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Chaetopterid tubes from vent and seep sites: Implications
for fossil record and evolutionary history of vent and seep
annelids

STEFFEN KIEL and PAUL R. DANDO

Kiel, S. and Dando, P.R. 2009. Chaetopterid tubes from vent and seep sites: Implications for fossil record and evolution−

ary history of vent and seep annelids. Acta Palaeontologica Polonica 54 (3): 443–448. DOI: 10.4202/app.2009.0022.

Vestimentiferan tube worms living at deep−sea hydrothermal vents and cold seeps have been considered as a clade with a

long and continuing evolutionary history in these ecosystems. Whereas the fossil record appears to support this view, mo−

lecular age estimates do not. The two main features that are used to identify vestimentiferan tubes in the fossil record are

longitudinal ridges on the tube’s surface and a tube wall constructed of multiple layers. It is shown here that chaetopterid

tubes from modern vents and seeps—as well as a number of fossil tubes from shallow−water environments—also show

these two features. This calls for a more cautious interpretation of tubular fossils from ancient vent and seep deposits. We

suggest that: current estimates for a relatively young evolutionary age based on molecular clock methods may be more re−

liable than the inferences of ancient “vestimentiferans” based on putative fossils of these worms; not all of these putative

fossils actually belong to this group; and that tubes from fossil seeps should be investigated for chitinous remains to sub−

stantiate claims of their potential siboglinid affinities.
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Introduction

The evolutionary origin of the fauna at hydrothermal vents
and cold seeps is a major question in deep−sea biology (Van
Dover et al. 2002; Kiel and Little 2006). These ecosystems
are inhabited by a suite of animals that rely on chemosyn−
thetic bacterial symbionts for nutrition (Van Dover 2000).
Due to their exceptional level of endemism at high taxo−
nomic rank, it was suggested that these faunas have a long
and continuing evolutionary history that ranges back into
Palaeozoic times. One example of such a presumably ancient
group are vestimentiferan tube worms (Newman 1985; Little
2002; Peckmann et al. 2005). However, morphological and
molecular data show that Vestimentifera are not a vent and
seep−obligate phylum but are annelids within the family
Siboglinidae (McHugh 1997; Rousset et al. 2004), and mo−
lecular clock studies indicate that they have a quite recent or−
igin (Black et al. 1997; Halanych et al. 1998).

The fossil record can potentially test these hypotheses be−
cause it provides direct evidence for the minimum geologic
age of the animals in question. Although vents and seeps
have an extensive fossil record (Campbell 2006), palaeonto−
logical and molecular data seem to provide contradicting re−
sults. Little and Vrijenhoek (2003) emphasised that molecu−

lar clocks indicate a Cainozoic origin for many vent and seep
animals, whereas the fossil record suggests a Mesozoic or
even Palaeozoic origin. In two out of their three examples
(bathymodiolin mussels and vesicomyid clams), however,
the putative Mesozoic occurrences subsequently proved to
be misidentifications (e.g., Amano and Kiel 2007; Amano et
al. 2008; Kiel and Peckmann 2008). The confirmed oldest
occurrences of these two bivalve groups are from the mid−
Eocene and thus in relatively good agreement with the mo−
lecular age estimates (Kiel 2006; Amano and Kiel 2007).
This calls for an evaluation of the criteria on which vesti−
mentiferans have been identified in the fossil record.

The interpretation of tubes from fossil vent and seep de−
posits as vestimentiferans is generally based on two assump−
tions. First, longitudinal ridges on the surface of the tubes
have been considered unique to vestimentiferans (Little et al.
2004). This argument has mainly been used for vent fossils
because they often preserve delicate features of the tube’s
surface (Little et al. 1999, 2004). Second, the de−lamination
of tube layers due to mineral deposition is regarded as spe−
cific to vestimentiferans (Peckmann et al. 2005), implying
that layered tube walls are unique to this group. At cold seeps
this layered structure facilitates growth of aragonite needles
between the layers, resulting in a delaminated, calcified tube
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that can also be recognised in petrographic thin sections of
fossil specimens (Goedert et al. 2000; Peckmann et al. 2005;
Haas et al. 2009). Early mineral precipitation within the lay−
ered tube facilitates its fossilisation also at vents (Maginn et
al. 2002). Bacteria are likely to contribute to the mineralisa−
tion and de−lamination of the tube walls (Lechaire et al.
2002). The validity of these two assumptions is assessed here
in the light of the tube structure of chaetopterid annelids from
vents and seeps. In addition, the use of tube size and tube
mass occurrences to infer vestimentiferan affinities of
ancient tubes is evaluated.

Institutional abbreviation.—SMF, Senckenberg Museum,
Frankfurt, Germany.

Material and methods

The chaetopterid from the Blake Ridge seep site was collected
during Alvin dive 3712 (32�29.623' N, 76�11.467' W; 2155 m
depth; cf., Van Dover et al. 2003). The tubes have length of at
least 50 mm and have a maximum diameter of 2 mm. Chaeto−
pterids from the Gulf of California were collected from a mud
volcano during the El Puma WAG−01 cruise at 31�3.771' N,
114�5.189' W; 103 m depth. The tubes had a maximum length
of at least 400 mm and diameters from 0.7–2.8 mm. Chaeto−
pterids from the Mid−Atlantic Ridge vent site Ashadze were
collected by the ROV Victor 6000 during the SERPENTINE
cruise on dive 311−2 (12�58.3530’ N, 44�51.7835’ W; 4085 m
depth; cf. Fouquet et al. 2008). The tubes have a length of at
least 200 mm and have a maximum diameter of 6 mm. Speci−
mens of Ridgeia spp. from Alvin dive 3236 to vent sites at the
Endeavour Ridge were available for comparison.

Specimens for SEM observations were cleaned in alcohol
and in an ultrasound bath of distilled water. One specimen
was embedded in resin to produce a polished longitudinal
cross section of the tube. This specimen was carbon sput−
tered prior to examination on a LEO 1455VP scanning elec−
tron microscope with attached EDS detector, at the Geo−
logisch−Paläontologisches Institut, Universität Hamburg.
Cleaned and air dried specimens were mounted on stubs and
gold sputtered for SEM work. The mineralogy of the brown−
ish−red crust on the surface of tubes from the Ashadze vent
site was analysed using powdered samples on a Siemens
D5000 Bragg−Brentano diffractometer, at the Institut für
Geowissenschaften, Universität Kiel.

Results and discussion

Chaetopterid tubes.—Chaetopterids secrete complex poly−
saccharide tubes (Berkeley 1922). Most chaetopterids live
partly buried in the sediment in a, more or less, vertical tube
that does not conspicuously taper, although some have a re−
stricted anterior opening (Barnes 1965). A few species have
U−, L−shaped or branched tubes, while the tubes of some spe−

cies lie mainly horizontally on the substratum (Barnes 1965;
Sendall et al. 1995). The tubes have thickened annulae be−
tween secreted tube sections (Barnes 1965) that are flanged
in some species (Fig. 1).

Dense aggregations of chaetopterid tubes have been
found at vent sites on the Mid−Atlantic Ridge (Desbruyères
et al. 2001, 2006; Fouquet et al. 2008) and the Lau Basin
(Nishi and Rouse 2007), and around mud volcanoes in the
Gulf of California, the Barbados Accretionary Prism (Olu et
al. 1996), on the Blake Ridge Diapir (Van Dover et al. 2003),
at cold seep sites in Sagami Bay, Japan (Nishi et al. 1999),
and around whale−falls in Monterey Bay, California (Braby
et al. 2007). They are also more common at cold seeps on the
Californian margin than at equivalent non−seep sites (Levin
et al. 2000). Chaetopterids probably thrive at vent and seep
sites, given suitable substrate, because of the high bacterial
biomass that they can collect for food by filtering water
through the mucosal sacs they form in their tubes (Barnes
1965; Sendall et al. 1995). In addition, the flux of seawater
through their tubes into the sediment would prevent their ex−
posure to high sulphide concentrations. They are also able to
reverse the water flow, thus preventing toxic fluids from en−
tering the tube (Barnes 1965).

Longitudinal ridges on tubes from vents and seeps.—
Chaetopterid tubes of two species from the Gulf of California
have distinct longitudinal ridges on their surface. SEM im−
ages show that these ridges are the longitudinal edges of the
individual sheets comprising the tube wall (Fig. 2A). They
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Fig. 1. Vestimentiferan and chaetopterid tubes from modern vents and

seeps. A. Ridgeia sp. from a vent site on the Endeavour Ridge (SMF

18862). B. Chaetopterid tube from the Gulf of California (SMF 18863).

C. Chaetopterid tube from the Ashadze vent site (SMF 18864).
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are thus structurally identical with the longitudinal ridges on
tubes of Ridgeia spp. and other Vestimentifera (Fig. 2B), al−
though the edges appear to be smoother in vestimentiferan
tubes, perhaps due to a difference in material. However, the
edges have the widths of a few micrometers and it remains to
be shown that this difference is discernable in vent fossils.
This character is therefore insufficient to identify Vesti−
mentifera in the fossil record. In addition, longitudinal ridges
are absent or only confined to the anterior few centimetres of
the tubes of many Vestimentifera, such as species of Lamelli−
brachia (Webb 1969; Dando et al. 1992; Hughes and Craw−
ford 2006) and in Arcovestia ivanovi (Southward and Galkin
1997). They are also absent from the tubes of most frenulate
and moniliferan pogonophores in the Siboglinidae (Webb
1964; Flügel 1990), although some can have wrinkles on in−
ner layers (Smirnov 2000). Similarly the tubes of many spe−
cies of chaetopterids lack these ridges (Bhaud et al. 1994;

Bhaud and Petti 2001) while others have an outer tube layer
of cemented sand grains (Barnes 1965). However, most of
the chaetopterid species examined from vent and seep sites
exhibit wavy longitudinal ridges on the outside of the tubes.

The preservation of delicate external features on tubes at
fossil vents requires the early formation of a cast of the tube’s
surface. Maginn et al. (2002) emphasised the importance of
the early mineralisation of the tube wall for its fossilisation.
But the fact that also external features of the organic perio−
stracum of molluscs are preserved in vent fossils (cf., Little et
al. 1999) clearly shows that a cast of the surface is more im−
portant for preserving its external morphology than the mode
of mineralisation of the surface itself. Chaetopterid tubes
from the Ashadze vent site show the formation of such an
early cast. They are covered by a thin, brownish−red crust
that appears as a bright layer in SEM backscatter images
(Fig. 2C, D). EDS analyses indicate that this crust is mainly
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Fig. 2. Chaetopterid and vestimentiferan tubes from modern vents and seeps. A. Chaetopterid tube from the Gulf of California showing longitudinal ridges

(SMF 18865). B. Tube of Ridgeia sp. for comparison (SMF 18866). C. Longitudinal fracture through the tube wall of a chaetopterid from the Ashadze vent

site showing the iron crust on the surface and the layered structure of the tube wall (SMF 18867). D. SEM backscatter image of a longitudinal section of the

tube wall showing iron−silica precipitates between the individual sheets of the tube wall; same specimen as in C.
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composed of iron and minor amounts of manganese, magne−
sium, and silica; XRD shows that the crust is amorphous
rather than crystalline. Surface features of chaetopterid tubes
have thus a high potential to become fossilised.

Tube wall structure.—All investigated chaetopterid tubes
from the Mid−Atlantic ridge vents at Ashadze and from the
Gulf of California mud volcano and the Blake Ridge seep are
constructed of multiple sheets of cornified organic material.
This is evident from SEM observations on dry, fractured
tubes and on resin−embedded longitudinal sections of tubes
(Fig. 2C, D). No carbonate precipitates have been observed
between the individual sheets of the chaetopterid tubes from
the Blake Ridge seep site. However, only few specimens
were available for study.

Chaetopterids pump water through their tubes. Those with
vertically−orientated tubes release the water into the sediment
through the posterior end of the tube (Barnes 1965; Sendall et
al. 1995), thus injecting sulphate into the sediment, like cold−
seep vestimentiferans (Dattagupta et al. 2006). In methane
seep situations chaetopterids should also stimulate anaerobic
methane oxidation, carbonate precipitation and the de−lamina−
tion of the tube as described for vestimentiferan tubes from the
Congo fan (Haas et al. 2009). Chaetopterid tubes from the
Ashadze vent site show iron−silica precipitates between the in−
dividual sheets of the tube wall (Fig. 2D), providing further
support for this suggestion. In methane−seep settings, miner−
alisation of chaetopterid tubes is more likely to occur than
those of seep vestimentiferans, since the latter excrete protons
into the sediment (Dattagupta et al. 2006) and this would in−
hibit precipitation of carbonates and other minerals.

Tube size and mode of occurrence.—Similarities in tube
size, as well as the mass occurrence of such tubes, have been
used to link tubes from fossil vents and seeps to modern
Vestimentifera (Little et al. 1999; Peckmann et al. 2005).
Chaetopterid tubes can have tube diameters up to several centi−
metres (Enders 1909) and some species, such as Mesochaeto−
pterus rickettsi, can extend vertically for more than 2 m
(MacGinitie and MacGinitie 1949). Thus vestimentiferan and
chaetopterid tubes have very similar size ranges. The proposed
Devonian seep vestimentiferan fossils (Peckmann et al. 2005)
are also odd in that the tubes are described as not tapering,
whereas all seep Vestimentifera have tapering tubes that nar−
row towards the posterior end (cf., Webb 1969) and need to do
so because of their mode of nutrition (Dattagupta et al. 2006).

Ecological analogues suggest that the mass occurrence of
tubes at ancient vents and seeps, resembling those of Vesti−
mentifera at modern sites, are not conclusive evidence for the
presence of Vestimentifera at the ancient vents. Various
tube−dwelling annelids are known to form dense clusters,
given that enough food is available, including chaetopterids,
serpulids, and sabellariids (Barnes 1965; Bosence 1973;
Kirtley 1994). Likewise, one would expect extinct annelids
adapted to vents and seeps to occur at these sites in large clus−
ters, as several modern forms do at such sites today (Van Do−
ver 2000; Levin 2005; Desbruyères et al. 2006).

At a Devonian hydrothermal vent deposit tube fossils of a

presumed pogonophoran annelid were found parallel to the

bedding of the sulphides (Little et al. 1999), which the

authors interpreted as its epifaunal life position. Recently

Fouquet et al. (2008: fig. 6b) showed that the chaetopterids at

the Ashadze vent site are entirely epifaunal and live in dense

clusters on the bare seafloor. This mode of life is thus not re−

stricted to siboglinid tube worms.

Flanges.—Annulae or trumpet−like flanges are seen in many
vestimentiferan tubes in irregular intervals (Fig. 1A) and have
also been reported from alleged fossil vestimentiferans (e.g.,
Little et al. 2004). This feature is not unique to vestimenti−
ferans, but can for example also be seen in chaetopterid tubes
from the Ashadze vent site (Fig. 1C) and were observed on
chaetopterid tubes from the Blake Ridge seep. Similar flanges
are known from the calcareous tubes of serpulids, including
the deep−water species Vermiliopsis infundibulum (Bailey−
Brock 1972) and have been reported from tubes of the enig−
matic Ediacaran Cloudina (Bengtson and Zhao 1992).

Other tubes.—Layered tube walls are not unique to Vesti−
mentifera but also exist in chaetopterids and in the chitin−
containing tubes of phoronids (Hyman 1958; Emig 1982).
However, phoronid tubes can be distinguished from the ante−
rior ends of vestimentiferan tubes by their lack of segmenta−
tion and because they have an outer tube wall that is coated
with sand grains and debris from the sediment (Adegoke
1967; Emig 1982). Morphological and molecular data indi−
cate that Vestimentifera and chaetopterids are not closely re−
lated (cf., Rouse and Pleijel 2001; Rousset et al. 2004; Struck
et al. 2007), suggesting that layered tubes may potentially oc−
cur in other annelids as well, or may have existed in extinct
annelid clades in the geologic past. In addition, layered or−
ganic tubes may not be restricted to annelids and phoronids.
Chen et al. (2008) documented that the tube wall of the enig−
matic Ediacaran fossil Sinotubulites is composed of thin, pre−
sumably organic sheets. Longitudinal ridges can be seen on
the elongate−conical tubes of Palaeozoic cornulitids; these
are ornamental features that may have served to stabilise the
tube (Vinn and Mutvei 2005). In other aspects cornulitid
tubes are very unlike those of Vestimentifera (they are cal−
careous and have septae) but they demonstrate—along with
the examples provided above—that longitudinal ridges of
different structure are present on a wide range of annelid and
non−annelid tubes.

Since all annelids can form chitin, they have chitinous

chaetae (Purschke 2002), it is probable that extinct annelid

groups could also have formed tubes of this material. For ex−

ample, tubes of the Cambrian Hyolithellus have been inter−

preted as belonging to the pogonophorans because they are

chitinous (Carlisle 1964). More recent authors seem to prefer

not to assign this fossil to any class or phylum, cf., Skovsted

(2006). More fossils with well−preserved tube remains are

needed so that evidence for chitin in putative vestimenti−

ferans can be obtained.
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Conclusions

To summarise, the features currently used to identify Vesti−
mentifera in the fossil record are not unique to this group. This
calls for a more cautious interpretation of tubular fossils at an−
cient vents and seeps. Comparison to the geologic ranges and
molecular age estimates of other taxa inhabiting these ecosys−
tems, particular molluscs, suggests that not all “vestimenti−
feran” fossils actually belong to this group. Instead, extinct
clades of annelids are just as likely to have flourished at vents
and seeps in the geologic past. It is suggested that (i) molecular
clocks provide a more reliable estimate for the evolutionary
age of vestimentiferan tube worms than the geologic record of
tubular fossils, and (ii) tubular fossils from ancient seep depos−
its should be investigated for chitinous tube remains to provide
evidence for possible siboglinid affinities.
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