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ApApplicatitionsons
inin Pl Plant t ScienSciencesces

          Organisms consist of complex phenotypes that usually show 
intercorrelations between all or some of their components lead-
ing to phenotypic integration and modularity ( Berg, 1960 ; 
 Pigliucci, 2003 ). Interconnections between phenotypic traits re-
fl ect webs of developmental, physiological, and genetic interac-
tions behind the genotype-to-phenotype map ( Murren, 2002 ; 
 Armbruster et al., 2014 ). If a suite of traits is integrated, impor-
tant questions arise. For instance, is the observed integration 
the result of natural selection or does it refl ect developmental or 
genetic relationships among traits limiting and channeling its 
evolutionary course ( Pigliucci, 2003 ;  Hansen and Houle, 2004 )? 
The integration of the phenotypes then has functional implica-
tions that may shape the evolution of phenotypes. 

 In plants, most of the research on phenotypic integration has 
been focused on fl owers. Flowers are complex structures com-
posed of different organs that together work toward the same aim: 
offspring production. These fl oral organs may show different 

degrees of phenotypic integration ( Ordano et al., 2008 ;  Harder, 
2009 ). Several factors seem to cause fl oral integration. First, 
fl oral phenotypic integration may result from the effects of ge-
netic and/or developmental constraints ( Ashman and Majetic, 
2006 ;  Bissell and Diggle, 2010 ). Second, stabilizing selection 
imposed by pollinators on different fl oral organs may drive a 
decrease of phenotypic variation and an increase of phenotypic 
integration ( Armbruster, 1991 ;  Pérez-Barrales et al., 2007 ; 
 Rosas-Guerrero et al., 2011 ). Whatever the cause, fl oral inte-
gration may have deep consequences for fl oral trait evolution, 
such as the fl oral traits involved in the accurate placement of 
pollen grains on pollinators or stigmas ( Armbruster, 1991 ; 
 Pérez-Barrales et al., 2007 ;  Pérez et al., 2007 ;  Bissell and Diggle, 
2010 ;  Ferrero et al., 2011 ;  Rosas-Guerrero et al., 2011 ). 

 Although phenotypic integration is an important concept to 
understand the evolutionary process (e.g.,  Pigliucci and Preston, 
2004 ), it is also a complex concept ( Magwene, 2001 ;  Pavlicev 
et al., 2009 ;  Haber, 2011 ;  Armbruster et al., 2014 ) and diffi cult 
to distill into a single index. For instance, integration values 
might be, in part, a consequence of resource acquisition vari-
ability between individuals. This effect is more evident when 
the traits analyzed are resources allocated to different compo-
nents of a given organ or individual. When resource availability 
is not controlled, larger individuals may have larger compo-
nents, driving a correlation between components due, in part, to 
variation in resource availability. This correlation may obscure 
others that are unrelated to size, such as genetic correlations. To 
disentangle whether the levels of integration observed in a pop-
ulation are due to genetic constraints or to resource availability, 
 Torices and Méndez (2014)  proposed a size-controlled integra-
tion index using a modifi cation of the widely used  Wagner 
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  •  Premise of the study:  Organisms usually show intercorrelations between all or some of their components leading to phenotypic 
integration, which may have deep consequences on the evolution of phenotypes. One of the main diffi culties   with phenotypic 
integration studies is how to correct the integration measures for size. This has been considered a challenging task  . In this paper, 
we introduce an R package (PHENIX: PHENotypic Integration indeX), in which we provide functions to estimate a size-
controlled phenotypic integration index, a bootstrapping method to calculate confi dence intervals, and a randomization method 
to simulate null distributions and test the statistical signifi cance of the integration. 

 •  Methods and Results:  PHENIX is an open source package written in R. As usual for R packages, the manual and sample data 
are available at: http://cran.r-project.org/web/packages/PHENIX/index.html. Functions included in this package easily esti-
mate phenotypic integration by controlling a third variable (e.g., the size of the studied organ). 

 •  Conclusions:  PHENIX helps to estimate and test the statistical signifi cance of the magnitude of integration using one of the 
most-used methodological approaches, while taking size into account.  

  Key words:  correlation; partial-correlation matrix; PHENIX; size; software. 
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are randomly selected from a Pearson product moment correlation coeffi cient 
distribution (as implemented in the SuppDists package [ Wheeler, 2013 ]). 
This distribution is defi ned between −1 and 1, and its shape may be controlled 
by the user with the ‘N.Pearson’ parameter. Thus, the probability of drawing 
a value to fi ll the simulated correlation matrix will be higher for extreme val-
ues (that is, those closer to −1 and 1) if the ‘N.Pearson’ parameter is set to 3 
or for central values (that is, those closer to 0) if ‘N.Pearson’ is higher than 4. 
If ‘N.Pearson=4’, values will be drawn from a uniform distribution (that is, all 
values between −1 and 1 show the same probability of being sampled). How-
ever,  Harder (2009)  demonstrates that using a uniform distribution overesti-
mates the expected integration index. We selected 15 as a default value for the 
‘N.Pearson’ parameter because it generates distributions in line with those 
observed by  Harder (2009) . 

 The resulting simulated random matrix is used to estimate an integration 
index as implemented in ‘pint’ or ‘pintsc’. The procedure is repeated according 
to a value defi ned by the user (1000 times by default) to obtain a set of simu-
lated integration values to be used as a null distribution under the hypothesis of 
random correlations between every pair of traits. Given a set of traits, the null 
distribution for  PINT  and  PINTsc  is expected to be the same under random cor-
relation among all traits (Appendix S1). Both distributions associated with this 
method (that is, the one defi ned by the ‘N.Pearson’ parameter and the resulting 
null distribution for the integration index) can be visualized using the ‘plot’ 
option (set to ‘P’ and ‘R’, respectively). 

 We provide an example of the potential applications of PHENIX using a 
data set from a study on resource allocation to different fl ower components in 
the mostly single-fl owered  Paeonia     cambessedesii  (Willk.) Willk. (Paeonia-
ceae), performed by  Méndez and Traveset (2003) . This species is a self-
compatible, herbaceous perennial plant endemic to the Balearic Islands 
(Mediterranean Sea). Among other things,  Méndez and Traveset (2003)  stud-
ied the patterns of correlation between fl ower components using three alloca-
tion currencies (dry mass, nitrogen [N], and phosphorus [P]). Dry mass and 
P allocation to stamens and gynoecium were positively correlated, thus sug-
gesting that resource allocation to fl oral components could be signifi cantly 
integrated. Two plausible explanations arise from this pattern: (i) resource 
allocation to fl oral components might be correlated because of genetic corre-
lations or (ii) the observed correlation between resource allocation to fl oral 
components might also be the result of differences in size between fl owers 
included in the study. That is, larger fl owers might also display both larger 
stamens and larger gynoecia compared to smaller fl owers, driving this posi-
tive correlation between allocations to different components. To assess this 
effect, the size of the fl ower can be used to control for the resource acquisition 
variation. The comparison between  PINT  and  PINTsc  indices (without and 
with size-controlling, respectively) may help to assess the role of size in the 
observed magnitude of integration. 

 We estimated  PINT  and  PINTsc  for the  P. cambessedesii  data set using 
PHENIX functions and the example data set ‘paeonia’, included in the package: 

 # to load  Mendez and Traveset's (2003)  data on dry 
 mass allocation to fl oral components: 

 data(paeonia) 
 # This data set contains nine columns. The fi rst column 

  indicates the plant ID and the last one represents 
the total size of each fl ower (measured as total 
dry mass). Thus, fl oral component variables are 
columns 2 to 8: 

 fl .components<-paeonia [,2:8]  
 # to estimate Wagner's integration index: 
 PIN<-pint(paeonia [,2:8] ) 
 PIN 
 # to estimate confi dence intervals by bootstrapping: 
 PIN.BOOT<-pint.boot(paeonia [,2:8] , replicates=5000) 
 PIN.BOOT 
 # to test the statistical signifi cance of the integration: 
 PIN.P<-pint.p(paeonia [,2:8] ,n.replicates=5000) 
 PIN.P$Summary 
 # to save plot as a pdf fi le ( Fig. 1A ): 
 dev.copy2pdf(fi le="paeonia_pint.p.pdf") 
 # to estimate the size-controlled integration index 

  it is mandatory to defi ne the “control” variable. 
In this data set, the control variable is the total 
size of the fl ower: 

 PINSC<-pintsc(traits=paeonia [,2:8] , control=paeonia [,9] ) 
 PINSC 

(1984)  index, in which the size of the studied structure, as a 
proxy of resource availability, is taken into account. 

 In this paper, we introduce the PHENIX package (PHENotypic 
Integration indeX) available for the open sourced statistical 
software R ( R Core Team, 2014 ). In this package, we provide 
functions to estimate the phenotypic integration index proposed 
by  Wagner (1984) , where size cannot be considered, and the new 
size-controlled index ( Torices and Méndez, 2014 ). In addition, 
a bootstrapping method to calculate confi dence intervals and a 
randomization method to test the statistical signifi cance of the 
integration are available for both indices. Finally, we provide 
an example using data on resource allocation to fl oral components 
from  Méndez and Traveset (2003)  to show its applicability. 

 METHODS AND RESULTS 

 PHENIX estimates the phenotypic integration index proposed by  Wagner 
(1984)  and includes a modifi cation to this index proposed by  Torices and Méndez 
(2014)  where the effect of a third variable under study (e.g., size) can be taken 
into account. In the phenotypic integration index proposed by  Wagner (1984)  
( PINT  hereafter), the magnitude of phenotypic integration among a set of traits 
is quantifi ed by the variance of the eigenvalues ( λ ) of the correlation matrix 
between traits ( Wagner, 1984 ;  Cheverud et al., 1989 ). For the size-controlled 
index ( PINTsc  hereafter), the correlation matrix is replaced by a partial-correlation 
matrix ( Torices and Méndez, 2014 ). With the partial-correlation approach, the 
correlation structure between all traits is assessed after controlling by a third 
variable on the correlation between the studied traits. 

  PINT  value can only be directly comparable between data sets containing 
the same number of traits ( N ) and individuals ( n ) because the expected random 
covariation among traits depends on these values (specifi cally, it is determined 
by ( N  − 1) /  n ;  Wagner, 1984 ;  Cheverud et al., 1989 ;  Pavlicev et al., 2009 ). 
Thus, it is common to correct  PINT  by subtracting the expected amount of 
 PINT  produced by random covariation. In the PHENIX package, the function 
‘pintsc’ estimates (i) the observed  PINTsc  (Eq. 1), (ii) the corrected  PINTsc  in 
which the expected amount of integration produced by random covariation is 
removed (Eq. 2), and (iii) a relative value in which the magnitude of the pheno-
typic integration is also expressed as a percentage of the maximum possible 
value, by scaling  PINTsc  values according to the maximal eigenvalue variance 
determined by the number of measured traits minus 1 ( Pavlicev et al., 2009 ; 
Eq. 3). The  PINTsc  confi dence intervals are calculated by bootstrapping using 
the function ‘pintsc.boot’. The amount of random covariation between traits 
in partial-correlation matrices (Eq. 2) was assumed to be the same as in correlation 
matrices. However, the effect of the structure of the partial-correlation matrices 
on the variance of the eigenvalues requires further scrutiny to confi rm that this 
correction can be applied to  PINTsc . In addition, the functions ‘pint’ and ‘pint.
boot’ also estimate the  PINT  index, without control of a third variable, and its 
confi dence intervals, respectively. Eqs. 1, 2, and 3 are the same for both  PINT  
and  PINTsc  with the only difference being that  λ  represents the variance of the 
eigenvalues for a correlation matrix in the former and the variance of the eigen-
values of a partial-correlation matrix in the latter. 

    PINTsc = var    (1) 

    –1– N
Corrected PINTsc = var

n
   (2) 

    
–1

var
RelPINTsc =

N
   (3) 

 The statistical signifi cance of both integration indices,  PINT  and  PINTsc , 
can be assessed by   means of the functions ‘pint.p’ and ‘pintsc.p’, respectively. 
These functions generate a random-correlation matrix with a number of rows 
and columns equal to the number of traits in the input data set. Diagonal ele-
ments in this square symmetric matrix are set to 1, whereas off-diagonal values 
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 Fig. 1. Signifi cance level for the phenotypic integration indices of the dry mass allocation to fl oral components in  Paeonia cambessedesii  estimated 
without (A) and with (B) size-controlled correction. Histograms represent the distribution of each index assuming random correlation between traits. The red 
dashed line represents the phenotypic integration value observed for the real data set.  PINT  = phenotypic integration index proposed by  Wagner (1984) ; 
 PINTsc  = size-controlled index proposed by  Torices and Méndez (2014) ;  RelPINT  and  RelPINTsc  = relative values in which the magnitude of the pheno-
typic integration is expressed as a percentage of the maximum possible integration value;  PINT.c  and  PINTsc.c  =  PINT  and  PINTsc  indices corrected by 
subtracting the expected amount of integration produced by random covariation.   

  TABLE  1. Degree of phenotypic integration among absolute allocation of resources to fl oral components for three currencies (dry mass, N, and P) in the 
single-fl owered species  Paeonia cambessedesii   . a  

Non–size-controlled index Size-controlled index

 Corrected PINT   ±  SE (99% CI)  Rel PINT  Corrected PINTsc   ±  SE (99% CI)  Rel PINTsc 

Dry mass 0.852  ±  0.096*** (0.228−2.363) 18.96*** 0.206  ±  0.047 ns  (0.193−1.324) 8.19 ns 
Nitrogen 0.828  ±  0.109** (0.200−2.585) 25.46** 0.477  ±  0.062* (0.288−1.733) 16.68*
Phosphorus 0.625  ±  0.100** (0.075−2.370) 20.40** 0.548  ±  0.060* (0.331−1.831) 18.46*

  Note :  Corrected PINT  = phenotypic integration index proposed by  Wagner (1984)  corrected by subtracting the expected amount of integration produced 
by random covariation;  Corrected PINTsc  = the size-controlled index proposed by  Torices and Méndez (2014)  corrected by subtracting the expected 
amount of integration produced by random covariation;  Rel PINT  and  Rel PINTsc  = relative values in which the magnitude of the phenotypic integration 
is expressed as a percentage of the maximum possible integration value; SE = standard error; 99% CI = confi dence interval at 99%.  

  a  The statistical signifi cance of the integration indices was assessed by randomization: ns = nonsignifi cant; *** P  < 0.001, ** P  < 0.01, * P  < 0.05. 

 # to estimate confi dence intervals by bootstrapping: 
 PINSC.BOOT<-pintsc.boot(traits=paeonia [,2:8] , 

 control=paeonia [,9] , replicates=5000) 
 PINSC.BOOT 
 # to test the statistical signifi cance of the 

 integration: 
 PINSC.P<-pintsc.p(paeonia [,2:8] , control=paeonia [,9] , 

 n.replicates=5000) 
 PINSC.P$Summary 
 # to save plot as a pdf fi le ( Fig. 1B ): 
 dev.copy2pdf(fi le="paeonia_pintsc.p.pdf") 
 # to make a custom output (fi rst row in  Table 1 ) 
 row1<-matrix(c( 
 paste(PIN$PINT.c,"  ±  ", PIN.BOOT [4,2] ," (", PIN.

 BOOT [5,2] , "-", PIN.BOOT [6,2] ,")",sep=""), 
 PIN.P$Summary [3,3] , 
 PIN$RelPINT, 
 PIN.P$Summary [2,3] , 

 paste(PINSC$PINTsc.c,"  ±  ", PINSC.BOOT [4,2] ," 
 (", PINSC.BOOT [5,2] , "-", PINSC.BOOT [6,2] ,")",sep=""), 
 PINSC.P$Summary [3,3] , 
 PINSC$RelPINT, 
 PINSC.P$Summary [2,3]  
 ),nrow=1) 

 colnames(row1)<-c("Corrected PINT  ±  SE (99% CI)", 
  "P-value","Rel PINT","P-value","Corrected PINTsc 
 ±  SE (99% CI)","P-value","Rel PINTsc","P-value") 

 row.names(row1)<-"Dry mass" 
 as.data.frame(row1) 

 We observed that resources allocated to fl ower components were phenotypi-
cally integrated ( Table 1 ) . The magnitude of the integration was signifi cantly 
higher than the magnitude expected for all currencies ( Table 1 ;  Fig. 1 ) . The 
inclusion of size in the estimation of the magnitude of the integration produced 
a reduction in the observed integration in all studied currencies ( Table 1 ). Al-
though the confi dence intervals of both indices ( PINT  and  PINTsc ) overlapped, 
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suggesting that the difference between both indices was not statistically signifi -
cant ( Table 1 ), the statistical tests indicate that at least for dry mass, the ob-
served integration may be signifi cantly due to differences in size. 

 The reduction in the value of integration when size was taken into account 
was more pronounced for dry mass allocation, indicating that a higher part of 
the observed integration could be produced by differences in size, compared to 
the observed integration for P allocation, which almost did not vary after having 
controlled by size ( Table 1 ). In addition, the size-controlled measure of integra-
tion for dry mass allocation was not signifi cantly different from a null distribution 
assuming that there is a random correlation between traits ( Fig. 1 ). Therefore, 
when size was taken into account, the magnitude of the integration in terms of 
dry mass allocation was not distinguishable from a random pattern of correla-
tion. This result suggests that, to a certain extent, the integration observed in the 
resources allocated to fl oral components in  P. cambessedesii  could be produced 
by differences in size. Nevertheless, a signifi cant amount of integration was still 
observed in the allocation patterns to fl oral components in terms of N and P, 
even when the potential effect of size was controlled, thus supporting the asser-
tion that genetic correlations may be leading to positive correlations between 
fl oral components, such as allocation to male and female organs. 

 CONCLUSIONS 

 PHENIX provides a simple solution to assess the effect of size 
on the magnitude of phenotypic integration using a modifi cation 
of one of the most-used indices (the  Wagner [1984]  index,  PINT ) 
to quantify the magnitude of integration. One of the main prob-
lems with integration studies is how to correct the phenotypic 
integration measures for size, which has been considered a 
“thorny task” ( Armbruster et al., 2014 ). The size-controlled in-
dex included in PHENIX ( PINTsc ) takes into account the effect 
of size on the correlation matrix. Thus, the comparison between 
both indices ( PINT  and  PINTsc ) will inform us of the effect of 
size on integration. A priori, we could expect a reduction in the 
magnitude of integration after controlling by size, although the 
opposite has also been observed ( Torices and Méndez, 2014 ). 

 PHENIX does not solve problems associated with how to 
measure size, but it provides a framework to incorporate size 
once it has been measured. Which metric measure(s) better de-
scribes the size of plant organs can be case specifi c. However, 
we propose to measure size in terms of dry weight when possi-
ble (e.g.,  Pérez-Harguindeguy et al., 2013 ). We recognize that 
it is not always possible to perform destructive harvests to esti-
mate dry weights. However, we recommend looking for prox-
ies in a subset of individuals, exploring what metric trait (e.g., 
organ length) or combination of traits (e.g., organ length and 
organ width) can have a strong linear relationship with the or-
gan’s dry weight to be considered subsequently in the estima-
tion of the integration magnitude. 

 Although this method was developed to control by size, our 
functions allow the user to control for variables other than size. 
Thus, this feature broadens the utility of this method beyond 
size-correction comparisons. Overall, the package and proce-
dures described in this paper may improve the study of pheno-
typic integration by providing researchers with a framework to 
estimate and test the statistical signifi cance of the magnitude of 
the integration with free statistical software. 
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