What is Allium achaium Boiss. & Orph.? Disentangling the taxonomy of a Greek mountain species

Authors: Tzanoudakis, Dimitris, Tsakiri, Maria, and Raus, Thomas

Source: Willdenowia, 49(2) : 231-239

Published By: Botanic Garden and Botanical Museum Berlin (BGBM)

URL: https://doi.org/10.3372/wi.49.49211
What is *Allium achaium* Boiss. & Orph.? Disentangling the taxonomy of a Greek mountain species

Abstract: *Allium oreohellenicum* Tzanoud., Tsakiri & Raus (*Amaryllidaceae*), endemic of the Greek mountains, is described and illustrated as a species new to science. Information regarding its cytology, geographical distribution and taxonomic relationships is also provided. Material belonging to *A. oreohellenicum* was formerly known/classified as *A. achaium* Boiss. & Orph., a taxon described in 1882 based on a gathering by Orphanides from Mt Klokos (N Peloponnisos, Greece). A detailed study of the Orphanides gathering concerned revealed that it essentially belongs to *A. frigidum* Boiss. & Heldr., a taxon described 28 years earlier, and so the need for a new name.

Key words: *Allium*, *Allium achaium*, *Allium oreohellenicum*, *Amaryllidaceae*, chromosome numbers, Greece, mountain flora, new species

Article history: Received 12 February 2019; peer-review completed 7 April 2019; received in revised form 24 April 2019; accepted for publication 15 May 2019.

Citation: Tzanoudakis D., Tsakiri M. & Raus Th. 2019: What is *Allium achaium* Boiss. & Orph.? Disentangling the taxonomy of a Greek mountain species. – Willdenowia 49: 231–239. doi: https://doi.org/10.3372/wi.49.49211

Introduction

Allium L. (*Amaryllidaceae*) is one of the most species-rich genera of the Greek flora. Presently it is known to be represented in the country by 103 species with more than 50% of them (54) endemics. Considering that continental Greece including some of the larger islands is characterized by dozens of mountain massifs approaching or exceeding 2000 m in altitude, it is worth noting that among the Greek *Allium* endemics only three are considered as “mountain species”, i.e. adapted to and exclusively occurring in high-altitude habitats (>1600 m). These species are currently named *A. achaium* Boiss. & Orph., *A. frigidum* Boiss. & Heldr. and *A. parnassicum* (Boiss.) Halácsy (Strid & Tan 1991; Dimopoulos & al. 2013). They have some morphological characters in common, viz. an infundibular-campanulate to infundibular perianth, the perianth segments at least 6 mm long, the stamens included in the perianth, and the ovary much longer than wide.

Allium frigidum Boiss. & Heldr. was first published in Boissier (1854: 34) based on a gathering by Heldreich from Mt Taygetos (S Peloponnisos). *Allium achaium* Boiss. & Orph. was described 28 years later (Boissier 1882: 259) based on a gathering by Orphanides from Mt Klokos (NW Peloponnisos), distributed to Boissier (G, G-BOISS) and several other herbaria under Orphanides, *Fl. Gr. Exsicc. no. 427* (“In monte Clokos Achaia et prope Vostitsa sito loco Pente Vryses dicto 4000 ped., 9/21. Jul. 1855”). Together with *A. achaium*, Boissier described slightly deviating plants from Mt Parnassos (Sterea Ellas) as *A. achaium var. parnassicum* Boiss. (Boissier 1882: 259). Halácsy (1904: 255) raised this variety to species rank (*A. parnassicum* (Boiss.) Halácsy), at the same time considering *A. achaium* Boiss. & Orph. to be a synonym of *A. frigidum*, stating: “Inter *A. frigidum* et *A. achaium* differentiam videre nequeo” and “*A. achaium* quo meo sensu ab *A. frigido* non diversum” (Halácsy 1904: 251, 255). Halácsy’s concept of the *A. achaium* group was adopted by Hayek (1932: 47), Zahariadi (1975a, 1975b),
On the contrary, *A. achaium* has been subsequently reappraised as a distinct species of the Greek flora by Andersson (1991: 709), with the Orphanides gathering from Mt Klokos in G-BOISS as the holotype of the species and its total distribution range indicated from Peloponnisos to the mountains of Sterea Ellas and Southern and Northern Pindos (Thessalia/Ipiros).

Twenty years later, Bogdanović & al. (2011) completely changed the taxonomic treatment of *Allium achaium*. Indeed they continued to quote the voucher of Orphanides, *Fl. Gr. Exsicc. no. 427* (G-BOISS) as the holotype of *A. achaium*, but confusingly described and illustrated under this designation an *Allium* from Mt Klokos characterized by morphological characters that do not at all match either the specimens of the Orphanides gathering, mentioned above, or any other specimen belonging to the species group of *A. achaium sensu* Andersson (1991) and previous botanists, *A. frigidum* and *A. parnassicum* (Fig. 1). In fact, the characters given by Bogdanović & al. (2011), viz. exserted stamens, cup-shaped perianth and globose ovary, characterize the *A. flavum/A. stamineum* group, which is quite different from those groups in which *A. achaium*, *A. frigidum* and *A. parnassicum* belong (with the stamens included in an infundibular-campanulate to infundibular perianth...
and the ovary much longer than wide; Fig. 1 & 2). The present paper aims at disentangling these contradicting taxonomic points of view.

Material and methods

Mt Klokos, the locus classicus of Allium achaium Boiss. & Orph., had been visited and explored by the first author, accompanied by varying staff of the Botanical Institute of Patras, several times from 2013 to 2017 in the framework of monitoring regional “Natura 2000” sites, and all Allium taxa occurring in the area have been completely registered. In parallel, herbarium specimens of A. achaium sensu Andersson (1991), A. frigidum and A. parnassicum from all mountains of Peloponnisos, Sterea Ellas and the Pindos range, which are available in the Botanical Museum of the University of Patras (UPA), have been comparatively studied, among them an iso-

Results and Discussion

Mt Klokos (1774 m) is situated SW of the city of Egion (previously Vostitsa) and NNW of the much higher mountain massifs of Chelmos (2355 m) and Erimanthos (2224 m) in northern Peloponnisos. Based on the information given by local people, the locality “Pente Vryses” (i.e. five springs), which is given on the label of Orphanides, Fl. Gr. Exsicc. no. 427, is located a few kilometres SW of Pteri, a village on the NE-facing slope of the mountain at an altitude of c. 1300 m. The altitude given by Orphanides for this locality is almost the same (4000 ft). In the framework of our floristic exploration, we visited the slopes above the locality “Pente Vryses” as well as the opposite, SSE-facing slopes from an altitude of 1400 m up to the summit area. During our field work, three Allium species were found in the area:

(1) The first, and most common one, was a representative of Allium sect. Codonoprasum (Rchb.) Endl. characterized by spathe valves longer than pedicels, the perianth 4–5 mm long with evidently exserted stamens and a globose, more or less stipitate ovary (Fig. 1D & 2D). It was found on the slopes just above the locality “Pente Vryses” as well as on the opposite-facing slopes and in the summit area. Without any doubt this is the plant that Bogdanović & al. (2011) described and considered as the “true A. achaium”, although none of the plants

![Fig. 2. Ovaries – A: Allium oreohellenicum, from Tzanoudakis X653 (see Additional specimens examined); B: A. parnassicum, from Brullo & al. (2001); C: A. frigidum, from Brullo & al. (2001); D: “A. achaium” sensu Bogdanović & al., from Bogdanović & al. (2011). – Scale bars = 1mm.](https://complete.bioone.org/journals/Willdenowia)
of the Orphanides gathering from Mt Klokos (G!, UPA!) has any of the characters provided by Bogdanović & al. (2011). However, plants with the mentioned characters do occur in the mountains of Greece, where they are more or less common and widespread; they represent Allium flavum subsp. tauricum (Besser ex Rchb.) K. Richt.

(2) The second taxon met with on Mt Klokos was an Allium characterized by hairy sheaths and leaves, very long spathe valves and a pinkish brown perianth with included stamens. Because of these characters it belongs to A. rhodopeum Velen. subsp. rhodopeum, a taxon also known to occur at moderate altitudes on other mountains next to Mt Klokos in N Peloponnisos.

(3) The third representative of the genus on Mt Klokos was an Allium characterized by a pendulous inflorescence, spathe valves shorter than pedicels, white-pinkish to brownish perianth, included stamens and an ovoid to ellipsoid ovary. Only a few individuals were found, confined to the summit area. When comparing this plant with material of A. frigidum from other mountains of Peloponnisos as well as with the plants of the Orphanides gathering from Mt Klokos (G!, UPA!) designated as the type material of A. achaïum, we found no differences. Hence Halácsy (1904) was completely correct in pointing out that there is no difference between these two taxa (“inter A. frigidum et A. achaïum differentiam videre nequeo”). They are conspecific, and the name A. frigidum has priority over A. achaïum, hence the latter is correctly treated as a synonym of the former by Halácsy (1904), Hayek (1932–1933), Zahariadi (1975a, 1975b), Stearn (1978, 1980, 1981) and Kollmann (1984).

There is no doubt that in high-altitude habitats of the mountains of N Peloponnisos one more taxon of the Allium paniculatum group is present, sometimes growing side by side with A. frigidum. It is characterized by having outer bulb tunics often longitudinally splitting into parallel fibres, inflorescence erect (versus pendulous in A. frigidum), spathe valves longer than the pedicels, perianth segments pinkish white in the living state, to 6(–6.5) mm long, stamens with white-yellowish anthers included in the perianth, and ovary much longer than wide, narrowed at the base and truncate at the apex (Fig. 1A, 2A & 4). Plants with a similar morphology have also been collected in the high mountains of Sterea Ellas and in the Pindos range of NW Greece (Thessalia/Epiros) and were treated by Tzanoudakis & Vosa (1988) under the misnomer “A. parnassicum”. These plants were erroneously classified by Andersson (1991) as A. achaïum. We agree with Andersson, who recognized a third Allium species in the mountains of C and NW continental Greece in addition to A. frigidum and A. parnassicum. However, Andersson misapplied the name A. achaïum and its type, chosen by him, to this third species, whereas in fact they belong taxonomically to A. frigidum. This third species therefore needs a new name, a new description and a new type, which are provided here.

Allium oreohellenicum Tzanoud., Tsakiri & Raus, sp. nov. – Fig. 1A, 2A, 3 & 4.

Holotype: Greece, Peloponnisos, Achaia, Mt Chelmos, near Pouliou Vrisi, 39°59’26”N, 22°11’13”E, c. 2020 m, grassland and rocky places, 11 Aug 2018, Tzanoudakis 14682 (UPA [Fig. 4]).

Diagnosis — Species ad sectionem Codonoprasum Allii generis pertinens, ab Allio parnassico simili non modo caule robustiore, floribus compluribus, periantho roseolbo ad 6(–6.5) mm tantum longo antherisque alboflavidis, sed etiam chromosomatum numero plerumque triploide (2n = 3x = 24) satis diversa.

Allium oreohellenicum is a species of the Greek mountain flora, a member of the A. paniculatum group in A. sect. Codonoprasum. It is similar to A. parnassicum, from which it chiefly differs by its more robust stem (slender in A. parnassicum), inflorescence with more flowers, perianth segments pinkish white, smaller, to 6(–6.5) mm long (versus purplish to brownish purple and to 7.5 mm long in A. parnassicum), anthers white-yellowish (versus purple in A. parnassicum) and mainly triploid chromosome number (2n = 3x = 24), rarely diploid (2n = 16) (versus only diploid in A. parnassicum).
Fig. 4. Holotype of *Allium oreohellenicum* Tzanoud., Tsakiri & Raus, Tzanoudakis 14682 (UPA).
Fig. 5. Isotype of Allium achaiaum Boiss. & Orph. (in UPA), from the original gathering made by Orphanides in 1855 on Mt Klokos (Achaia, Peloponnisos, Greece). It belongs taxonomically to A. frigidum Boiss. & Heldr. Note the pendulous inflorescences.
Description — Bulb ovoid, 1–1.3(–1.8) cm in diam.; outer tunics brown to blackish brown, coriaceous, often longitudinally splitting into parallel fibres; inner tunics brownish to whitish brown, membranous. Bulblets 1 or 2, oblong-ovoid, 3–4 × 1–1.5 mm, apex acuminate, sometimes stalked on lower part of stem. Stem erect, (7–)10–20(–30) cm long, glabrous, covered by leaf sheaths for c. ½ of its length. Leaves 2 or 3(4), filiform, usually shorter than stem, glabrous, withered at flowering time. Spathes 2, opposite, unequal, 5- or 6-nerved, lanceolate at base and gradually attenuate into an appendage at apex, 3–5(–8) cm long, shorter one 2–3(4–4) cm long. Inflorescence usually lax with (7–)10–20(–35) flowers, marginal ones pendulous, central ones erect. Pedicels unequal, 1–1.5(–2.5) cm long. Perianth campanulate to funnel-shaped; perianth segments pinkish white in living state, sometimes becoming greenish brown when dry, elliptic to obovate, 5–6(–6.5) × 1–1.5(–2) mm. Stamens included; filaments ± similar, white, connate below into an annulus c. 1 mm long; anthers white-yellowish. Ovary cylindric to obovoid, longer than wide, c. 3 × 1.5–1.8 mm, narrowed at base, truncate and papillose at apex. Style white, 2–3 mm long.

Karyology — Material of Allium oreohellenicum from the mountains of Peloponnisos and Sterea Ellas was investigated cytologically by Tzanoudakis & Vosa (1988, under “A. parnassicum”). The triploid chromosome number 2n = 3x = 24 was reported from all examined populations, but the diploid chromosome number, 2n = 2x = 16, was additionally found in some individuals from Mts Iti and Velouchi in Sterea Ellas. The chromosome morphology and karyograms from the populations concerned were given by Tzanoudakis (1992: fig. 3 & 6), who pointed out that in both diploid and triploid plants the haploid complement consists mainly of metacentric and submetacentric chromosomes. The SAT-chromosomes observed (mA, SmA) belong to the “paniculatum” type sensu Tzanoudakis (1983). In the present study, plants from the type gathering were also cytologically investigated and likewise turned out to be triploid (2n = 3x = 24, Fig. 3).

Distribution — The total range of Allium oreohellenicum, as presently known (Fig. 6), covers C and NW continental Greece from N Pindos (Mt Smolikas, see Andersson 1991: 709, under “A. achaium”) to Sterea Ellas (Mt Vardousia), extending to N Peloponnisos (Mts Chelmos, Erimanthos, Killini and Panachaiko) where it co-occurs with A. frigidum.

Ecology — Allium oreohellenicum grows preferentially at 1800–2400 m in high-mountain meadows and rocky places, flowering from mid-July to August, depending on altitude and exposition. In the type locality, it is accompanied by several endemic and critical taxa such as Allium frigidum Boiss. & Heldr., A. phthioticum Boiss. & Heldr., Campanula aizoides Zaffran ex Greuter, Cerastium candidissimum Correns, Festuca jeanpertii (St.-Yves) Markgr., Minuartia juniperina (L.) Maire & Petitm., Senecio rupestris Waldst. & Kit., Solenanthus stamineus (Desf.) Wettst. and Verbasum epixanthinum Boiss. & Heldr.
Etymology — The specific epithet is a compound of oreo- (mountain) and hellenicum (Greek), reflecting the ecological and chorological traits of the species, which is confined to high-mountain habitats of continental Greece. The taxon was hitherto concealed by misapplication of the name Allium achaium (Andersson 1991) or by misidentification of A. flavum subsp. tauricum (Bogdanović & al. 2011).

Additional specimens examined — NORTHERN PINDOS: Ioannina: Mt Timfi, near Drakolimni, 39°58.5259’N, 20°46.54’E, alt. 1800 m, 7 Aug 2017, Kofinas (UPA).— SOUTHERN PINDOS: Ioannina: Mt Katacharias, 5.5 km ENE of Kalaretis, alt. c. 2050 m, 25 Jul 1974, Aldén 5339 (LD); Mts Athamanika, Kakarditsa, 39°32.0279’N, 21°11.3169’E, alt. 1940 m, 5 Aug 2017, Kofinas (UPA); Trikala: Mt Kotziakas, 6 km E of Pertoulion, alt. 1750–1850 m, 7 Aug 1974, Aldén 4815 (LD).— STEREA ELLAS: Evritania: Mt Velouchi, ad locum Seitan dic­tum, 38°56’N, 21°48’E, alt. c. 1800 m, 17 Aug 1981, Tzanoudakis 6725 (UPA); ibid., in regione cacuminis, 38°57’N, 21°50’E, alt. 1800–1850 m, 24 Jul 1970, Tzanoudakis 6722 (UPA); ibid., 6 km ENE of Karpension, alt. 1750–1850 m, 21°11.3169’E, alt. c. 1850 m, 12 Aug 1980, Kit Tan & al. obs. & photos; Tzanoudakis & Georgiadis 6606 (UPA); ibid., in regione cacuminis, c. 2000 m, 12 Aug 1973, Tzanoudakis s.n. (UPA); ibid., in cacumine Korakas, 38°41’N, 22°16’E, alt. c. 1800 m, 17 Aug 1981, Tzanoudakis 6607 (UPA); ibid., 4 km W of Athanasios Diakos, alt 1750 m, 11 Aug 1973, Gustavsson 3699 (LD); ibid., 5 km NNE of Dafnos, alt. c. 2000 m, Gustavsson (cultivated and dried 22 Jul 1974, LD); FTHIOTIDA: Mt Iti, inter Pavliani et Katavo­thra, alt. 1500–1600 m, in sylvaticis, 3 Aug 1987, Tzanoudakis s.n. (UPA); ibid., inter Katavo­thra et Vrisi Despoti, 38°49’N, 22°16’E, alt. c. 1800 m, in pratis, 13 Aug 1980, Tzanoudakis 6603 (UPA); ibid., in regione cacuminis, c. 2000 m, 12 Aug 1980, Tzanoudakis & Georgiadis 6614 (UPA); ibid., near refugium EOS, alt. c. 1850 m, 12 Aug 1980, Tzanoudakis & Georgiadis 6606 (UPA); ibid., 5 km E of Neochorion, alt. 1900–2000 m, 27 Aug 1973, Gustavsson 4164 (LD); ibid., 7 km SSE of Ipati, alt. 1820–1850 m, 25 Jul 1972, Gustavsson 1926 (LD).— PELOPONNISIS: Achaea: Mt Panachaiko, mountain plateau of Prassoudi, alt. c. 1800 m, grassland, 11 Aug 2015, Tzanoudakis obs. & photos; KORINTHA: Mt Ziria (Killini), pathway from refuge EOS (B) to summit, 37°57’N, 22°25’E, alt. 1650–1950 m, Dimopoulos 2769 (UPA).

Acknowledgements

Financial support of the field work by the Greek Ministry of Environment and the Management Body of the “Chelmos-Vouraikos National Park” is gratefully acknowledged. We also thank the authorities and staff of the herbaria in Geneva (G) and Lund (LD) for sending specimens for comparative studies. We also thank Dr Kit Tan and Mr Ioannis Kofinas for photographs and information regarding the presence of the new species in Mt Ziria and the Pindos range, as well as Dr Panayotis Trigas for the photograph of Allium parnassicum. Franćišek Krahulc (Průhonic) and Panayotis Trigas (Athens) are thanked for their helpful comments on earlier versions of this paper.

References

Dimopoulos P., Raus Th., Bergmeier E., Constantinidis Th., Iatrou G., Kokkini S., Strid A. & Tzanoudakis D. 2013: Vascular plants of Greece: an annotated check-
Willdenowia 49 – 2019

