

Haemoproteus tinnunculus in the American Kestrel (Falco sparverius)

Authors: Maloney, P. J., Bennett, G. F., Bird, D. M., and Lewis, D. J.

Source: Journal of Wildlife Diseases, 20(1): 57-58

Published By: Wildlife Disease Association

URL: https://doi.org/10.7589/0090-3558-20.1.57

The BioOne Digital Library (https://bioone.org/) provides worldwide distribution for more than 580 journals and eBooks from BioOne's community of over 150 nonprofit societies, research institutions, and university presses in the biological, ecological, and environmental sciences. The BioOne Digital Library encompasses the flagship aggregation BioOne Complete (https://bioone.org/subscribe), the BioOne Complete Archive (https://bioone.org/archive), and the BioOne eBooks program offerings ESA eBook Collection (https://bioone.org/esa-ebooks) and CSIRO Publishing BioSelect Collection (https://bioone.org/esa-ebooks) and CSIRO Publishing BioSelect Collection (https://bioone.org/csiro-ebooks).

Your use of this PDF, the BioOne Digital Library, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Digital Library content is strictly limited to personal, educational, and non-commmercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne is an innovative nonprofit that sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Haemoproteus tinnunculus in the American Kestrel (Falco sparverius)

P. J. Maloney, Department of Entomology, Macdonald College of McGill University, Ste. Anne de Bellevue, Quebec H9X 1C0, Canada; G. F. Bennett, International Reference Centre for Avian Haematozoa, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada; D. M. Bird, Macdonald Raptor Research Centre, Macdonald College of McGill University, Ste. Anne de Bellevue, Quebec H9X 1C0, Canada; and D. J. Lewis, Department of Entomology, Macdonald College of McGill University, Ste. Anne de Bellevue, Quebec H9X 1C0, Canada

Unspecified species of Haemoproteus have been recorded from American Kestrels in Texas (Couch, 1952, Field Lab. 20: 146-154), Georgia (Love et al., 1953, J. Parasitol. 39: 52-57), Colorado (Stabler and Datel, 1959, J. Colo.-Wyo. Acad. Sci. 4: 59; Stabler and Holt, 1965, J. Parasitol. 51: 927-928) and Panama (Huff and Wetmore, 1967, Bull. Wildl. Dis. Assoc. 3: 178-181); and Haemoproteus elani de Mello, 1935 has been recorded from kestrels in Oklahoma (Kocan et al., 1977, J. Wildl. Dis. 13: 304-306). However, there are no published identifications of Haemoproteus tinnunculus (Wasielewski and Wülker, 1918) emend. Wingstrand (1947, K. Sven. Vetenskapsakad. Handl. 24: 1-31) in this avian host in North America. This investigation reports the presence of this parasite in kestrels residing in the environs of Montreal, Quebec.

Eight wild kestrels (3 nestlings and 5 breeding adults) and 50 captive-reared kestrels (born and raised in captivity under conditions that would allow exposure to arthropod vectors) were sampled from June to August 1981 within a 10-km radius of the Macdonald Campus of McGill University, Ste. Anne de Bellevue, Quebec. The five wild adult kestrels were caught in mist nets located below their nest sites where a live Great Horned Owl (*Bubo virginianus* (Gmelin)) was tethered to elicit adult defensive behavior. Blood smears were made and fixed in the field and subsequently stained with Giemsa ac-

scribed by Bennett (1970, Can. J. Zool. 48: 585–586). All slides were examined under a 100× oil immersion objective for a minimum of 10 min. Slides with haemoproteid infections were sent to the International Reference Centre for Avian Haematozoa for specific identification of the parasites (IRCAH Accession Numbers 86100–86105). Infection intensities were calculated by counting the number of parasitized cells seen in 10,000 erythrocytes.

cording to the protocols previously de-

Six kestrels (10%) were found to be parasitized with *Haemoproteus*; no other blood parasites were observed. All infected birds were adults; five were wild-caught and one was captive. While all five wildcaught adults were infected, the three nestlings were not, and it is possible that the latter group was sampled prior to patency of the haemoproteid. Infection intensities were 2-93 ($\bar{x} = 42$, SD = 44.3) in wild-caught kestrels and 6 in the captive kestrel. Bennett et al. (1972, J. Parasitol. 58: 1143-1147) formulated a working hypothesis which suggested that haemoproteids are family specific, although this may require further investigation. Haemoproteids can also be separated on morphometric characters. On the basis of these criteria, the haemoproteids seen in the six kestrels (Fig. 1) were identified as H. tinnunculus. This constitutes the first identification of this species in both American Kestrels and in North American falconids. Although Kocan et al. (1977, J. Wildl. Dis. 13: 304-306) designated H. elani as the haemoproteid in kestrels from Oklahoma,

Received for publication 11 June 1982.

FIGURE 1. Haemoproteus tinnunculus from Falco sparverius. A and B. Mature macrogametocyte. C. Macrogametocyte and microgametocyte. D. Microgametocyte.

this diagnosis could be questioned since *H. elani* was described from an accipitrid (*Elaneus caeruleus* (Desfont.)) not a falconid. *Haemoproteus tinnunculus* can now be considered to be more nearly cosmopolitan in its distribution although most records, as summarized by Bennett et al. (1982, A host-parasite catalogue of the

avian hematozoa, Memorial Univ. Nfld. Occ. Pap. Biol. No. 5, 243 pp.), indicate that it is most commonly encountered in the Old World.

Infection of the captive kestrel suggests the presence of a local vector as opposed to infections being acquired in the kestrels' southern range during winter migration. Several species of Culicoides (Diptera: Ceratopogonidae) are known vectors of Haemoproteus; these include C. sphagnumensis Williams and C. stilobezzioides Foote and Pratt (Fallis and Bennett, 1960, Can. J. Zool. 38: 455-464). Both species have been previously reported from Quebec (Duffy, 1979, Bionomics of the genus Culicoides Latreille (Diptera: Ceratopogonidae) at Lac Serpent, Quebec, M.Sc. Thesis, McGill Univ., Montreal, Quebec, 278 pp.) and are therefore possible vectors of H. tinnunculus in this region. The significance of these results cannot be fully realized until further research is undertaken to determine the identity of the vector and the possible pathogenicity of H. tinnunculus to the American Kestrel. Members of the genus Haemoproteus, with the exception of one report (Julian and Galt, 1980, J. Wildl. Dis. 16: 39-44), are not known to cause serious pathogenicity or mortality to their hosts (Bennett et al., 1976, In Wildlife Diseases, Page (ed.), Plenum Press, New York, New York, pp. 25-33).

We are grateful to Dr. E. Meerovitch, Institute of Parasitology, McGill University, for logistic support, and Mr. S. Sobkowiak, Ms. N. Rehder and Mr. N. Klar for assistance in handling kestrels.