycopsis L. with curved, 
slightly zygomorphic flowers, has been contentious in 
the past. Morphological differences are small but strik-
ing, and the segregate Lycopsis is currently not generally 
recognized. Hilger & al. (2004) advocated the subdivi-
sion of Anchusa into several smaller genera, including 
the separation of Lycopsis. However, their molecular data 
failed to retrieve the two species of Lycopsis as mono-
phyletic, and there was no statistical support for Anchusa 
excluding Lycopsis. Generic limits in Anchusa s.l. clearly 
require more work, and it seems more sensible at this 
stage to recognize a single, more widely defined genus 
Anchusa until much better data are available.

Two other genera represented in Germany will likely 
be subject to re-definition in the near future, without af-
fecting the taxonomy of German species: Both species 
of Cynoglossum L. were retrieved in the core-clade of 
Cynoglossum s.l. (Weigend & al. 2013) and certainly will 
remain part of a redefined Cynoglossum. However, Cy­
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noglossum likely will have to include a whole range of W 
Eurasian segregate genera (Hilger & al. 2015). Similarly, 
Heliotropium europaeum L. is the type of Heliotropium 
L. and therefore will not be affected by name change, 
irrespective of how the limits of Heliotropium, with the 
large genus Tournefortia L. deeply nested in it (Luebert 
& al. 2011), will ultimately be redefined.

Apiaceae (K. Spalik)
Hacquetia DC. is nested within Sanicula L. (Valiejo-
Roman & al. 2002; Calviño & Downie 2007) and should 
therefore be sunk into synonymy; for its only species, H. 
epipactis (Scop.) DC., the name S. epipactis (Scop.) E. 
H. L. Krause is available.

Apium L. s.l. is polyphyletic and among its European 
species only the type, A. graveolens L., is retained in the 
genus; the other true celeries are distributed throughout 
the S hemisphere (Spalik & al. 2010). For its other Eu-
ropean members, the genus Helosciadium W. D. J. Koch 
has been reinstated (Hardway & al. 2004; Spalik & al. 
2009; Ronse & al. 2010) including H. inundatum (L.) W. 
D. J. Koch (A. inundatum (L.) Rchb. f.), H. nodiflorum 
(L.) W. D. J. Koch (A. nodiflorum (L.) Lag.) and H. re­
pens (Jacq.) W. D. J. Koch (A. repens (Jacq.) Lag.). The 
species of Helosciadium are hydrophytes or helophytes 
and are closely related to the morphologically and eco-
logically similar Berula W. D. J. Koch and Sium L., 
members of tribe Oenantheae (Spalik & al. 2014).

Carum L., the type of Careae, includes c. 30 species 
that in molecular analyses are located in several disparate 
clades interspersed with species of Chamaesciadium C. A. 
Mey., Fuernrohria K. Koch and Grammosciadium DC., 
with only few species closely related to the type of Carum, 
C. carvi L. (Zakharova & al. 2012). Carum verticillatum 
(L.) W. D. J. Koch is a very distant relative of its nomina-
tive congeners and, therefore, was placed in the reinstated 
monospecific genus Trocdaris Raf.; its proper name is T. 
verticillata (L.) Raf. (Zakharova & al. 2012). This species 
forms an isolated lineage in a clade of hydrophytic umbel-
lifers constituting tribe Oenantheae (Spalik & al. 2014).

The genera Angelica L., Cnidium Cusson, Libanotis 
Haller ex Zinn, Peucedanum L., Selinum L., Seseli L. 
and Trinia Hoffm. are part of the taxonomically difficult 
tribe Selineae (Spalik & al. 2004; Downie & al. 2010). 
Many of its genera are polyphyletic while at the same 
time many monophyletic lineages have unnecessarily 
been split into small segregates. Numerous species have 
not yet been included in molecular phylogenetic studies, 
and the generic boundaries remain unclear. Phylogenetic 
relationships within this tribe were mostly examined us-
ing only nuclear ITS sequences that have some limita-
tions. Moreover, the tribe originated relatively recently, 
c. 12 Mya, and underwent rapid radiation (Banasiak & 
al. 2013: Appendix S2). In effect, internal branches of 
the phylogenetic trees obtained from molecular data are 
short and often poorly supported, precluding unambigu-
ous taxonomic inferences.

Seseli sensu amplo encompasses 100 – 120 species 
and is obviously polyphyletic: its species occur in tribes 
Apieae, Pimpinelleae and Selineae (Downie & al. 2010), 
and in Selineae they are placed in several clades (Spa-
lik & al. 2004). Seseli hippomarathrum Jacq. together 
with three other congeners forms a clade that is not most 
closely related to S. tortuosum L., the type of the genus 
name; for this group, a restitution of Hippomarathrum G. 
Gaertn. & al. has been considered (Spalik & al. 2004). 
Depending on taxonomic sampling and the method of 
phylogenetic inference, this clade was placed sister to the 
Seseli clade (Spalik & al. 2004) or sister to Peucedanum 
s.l. (see Appendix S2 in Banasiak & al. 2013). Detailed 
molecular and morphological studies are necessary to 
elucidate the taxonomic status of this group. Upon res-
titution of Hippomarathrum the name H. pelviforme G. 
Gaertn. & al. would be available for S. hippomarathrum. 
Seseli annuum L. has not yet been included in molecu-
lar analyses; therefore, its phylogenetic affinities remain 
unknown.

Libanotis pyrenaica (L.) Bourgeau is closely related 
to L. montana Crantz, the type of Libanotis, and in Flo­
ra iberica (Aedo & Vargas 2003) the former was syno-
nymized with the latter. In molecular analyses, the clade 
containing these two species is sister to a clade contain-
ing the type of Seseli (Spalik & al. 2004; Banasiak & 
al. 2013). If a broad definition of Seseli is adopted, e.g. 
based on the Seseli clade in Spalik & al. (2004), then Li­
banotis should be sunk into Seseli and the species is to be 
named S. libanotis (L.) W. D. J. Koch.

Ligusticum mutellinoides (Crantz) Vill. (Pachypleu­
rum mutellinoides (Crantz) Holub) is also closely related 
to the Libanotis–Seseli clade in tribe Selineae, whereas 
the types of Ligusticum L. and Pachypleurum Ledeb. are 
placed in the Acronema clade, which deserves rank as a 
separate tribe (Downie & al. 2010; Banasiak & al. 2013). 
Depending on the delineation of Libanotis and Seseli, 
Ligusticum mutellinoides may be included in either of 
these two genera. Alternatively, Neogaya Meisn. may be 
reinstated. Its type is N. simplex (L.) Meisn., a taxonomic 
synonym of L. mutellinoides. In molecular phylogenetic 
trees, Ligusticum mutellina (L.) Crantz is placed in the 
Conioselinum chinense clade far from the type of Ligu­
sticum and, therefore, should be excluded from the genus 
and placed in the reinstated Mutellina Wolf, as M. pur­
purea (Poir.) Reduron & al. (Valiejo-Roman & al. 2006).

Cnidium dubium (Schkuhr) Schmeil & Fitschen is not 
most closely related to the type of Cnidium, C. monnieri 
(L.) Spreng., and should therefore be recognized as Ka­
denia dubia (Schkuhr) Lavrova & V. N. Tikhom. (Valie-
jo-Roman & al. 2006).

Trinia is exceptional in Apiaceae due to its dioecious 
breeding system, and this feature seems to be synapo-
morphic for the genus. So far, only T. hispida Hoffm. has 
been included in molecular phylogenetic analyses and it 
was placed in the Seseli clade very close to the type of 
Seseli (Spalik & al. 2004). If this placement is confirmed 
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upon extended sampling of species and molecular mark-
ers, then either Trinia is to be included into the synonymy 
of Seseli or the latter is to be restricted to a clade of only 
a few closest relatives of its type.

Peucedanum sensu amplo includes c. 100 – 120 species 
worldwide and is a “dustbin” genus encompassing taxa 
that do not fit elsewhere. The European species have often 
been transferred to small segregate genera including Cer­
varia Wolf, Dichoropetalum Fenzl (= Holandrea Reduron 
& al.), Imperatoria L., Oreoselinum Mill., Thysselinum 
Adans. and Xanthoselinum Schur. Of these, however, 
only Cervaria and Dichoropetalum are unambiguously 
supported by molecular data because their types are dis-
tant relatives of Peucedanum officinale L., the type of the 
genus name. The remaining segregates form the Peuceda­
num s.l. clade that can be retained as one genus (Spalik & 
al. 2004). Therefore, the use of the names Dichoropetalum 
carvifolia (Vill.) Pimenov & Kljuykov (P. carvifolia Vill.) 
and Cervaria rivini Gaertn. (P. cervaria (L.) Lapeyr.) is 
advocated. If a very narrow definition of Peucedanum is 
adopted, the names Imperatoria ostruthium L. (P. ostru­
thium (L.) W. D. J. Koch), Oreoselinum nigrum Delarbre 
(P. oreoselinum (L.) Moench), Thysselinum palustre (L.) 
Hoffm. (P. palustre (L.) Moench) and Xanthoselinum al­
saticum (L.) Schur (P. alsaticum L.) are available for the 
respective species of Peucedanum.

Molecular data have demonstrated that Laserpi­
tium L. is polyphyletic (Weitzel & al. 2014; Lyskov & 
al. 2015), and this polyphyly is strongly supported by 
nrDNA and cpDNA markers (Banasiak & al. in press). 
Six closely related species including the type, L. gal­
licum L., as well as L. latifolium L. constitute Laserpi­
tium s.str. Laserpitium siler L. forms an isolated lineage 
that is not closely related to the type and, therefore, the 
restitution of the monospecific Siler Crantz has been 
postulated; the respective name for L. siler is S. monta­
num Crantz. Laserpitium prutenicum L. is more closely 
related to Daucus L. than to Laserpitium s.str. and, to-
gether with its closest relative, L. hispidum M. Bieb., 
it deserves to be placed in a new genus, Silphiodaucus 
(Koso-Pol.) Spalik & al. (Banasiak & al. in press). The 
respective name for L. prutenicum would be S. pruteni­
cus (L.) Spalik & al.

Dipsacaceae (J. W. Kadereit)
Virga Hill. with V. pilosa (L.) Hill and V. strigosa (Roem. 
& Schult.) Holub clearly groups in Dipsacus L. (Avino 
& al. 2009; Carlson & al. 2009) and these two species 
should be known as Dipsacus pilosus L. and D. strigosus 
Roem. & Schult., respectively.

Valerianaceae (J. W. Kadereit)
Neither Valerianella Mill. nor Valeriana L. are mono-
phyletic according to Hidalgo & al. (2004) and Bell & 
Donoghue (2005). However, inclusion of Fedia Gaertn. 
emend. Moench in Valerianella, and both inclusion of 
Plectritis (Lindl.) DC. in Valeriana and exclusion of 

some species of Valeriana could make the two genera 
monophyletic.

Campanulaceae (N. Kilian)
The two German species of Lobelia L., L. dortmanna L. 
and L. erinus L., fall into two different clades of a highly 
paraphyletic Lobelia (Antonelli 2008). If this should re-
sult in splitting of Lobelia, an approach considered pre-
mature by Lammers (2011), L. erinus would belong to a 
different genus.

Wahlenbergia Roth has been shown to be polyphylet-
ic (Haberle & al. 2009; Roquet & al. 2009; Prebble & 
al. 2012; Cupido & al. 2013). Wahlenbergia hederacea 
(L.) Rchb., the only species present in Germany, is not 
only misplaced in Wahlenbergia (typified by W. elongata 
(Willd.) Schrad., a synonym of the S African W. capensis 
(L.) A. DC.; Lammers 2007) but also in the otherwise 
monophyletic wahlenbergioid group of genera (Cupido 
& al. 2013). It appears instead to be a close relative of 
Feeria Buser and Jasione L. (Prebble & al. 2012; Cupido 
& al. 2013; Crowl & al. 2014; but not so in Mansion & al. 
2012), but its systematic position still needs clarification.

A number of molecular phylogenetic studies of Cam­
panulaceae (Eddie & al. 2003; Park & al. 2006; Roquet 
& al. 2008, 2009; Borsch & al. 2009; Haberle & al. 2009; 
Mansion & al. 2012; Crowl & al. 2014) have shown that 
Campanula L. in its present circumscription is not mono-
phyletic, and that the species of this genus fall into at 
least four major clades, each containing other genera of 
the family. Referring, with a view on the German flora, to 
the analysis based on the most comprehensive sampling 
by Mansion & al. (2012), which also provides the best 
resolution so far, the three largest major clades are rele-
vant. These are: (1) the Campanula s.str. clade (Park & al. 
2006; Roquet & al. 2008, 2009; Borsch & al. 2009; Man-
sion & al. 2012), including the type of the genus name, 
C. latifolia L., and comprising clades 13 – 17 in Mansion 
& al. (2012), contains the majority of the Campanula spe-
cies in Germany (C. alliariifolia Willd., C. alpina Jacq., 
C. barbata L., C. bononiensis L., C. cervicaria L., C. glo­
merata L., C. latifolia, C. medium L., C. rapunculoides 
L., C. sibirica L., C. thyrsoides L. and C. trachelium L., 
all nested in clade 17). The Campanula s.str. clade also 
includes the species of the S European Trachelium L., but 
the different analyses demonstrate that this genus does 
not constitute a natural group but is found dismembered 
in clades 13 and 16 in Mansion & al. (2012). (2) The 
Rapunculus clade (clades 5 – 12 in Mansion & al. 2012) 
includes all but one of the remaining species in Germany 
(C. baumgartenii Becker, C. cochleariifolia Lam., C. 
rhomboidalis L., C. rotundifolia L. [incl. C. gentilis Ko-
vanda] and C. scheuchzeri Vill. in clade 12; C. patula L. 
and C. rapunculus L. in clade 9) and also contains (in 
clade 6) the genera Adenophora Fisch. and Hanabusaya 
Nakai. (3) The third major clade, which has low support, 
comprises the well-supported clades 2 – 4 in Mansion & 
al. (2012), in which several Campanula lineages (among 
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them the last German member C. persicifolia L. in clade 
3) are mixed with Asyneuma Griseb. & Schenk, Legousia 
Durande and Phyteuma L. as well as with the American 
genera Githopsis Nutt., Heterocodon Nutt. and Triodanis 
Raf. Faced with different classificatory options, i.e. (1) 
treating all clades containing species of Campanula as 
one genus, (2) limiting Campanula to the Campanula 
s.str. clade, and (3) splitting Campanula into numerous 
small genera, an option briefly discussed by Park & al. 
(2006), Roquet & al. (2008) concluded: “We favor the 
first option in order to arrive at a generic delimitation that 
reflects the evolutionary history of Campanula. This ap-
proach is more consistent with previous taxonomic work, 
Campanula has always been very rich in number of spe-
cies, and it does not seem to us reasonable to divide it 
ad nauseam. … However, a comprehensive study of the 
currently recognized genera that fall within Campanula 
should be conducted before changing their taxonomic 
status.” If this approach would be taken, all species of 
Adenophora, Legousia and Phyteuma would have to be 
treated as Campanula.

Menyanthaceae (J. W. Kadereit)
Although Nymphoides Ség. was found to be non-mono-
phyletic, with one species more closely related to one 
clade of a non-monophyletic Villarsia Vent. than to the 
remaining species of Nymphoides (Tippery & al. 2008), 
N. peltata (S. G. Gmel.) Kuntze will not change name 
even when combined with Villarsia because Nymphoides 
is the older name.

Asteraceae

Cardueae (A. Susanna & N. Garcia-Jacas)
Extensive molecular analyses in subtribe Centaureinae 
have demonstrated that Centaurea L., as defined in clas-
sic terms, was a polyphyletic assemblage (Susanna & al. 
1995; Garcia-Jacas & al. 2001). As regards naming of 
the two main lineages, problems originated with an in-
adequate type of the genus name proposed by Britton & 
Brown (1913), a decision later ratified by Dittrich (1993): 
C. centaurium L. This species belongs to a group of some 
20 – 25 taxa that are not closest relative of the largest part 
of the genus. Two alternate solutions were possible for 
achieving a natural delineation of the two genera that 
should be recognized: first, to keep the old type and lim-
it the use of Centaurea to this group of species, which 
would imply renaming more than 200 species in a differ-
ent genus; second, to conserve a new type belonging to 
the main group of the genus. This second, more conserv-
ative (in terms of botanical nomenclature) option finally 
prevailed: a new type, C. paniculata L., was proposed 
by Greuter & al. (2001) and is now the conserved type 
of Centaurea (Wiersema & al. 2015). The valid name 
for the genus comprising the smaller group of species is 
Rhaponticoides Vaill. This change, in Germany, affects 

only C. ruthenica Lam., which should be known as R. ru­
thenica (Lam.) M. V. Agab. & Greuter. As for the segre-
gation of C. sect. Cyanus (Mill.) DC. as a separate genus 
(e.g. Greuter & al. 2001), molecular evidence, although 
inconclusive, points at a sister relationship of C. sect. 
Cyanus and C. sect. Centaurea (e.g. Garcia-Jacas & al. 
2001). The latest proposal for a classification of the entire 
genus Centaurea (Hilpold & al. 2014) and the revisions 
of tribe Cardueae by Susanna and Garcia-Jacas (2007, 
2009) do not accept Cyanus Mill. as generically different 
from Centaurea.

Cichorieae (N. Kilian)
Lapsana L., together with the equally epappose Mediter-
ranean Rhagadiolus Juss., is nested in Crepis L., as has 
been shown in nuclear ribosomal (ITS) and chloroplast 
(matK) DNA marker phylogenies by Enke & Gemein-
holzer (2008). To maintain Lapsana, which is monospe-
cific after the well-supported segregation of the E Asian 
Lapsanastrum Pak & K. Bremer (Pak & Bremer 1995; 
Deng & al. 2014) and the dispecific Rhagadiolus as 
separate monophyletic genera, Crepis would have to be 
split into two morphologically ill-defined entities. This is 
definitely no practicable solution. If only monophyletic 
genera should be accepted, merging of both genera with 
Crepis would be the more appropriate solution, although 
breaking with a long tradition (no combination of Lap­
sana in Crepis has been published). The morphological 
circumscription of Crepis does not, however, preclude 
the inclusion of Lapsana communis L. (and of Rhaga­
diolus) if variation is extended to allow for the absence 
of a pappus. In other subtribes, parallel cases of epap-
pose entities traditionally treated as separate genera are 
similarly found nested in regularly pappose genera (e.g. 
Deng & al. 2014).

The members of Hypochaeris L. cluster in two main 
clades according to the phylogenetic analyses of nuclear 
ribosomal (ITS) and several chloroplast DNA marker 
sequences by Samuel & al. (2003, 2006) and Enke & 
al. (2012). The results, however, are inconclusive as to 
whether the two clades actually form a sister group and 
thus to the monophyly of Hypochaeris. Based on these 
findings, Talavera & al. (2015a) opted for splitting the ge-
nus in the forthcoming treatment of Flora iberica, there 
recognizing the segregates Achyrophorus Adans. (in its 
narrow sense distributed in the Mediterranean region) 
and Trommsdorffia Bernh. (with T. maculata (L.) Bernh. 
[H. maculata L.] and T. uniflora (Vill.) Soják [H. uniflora 
Vill.] in the German flora), a solution that necessitates 
recognition of at least a fourth genus for the NW African-
South American clade of Hypochaeris s.l.

Leontodon L. in its traditional circumscription is at 
least diphyletic (Samuel & al. 2006; Enke & al. 2012). Le­
ontodon subg. Leontodon and L. subg. Oporinia (D. Don) 
Peterm., which both received strong support in molecu-
lar phylogenies, are nested in two different major clades 
of the subtribe. This finding from phylogenetic analyses 
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based on both nuclear ribosomal (ITS) and chloroplast 
(matK) DNA marker sequences necessitates the recogni-
tion of L. subg. Oporinia (including L. autumnalis L., L. 
helveticus Mérat and L. montanus Lam. in Germany) as a 
separate genus, Scorzoneroides Moench, with S. autum­
nalis (L.) Moench as type (Greuter & al. 2006) and S. 
helvetica (Mérat) Holub and S. montana (Lam.) Holub as 
additional species in the German flora. The authorship of 
Scorzoneroides should be attributed to Moench (Meth.: 
549. 1794), because an earlier place of publication of that 
name and other genus names (in a German translation 
dated 1754 – 1756 of a pre-Linnaean work by Vaillant) is 
expected to be added to the list of suppressed works by 
the next International Botanical Congress (Applequist 
2014: 1370). Leontodon s.str., moreover, is paraphyletic 
with respect to the small, chiefly Mediterranean genus 
Hedypnois Mill., not present in the flora of Germany 
(Enke & al. 2012). The nrITS phylogeny by Samuel & 
al. (2006) and Enke & al. (2012) also provide initial indi-
cation (without statistical support, and not supported by 
the matK phylogeny) that L. sect. Thrincia (Roth) Benth. 
(with only L. saxatilis Lam. [Thrincia saxatilis (Lam.) 
Holub & Moravec] in the German flora) forms a clade 
not sister to the remainder of Leontodon s.str. Based on 
these findings, Talavera & al. (2015b) revived the genus 
Thrincia Roth for this clade.

Picris L. is monophyletic after exclusion of the small 
Mediterranean-SW Asian genus Helminthotheca Zinn 
(Samuel & al. 2006; Enke & al. 2012). Its segregation has 
previously been concluded for morphological reasons by 
Lack (1975). The only species of the latter genus in Ger-
many is H. echioides (L.) Holub (Picris echioides L.), 
which also provides the type of the genus name.

Scorzonera L. is polyphyletic in all current circum-
scriptions according to the initial molecular phyloge-
netic investigations in the subtribe by Mavrodiev & al. 
(2004) and Owen & al. (2006), using nuclear ribosomal 
(ITS and ETS) DNA markers and Amplified Fragment 
Length Polymorphisms (AFLP) variation, respectively. 
According to these analyses, the clade of Scorzonera 
s.str. (including the type of the name, S. humilis L., 
as well as S. purpurea L.) is sister to a clade compris-
ing Podospermum DC. (of which the only member in 
the German flora, P. laciniatum (L.) DC. [S. laciniata 
L.], provides the type of that name). The other mem-
bers of Scorzonera in its wider circumscription, as far 
as included in the analyses, are distributed over at least 
three further clades. Two of them, which form a clade 
sister to the clade comprising Koelpinia Pall. and the 
Podospermum and Scorzonera s.str. clades (Owen & al. 
2006), each include one species in the German flora: S. 
austriaca L. and S. hispanica L. The third clade is the 
“Lasiospora clade” (including S. hirsuta L., the type of 
Lasiospora Cass.), which is sister to all other lineages 
of the subtribe but has no representatives in the German 
flora. Apart from the segregation of Podospermum DC. 
from Scorzonera s.str., which is supported as an option 

(but not a necessity), the current state of our knowledge 
of Scorzonera s.l. is still far too preliminary to draw tax-
onomic conclusions.

Sonchus L. has turned out to be paraphyletic with 
respect to various smaller Mediterranean-Macaronesian 
and Australian-New Zealand segregates as well as to the 
SE Pacific Ocean island endemics Dendroseris D. Don 
and Thamnoseris Phil. in a series of molecular phyloge-
netic analyses based on both nuclear ribosomal and chlo-
roplast DNA markers (Kim & al. 2007 and references 
therein). The preferred and envisaged taxonomic solution 
is the broadening of the generic concept for Sonchus and 
(re)inclusion of all these genera (Mejías & Kim 2012). A 
splitting approach would inevitably dismember even the 
four German representatives of the genus, the congener-
ity of which has never been questioned.

The systematics of the Lactuca alliance, which is 
represented in the German flora by the genera Cicerbita 
Wallr., Mycelis Cass. and Lactuca L., has been in live-
ly debate for more than 200 years. The first molecular 
phylogenetic analyses published (Koopman & al. 1998; 
Wang & al. 2013) explained the difficulties in arriving at 
a natural classification with frequent convergent evolu-
tion of morphological characters. Consequences for the 
generic classification of the species in Germany are to 
be expected, but phylogenetic reconstruction is still in 
progress and any reclassification would be premature at 
present.

Prenanthes L. has been redefined completely on the 
basis of molecular phylogenetics, now being understood 
as a probably monospecific genus, accommodating the 
chiefly European P. purpurea L. (Kilian & Gemeinholzer 
2007; Kilian & al. 2009; Wang & al. 2013).

The placement of the C and SE European Tolpis 
staticifolia (All.) Sch. Bip., the only representative of 
Tolpis L. in the flora of Germany, is not settled yet. Tolpis 
staticifolia and the S and tropical African T. capensis (L.) 
Sch. Bip. (plus its close ally T. mbalensis G. V. Pope) 
have been excluded from that chiefly Mediterranean-
Macaronesian genus based on palynological differences 
(Blackmore & Jarvis 1986) and on the results of a chlo-
roplast ndhF sequence phylogeny by Park & al. (2001), 
which placed the two species as sister to Taraxacum F. H. 
Wigg. (T. capensis) and Crepis (T. staticifolia), respec-
tively.

Recent molecular phylogenetic analyses of the Hiera­
cium alliance using nuclear ribosomal, low-copy nuclear 
and chloroplast DNA markers (Fehrer & al. 2007, 2009; 
Krak & al. 2013) revealed conflicting topologies between 
the different gene trees in particular due to both reticulate 
evolution and incomplete lineage sorting during the rapid 
evolution of the alliance. Discussing the available evi-
dence, the authors concluded that the nuclear ribosomal 
DNA gene trees provide the best approximation for the 
reconstruction of the species tree. Accordingly, Hiera­
cium L. in the wide sense is polyphyletic. Hieracium 
subg. Pilosella (Hill.) Fr. is sister to the W Mediterranean 
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genus Hispidella Lam., both are sister to H. subg. Hiera­
cium and the American H. subg. Chionoracium Sch. Bip. 
(= Stenotheca Monnier), the four taxa in turn are sister to 
the chiefly Mediterranean-Macaronesian genus Andryala 
L., and, finally, H. intybaceum All., which is restricted to 
the siliceous Alps, forms the sister group to all of them. 
The taxonomic consequences already widely drawn are 
the recognition as separate genera of Hieracium and Pi­
losella Hill (for taxonomy and new combinations needed 
see Bräutigam & Greuter 2007; for the authorship of Pi­
losella the above notes on Scorzoneroides also apply). 
The further consequence in order to arrive at monophylet-
ic entities is the resurrection of the genus Schlagintweitia 
Griseb. to accommodate H. intybaceum (as S. intybacea 
(All.) Griseb.) and its few allies (Gottschlich & Greuter 
2007; Greuter & Raab-Straube 2008).

Senecioneae (J. W. Kadereit)
Phylogenetic analyses of Senecioneae (Pelser & al. 2002, 
2007, 2010) have shown that Senecio L. in its traditional 
circumscription is not monophyletic but rather both poly- 
and paraphyletic. As regards species in the German flora, 
it is evident that those species that lack outer involucral 
bracts, i.e. S. congestus (R. Br.) DC., S. gaudinii Gremli, S. 
helenites (L.) Schinz & Thell., S. integrifolius (L.) Clairv. 
and S. rivularis (Waldst. & Kit.) DC., need to be segregat-
ed as Tephroseris (Rchb.) Rchb., in which they are known 
as T. palustris (L.) Rchb. (for S. congestus), T. tenuifolia 
(Gaudin) Holub (for S. gaudinii), T. helenites (L.) B. 
Nord. (for S. helenites), T. integrifolia (L.) Holub (for S. 
integrifolius) and T. crispa (Jacq.) Rchb. (for S. rivularis). 
Tephroseris is only very distantly related to Senecio s.str. 
and even belongs to a different subtribe of Senecioneae.

Species related to Senecio jacobaea L. should be seg-
regated as Jacobaea Mill., which again is only distantly 
related to Senecio s.str. These, besides S. jacobaea (J. 
vulgaris Gaertn.), include S. abrotanifolius L. (J. abro­
tanifolia (L.) Moench), S. alpinus (L.) Scop. (J. alpina 
(L.) Moench), S. aquaticus Hill (J. aquatica (Hill) G. 
Gaertn. & al.), S. erraticus Bertol. (J. erratica (Bertol.) 
Fourr.), S. erucifolius L. (J. erucifolia (L.) G. Gaertn. & 
al.), S. incanus subsp. carniolicus (Willd.) Braun-Blanq. 
(J. incana subsp. carniolica (Willd.) B. Nord.; for a re-
cent account of the S. carniolicus aggregate see Flatscher 
& al. 2015), S. paludosus L. (J. paludosa (L.) G. Gaertn. 
& al.) and S. subalpinus Koch. (J. subalpina (W. D. J. 
Koch) Pelser & Veldkamp). Combinations in Jacobaea 
are available for all these species (Pelser & al. 2006).

Endocellion Turcz. ex Herder, containing two spe-
cies in Asia, is clearly nested in Petasites Mill. (Steffen 
2013) and should be treated as part of that genus. This 
does not affect the generic identity of the Petasites spe-
cies in Germany.

Gnaphalieae (M. Galbany-Casals)
Phylogenetic analyses and morphological data show 
that Filago L. is not monophyletic, and that the species 

involved should now be placed in two separate genera 
not closely related to each other (Galbany-Casals & al. 
2010; Andrés-Sánchez & al. 2011): Logfia Cass. includes 
L. minima (Sm.) Dumort. (F. minima (Sm.) Pers.) and L. 
gallica (L.) Coss. & Germ. (F. gallica L.), and Filago in-
cludes the rest of the species present in Germany. Fila­
go neglecta (Soyer-Willemet) DC. has been claimed to 
be of hybrid origin between L. gallica and Gnaphalium 
uliginosum L. (Holub 1976; Jäger 2011), but this is cur-
rently considered highly doubtful (Andrés-Sánchez, pers. 
comm.). However, it is not clear yet if this rarely col-
lected species belongs to Filago or Logfia.

Bombycilaena erecta (L.) Smoljan. has not been treat-
ed in Jäger (2005, 2011), but there exists at least one old 
record of this species from Germany (Andrés-Sánchez & 
al. 2014). The genus Bombycilaena (DC.) Smoljan. has 
been shown to be a lineage separate from Micropus L. 
and Filago in a molecular phylogeny and is currently con-
sidered to include only two species from the Old World 
(Galbany-Casals & al. 2010; Andrés-Sánchez & al. 2014).

Omalotheca Cass. (sensu Holub 1976) has often been 
considered a synonym of Gnaphalium L. (e.g. Anderberg 
1991; Jäger 2005, 2011). However, a molecular phylog-
eny (Galbany-Casals & al. 2010) has shown that Gna­
phalium s.l. is not monophyletic and that these two gen-
era should be considered separate, given that G. supinum 
L. – the type of Omalotheca – is not closely related to 
G. uliginosum – the type of Gnaphalium. Additionally, 
Blöch & al. (2010) showed that G. hoppeanum W. D. J. 
Koch, G. norvegium Gunnerus and G. sylvaticum L., 
three species also present in Germany, form a clade with 
G. supinum. In conclusion, with regard to the German 
flora, Gnaphalium should be restricted to G. uliginosum, 
and the other four species named above should be consid-
ered to belong to Omalotheca, as O. hoppeana (W. D. J. 
Koch) Sch. Bip. & F. W. Schultz, O. norvegica (Gun-
nerus.) Sch. Bip. & F. W. Schultz, O. supina (L.) DC. and 
O. sylvatica (L.) Sch. Bip. & F. W. Schultz. Smissen & al. 
(2011) noted that Gnaphalium s.str. includes diploid spe-
cies (2n = 14), whereas Omalotheca species are all poly-
ploids, and that the latter genus is part of a large clade of 
ancient allopolyploid origin, together with, among oth-
ers, genera such as Antennaria Gaertn, Bombycilaena, 
Filago, Gamochaeta Wedd., Leontopodium R. Br. ex 
Cass. and Logfia (Galbany-Casals & al. 2010).

Helichrysum Mill. is not monophyletic. Some Aus-
tralasian species had already been transferred to other 
genera for morphological reasons (see Bayer 2001 and 
Ward & al. 2009 for a review) and later were shown 
not to be part of the main Helichrysum clade (Galbany-
Casals & al. 2004; Ward & al. 2009; Smissen & al. 2011). 
This affects H. bracteatum (Vent.) Willd., an ornamental 
species (Jäger 2005), which should be known as Xero­
chrysum bracteatum (Vent.) Tzvelev (Bayer 2001). Ana­
phalis DC. and Pseudognaphalium Kirp., two genera of 
hypothesized allopolyploid origin, are embebbed in the 
main Helichrysum clade (Galbany-Casals & al. 2014). 
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The need for a generic re-circumscription of these three 
genera, plus others, was extensively discussed by Galba-
ny-Casals & al. (2014), who recommended maintaining 
Anaphalis, Helichrysum and Pseudognaphalium as in-
dependent genera until more data are available. This af-
fects two taxa present in Germany, A. margaritacea (L.) 
Benth. & Hook. f., an ornamental but naturalized (Jäger 
2011) species native to Asia and North America, and P. 
luteoalbum (L.) Hilliard & B. L. Burtt. The latter spe-
cies was treated as Gnaphalium luteoalbum L. in Jäger 
(2005). At present it remains unclear if this species should 
be included in Helichrysum or Pseudognaphalium, or if 
it should be treated as Laphangium Tzvelev as was done 
in Jäger (2011).

Astereae (C. Oberprieler)
The most comprehensive molecular phylogenetic anal-

ysis of tribe Astereae based on nrDNA ITS sequences was 
made by Brouillet & al. (2009). To a large extent, its re-
sults are supportive of the generic delimitation proposed 
by Greuter (2003) for the Euro+Med plantbase treatment 
of the tribe and of Nesom & Robinson’s (2007) treatment 
of Astereae in Kubitzki’s The families and genera of vas­
cular plants (Kadereit & Jeffrey 2007).

In subtribe Solidagininae, results by Brouillet & al. 
(2009) confirm that Solidago L. is polyphyletic and that 
the naturalized S. graminifolia (L.) Salisb. should be 
transferred to Euthamia (Nutt.) Cass. as E. graminifolia 
(L.) Nutt. because it belongs to another lineage than the 
type of Solidago (i.e. S. virgaurea L.). While in subtribe 
Bellidinae the monophyly of both Bellis L. and Bel­
lium L. was repeatedly found in molecular phylogenetic 
studies based on nrDNA ITS sequences (Fiz & al. 2002; 
Brouillet & al. 2009; Fiz-Palacios & Valcarcel 2011), 
phylogenetic analyses in subtribe Asterinae have led 
to extensive generic rearrangements due to the consist-
ently demonstrated polyphyly of Aster L. in its classical 
circumscription. According to nrDNA ITS-based analy-
ses by Brouillet & al. (2009), a more narrowly and more 
naturally circumscribed genus Aster in Germany would 
only comprise A. alpinus L. and A. amellus L., while A. 
linosyris (L.) Bernh. should be transferred to the Eura-
sian genus Galatella Cass. as G. linosyris (L.) Rchb. 
f., the halophilic A. tripolium L. to the genus Tripolium 
Nees as T. pannonicum (Jacq.) Dobrocz., and A. bellidi­
astrum (L.) Scop. not only to the separate and monospe-
cific genus Bellidiastrum Scop. (as B. michelii Scop.) 
but also to another subtribe (Bellidinae). The last has 
also been confirmed by the phylogenetic analyses by 
Fiz & al. (2002) and Fiz-Palacios & Valcarcel (2011). 
Finally, molecular phylogenies based on nrDNA ITS 
alone (Brouillet & al. 2009) or on nrDNA ITS + ETS 
complemented by the intergenic spacer region trnL-
trnF of the chloroplast genome (Li & al. 2012b) support 
the transfer of the naturalized “New World asters” (i.e. 
A.  laevis L., A. lanceolatus Willd., A. novae-angliae 
L., A. novi-belgii L., A. parviflorus Nees, A. salignus 

Willd., A. versicolor Willd.) to the genus Symphyotri­
chum Nees (subtribe Symphyotrichinae). On the other 
hand, Li & al. (2012b) found no evidence for a close re-
lationship between Callistephus chinensis (L.) Nees and 
any other genus of subtribe Asterinae and supported its 
independent generic status. Finally, in subtribe Conyzi­
nae, it has been repeatedly demonstrated (Noyes 2000; 
Andrus & al. 2009; Brouillet & al. 2009) that neither 
Conyza Less. nor Erigeron L. as previously defined are 
monophyletic; a situation that is best accommodated by 
merging the two genera into Erigeron, as was already 
suggested by Greuter (2003). This requires the trans-
fer of C. bonariensis (L.) Cronquist, C. canadensis (L.) 
Cronquist and C. sumatrensis (Retz.) E. Walker to this 
more broadly circumscribed genus (as E. bonariensis 
L., E. canadensis L., and E. sumatrensis Retz., respec-
tively).

Anthemideae (C. Oberprieler)
In the S hemisphere subtribe Cotulinae, phylogenetic 
analyses by Himmelreich & al. (2012) based on se-
quence variation of nrDNA ITS and intergenic spacer re-
gions (psbA-trnH, trnC-petN) of the chloroplast genome 
have shown that Cotula L. is non-monophyletic, even 
when the Mediterranean C. cinerea Delile is excluded as 
the independent and monospecific genus Brocchia Vis. 
(as B. cinerea (Delile) Vis.) following results by Ober-
prieler (2004a). Being the type of Cotula, sinking of 
Leptinella Cass. and Soliva Ruiz & Pav. into a broader, 
then monophyletic genus would not affect the name of 
C. coronopifolia L., naturalized in the N hemisphere. Of 
subtribe Artemisiinae, as circumscribed by Oberprieler 
& al. (2007a, 2009), only Artemisia L. and Leucanthe­
mella Tzvelev are represented in our area. In the case 
of the former genus, there is a consistent tendency sup-
ported by many molecular phylogenetic studies of the 
last years (e.g. Vallès & al. 2003; Sanz & al. 2008; Pel-
licer & al. 2010, 2011; Garcia & al. 2011) for lumping 
the numerous small to large segregate genera (i.e. Cros­
sostephium Less., Filifolium Kitam., Mausolea Poljakov, 
Neopallasia Poljakov, Picrothamnus Nutt., Seriphidium 
Fourr., Sphaeromeria Nutt. and Turaniphytum Poljakov) 
into a broadly defined and monophyletic Artemisia. On 
the other hand, studies focusing on phylogenetic rela-
tionships among the remainder of the Artemisiinae sensu 
Oberprieler & al. (2007a, 2009) in general and on the 
generic delimitation of Ajania Poljakov versus Chry­
santhemum L. in particular, presented no consistent and 
well-supported evidence for the affiliation of Leucanthe­
mella Tzvelev to any other genus of the subtribe (Ma
suda & al. 2009; Zhao & al. 2010). As a consequence, 
Leucanthemella with its sole European species L. sero­
tina (L.) Tzvelev should be treated as an independent 
evolutionary unit at genus rank. After inclusion, moti-
vated by molecular phylogenetic studies, of the Medi-
terranean monospecific Otanthus Hoffmanns. & Link 
and the equally monospecific Turkish endemic Leuco­
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novii Herder transferred to Richtera Kar. & Kir. [Son-
boli & Oberprieler 2012]) and the suggested inclusion in 
Tanacetum of many satellite genera (e.g. Balsamita Mill., 
Gonospermum Less., Gymnocline Cass., Hemipappus K. 
Koch, Lugoa DC., Spathipappus Tzvelev and Xylanthe­
mum Tzvelev), support for a monophyletic Tanacetum 
remains weak and awaits phylogenetic reconstructions 
based on a broader sampling of molecular markers (Son-
boli & al. 2012). For the time being, this argues for the 
presently used broad generic concept of Tanacetum in 
Germany.

After having been raised from sectional rank in 
Tanacetum to an independent genus by Heywood 
(1975), Leucanthemopsis (Giroux) Heywood was con-
sidered to be related to Leucanthemum Mill. by Bremer 
& Humphries (1993) until molecular phylogenetic stud-
ies revealed its even closer relationships with three 
monospecific genera endemic to the Iberian Peninsula, 
Castrilanthemum Vogt & Oberpr., Hymenostemma 
Willk. and Prolongoa Boiss. This resulted in its accom-
modation in the new subtribe Leucanthemopsidinae 
(Oberprieler & al. 2007a, 2009). More recently, a multi-
locus phylogenetic analysis of all species of the sub-
tribe in a coalescent-based species-tree reconstruction 
clearly demonstrated the well-supported monophyly of 
Leucanthemopsis (Tomasello & al. 2015).

As already discussed by Vogt (1991) in his revision of 
Leucanthemum Mill. in the Iberian Peninsula, the genus 
in its traditional circumscription contained species that 
are only remotely related to its type, L. vulgare Lam. Ac-
commodation of these divergent species in the independ-
ent genera Mauranthemum Vogt & Oberpr. and Rhodan­
themum B. H. Wilcox & al. by Vogt & Oberprieler (1995) 
and Bremer & Humphries (1993), respectively, has led 
to a well-circumscribed and strongly supported mono-
phyletic Leucanthemum, as was recently corroborated by 
a multi-locus phylogenetic analysis by Konowalik & al. 
(2015).

In subtribe Santolininae sensu Oberprieler & al. 
(2007a, 2009), genus delimitations were studied in molec-
ular phylogenetic analyses by Oberprieler (2002). Based 
on nrDNA ITS and cpDNA trnL-trnF sequence variation, 
this study demonstrated the paraphyly of Chamaeme­
lum Mill. relative to the monospecific Cladanthus Cass. 
Transfer of four W Mediterranean Chamaemelum species 
to Cladanthus led to two well-supported monophyletic 
sister genera, with the widely cultivated and sporadi-
cally naturalized C. nobile (L.) All. and the W Mediter-
ranean C. fuscatum (Brot.) Vasc. as the only members of 
Chamaemelum.

Glebionis Cass. with the naturalized G. segetum (L.) 
Fourr. comprises only two species and is the type ge-
nus of the small subtribe Glebionidinae (Oberprieler 
& al. 2007a, 2009). Phylogenetic relationships within 
this subtribe were studied by Francisco-Ortega & al. 
(1997), who found little support for the monophyly of 
the subtribe and for the genus (sub Chrysanthemum) in 

cyclus Boiss. in subtribe Matricariinae (Guo & al. 2004; 
Oberprieler 2004b; Ehrendorfer & Guo 2005), Achillea 
L. constitutes a monophyletic genus. Support from a 
comprehensive molecular phylogenetic analysis for the 
monophyly of the Eurasian and Mediterranean Matri­
caria L. with its presently accepted six species (Ober-
prieler & al. 2007b, 2009) is still missing. However, the 
transfer of the Aegean M. macrotis Rech. f. to Anthemis 
L. (as A. macrotis (Rech. f.) Oberpr. & Vogt) based on 
nrDNA sequence information (Oberprieler & Vogt 2006) 
and the repeatedly shown support for the generic inde-
pendence of Matricaria (subtribe Matricariinae) from 
Tripleurospermum Sch. Bip. (subtribe Anthemidinae; e.g. 
Oberprieler 2004b, 2005; Oberprieler & al. 2007a) and 
from Microcephala Pobed. (subtribe Handeliinae; e.g. 
Oberprieler & al. 2007a; Sonboli & al. 2012) contributed 
strong evidence for the naturalness of Matricaria in its 
present circumscription. In subtribe Anthemidinae sensu 
Oberprieler & al. (2007a, 2009) with its species-rich core 
genera Anthemis L. and Tanacetum L., considerable ef-
forts have been made to achieve a natural delimitation 
of genera based on molecular phylogenies. After Ober-
prieler (2001) had shown, with a limited taxon sample, 
that Anthemis in its traditional circumscription is para-
phyletic, and that the species of A. sect. Cota (J. Gay) 
Rchb. f., distinct in their achene morphology, should 
be transferred to the independent genus Cota J. Gay ex 
Guss. (Greuter & al. 2003), Lo Presti & al. (2010) cor-
roborated this finding based on a comprehensive species 
sampling (c. 75 % of the described species) and sequence 
information from both nuclear and plastid markers. With 
the exclusion of further four species from the Caucasus 
region (i.e. A. calcarea Sosn., A. fruticulosa M. Bieb., A. 
marschalliana Willd. and A. trotzkiana Bunge) from An­
themis and their accommodation in the newly described 
genus Archanthemis Lo Presti & Oberpr., and the above-
mentioned inclusion of Matricaria macrotis (Oberprieler 
& Vogt 2006), three natural, morphologically distinct 
genera were established (Lo Presti & al. 2010; Son-
boli & al. 2012). To reflect these phylogenetic findings, 
Anthemis austriaca Jacq. and A. tinctoria L., hitherto 
treated as Anthemis in Germany, should be transferred to 
Cota, as C. austriaca (Jacq.) Sch. Bip. and C. tinctoria 
(L.) J. Gay.

The natural circumscription of Tanacetum L. remains 
problematic even after considerable taxon and marker 
sampling. Based on nrDNA ITS and cpDNA trnH-
psbA sequence information, Sonboli & al. (2012) could 
demonstrate that there is no support for a generic sepa-
ration of the yellow-rayed or rayless species of Tanace­
tum from the white- and red-rayed species of Pyrethrum 
Zinn. On the other hand, even after exclusion of several 
enigmatic species from Tanacetum based on phyloge-
netic analyses (i.e. T. annuum L. and T. microphyllum 
DC. transferred to the newly established Vogtia Oberpr. 
& Sonboli [Sonboli & al. 2012]; T. paradoxum Bornm. 
transferred to Artemisia [Sonboli & al. 2011]; T. seme­
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a maximum-parsimony analysis based on nrDNA ITS 
sequence variation. While more recent studies using 
model-based sequence analysis methods (maximum 
likelihood) gained strong support for the monophyly 
of the subtribe (Oberprieler 2005; Oberprieler & al. 
2007a), relationships among the genera of Glebionidi­
nae, i.e. the species-rich Argyranthemum Webb (24 
spp.), Glebionis (two spp.), and the two monospecific 
genera Heteranthemis Schott and Ismelia Cass., remain 
unclear, especially after a recent study based on nrDNA 
ITS sequence variation by Imamura & al. (2015), who 
found G. coronaria (L.) Spach nested in a group of Ar­
gyranthemum species. If future studies should corrobo-
rate the non-monophyly of the four genera of Glebio­
nidinae, and their merging would be necessary to arrive 
at a monophyletic genus, the oldest genus name for this 
entity would be Heteranthemis Schott. For the time be-
ing, however, retaining the four genera in their present 
circumscriptions appears preferable due to their mor-
phological and geographical distinctness.

Inuleae (J. W. Kadereit)
Phylogenetic analyses of tribe Inuleae have shown that 
neither Inula L. nor Pulicaria Gaertn. are monophyletic 
(Anderberg & al. 2005; Englund & al. 2009), but this has 
not yet been translated into formal taxonomic changes, 
although possible taxonomic consequences were dis-
cussed by Englund & al. (2009). The species of Inula 
present in Germany fall into at least four different clades, 
of which I. graveolens (L.) Desf. is more closely related 
to Pulicaria and its relatives than to Inula and its rela-
tives and has been treated as Dittrichia Greuter. Main-
tainance of this genus will depend on future treatment 
of the various lineages of Pulicaria. If, after exclusion 
of some lineages as suggested by Englund & al. (2009), 
a broad concept of Pulicaria is adopted, Dittrichia will 
have to be included in that genus. If, on the other hand, a 
narrow concept of Pulicaria is adopted, Dittrichia would 
remain an independent genus and the two species of Puli­
caria present in Germany (P. dysenterica (L.) Bernh. and 
P. vulgaris Gaertn.) would remain in Pulicaria. Adoption 
of a broad concept of Inula would require inclusion of 
Carpesium L. and Telekia Baumg. Adoption of a narrow 
concept would require distribution of the German species 
in probably several genera, dependent on treatment, and 
only I. helenium L., as the type, would remain in Inula.

Helenieae (J. W. Kadereit)
Both Bidens L. and Coreopsis L. have been shown not to 
be monophyletic (Mort & al. 2008), but this has not yet 
been translated into taxonomic changes.

Heliantheae (J. W. Kadereit)
Both Ambrosia L. and Iva L. have been found not to be 
monophyletic (Miao & al. 1995). Ambrosia becomes 
monophyletic after inclusion of Hymenoclea Torr. & A. 
Gray, as proposed by Panero (2007), whereas parts of Iva 

are better accommodated in other genera. This affects the 
German I. xanthiifolia Nutt., which, according to Panero 
(2007), should be considered a species of Euphrosyne 
DC. and called E. xanthiifolia (Nutt.) A. Gray.

Madieae (J. W. Kadereit)
Although Eriophyllum Lag. does not appear to be mono-
phyletic (Baldwin & al. 2002), E. lanatum (Push) Forbes, 
a naturalized ornamental in Germany, is part of the per-
ennial clade, which also contains the type of the genus 
name. In consequence, no change of name will be neces-
sary should the genus be split.

Conclusions

Among the 840 genera examined, we identified c.  140 
where data quality is sufficiently high to conclude that 
they are not monophyletic, and an additional c. 20 where 
monophyly is questionable but where data quality is not 
yet sufficient to reach convincing conclusions. The reso-
lution of these uncertainties will depend on the expansion 
of taxon and DNA sequence datasets, and on the inter-
pretation of the results by taxonomic specialists. In many 
cases recognition of non-monophyly offers the options of 
either to expand genera in order to include former satel-
lites or to split genera into smaller generic entities. As 
we do not know which of these options will be adopted 
in each case, we cannot say how the number of genera 
recognized in the German flora will be affected. General 
trends in global plant classification, e.g. towards larger 
genera based on molecular data (Humphreys & Linder 
2009), may or may not be reflected in the consequences 
for the comparatively small and well-studied German 
flora. However, the summary presented here clearly in-
dicates that considerable further change is inevitable pro-
vided monophyly is accepted as the primary criterion for 
circumscribing genera (and taxa in general). Although 
such developments may be met with some dismay by us-
ers of Floras, they reflect ongoing progress in our scien-
tific understanding of plant diversity.
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