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Abstract

Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of

metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown

to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to

interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental

role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have

receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic

(leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown

to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles

(granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in

the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte

maturation, trophoblast development, and implantation and placentation. In some studies, KISS1

was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of

KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely

involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast

attachment, and implantation and pregnancy. A deeper understanding of the direct action of

KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and

improvement in the efficiency of assisted reproductive technology.

Summary Sentence

Kisspeptin acts within the brain to influence GnRH secretion, and there is now strong evidence

that it also acts at peripheral reproductive tissues to directly influence ovarian function, embryo

development, implantation and pregnancy.

Key words: kisspeptin, GnRH secretion, ovary, embryo, implantation, pregnancy.
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Figure 1. Diagrammatic representation of kisspeptin (KISS1) and GnRH neurons in the brain. KISS1 neurons have leptin (LepRb) receptors and ERα, which places

KISS1 neurons at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. KISS1 neurons have axon projections to GnRH neuron cell

bodies in the hypothalamus and GnRH neuron axons in the vicinity of the median eminence. In the mouse, KISS neurons are localized at the ARC and AVPV.

In livestock, KISS1 neurons are localized to the ARC and POA. Estrogen-positive feedback operates at KISS1 neurons in the AVPV (mouse [220]), POA (primates

[120]), and ARC and POA (sheep [40, 115]). Steroid positive and negative feedback acts at KISS1 neurons in the ARC across species. KISS1 appears to influence

GnRH release within the median eminence by the interaction of KISS1 neuron synaptic terminals with GnRH neuron axons in sheep [116]. The LepRb receptor

on KISS1 neurons in the AVPV is shown as a broken circle as there remains a lack of consensus with reports of the presence (e.g. [51]) and the absence (e.g.

[47]).

Introduction

The peptide kisspeptin (KISS1) is encoded by the KISS1 gene and is
a major regulator of reproductive function. The role of KISS1 within
the brain to regulate gonadotropin releasing hormone (GnRH) secre-
tion has been well characterized [1–13] (Figure 1). KISS1 also acts
outside the brain at peripheral reproductive tissues (e.g. ovary,
uterus) [14–16]. The aim of the present review was to bring together
information on the emerging roles of KISS1 beyond the brain. A
number of previous reviews have looked at different stages in the
history of KISS1. It was considered important in the present review to
first consolidate, into a single source, work that led to the discovery
and characterization of KISS1. This approach will provide readers
with the background of how discovery of the KISS1 gene and KISS1
protein quickly led to an understanding of the fundamental role of
KISS1 in GnRH release [3, 17].

In 1996, the expression of the KISS1 gene was demonstrated in
human nonmetastatic melanoma cells [18] (Table 1). This finding
led to the suggestion that the expression of KISS1 conferred the
nonmalignant phenotype in melanoma cells [18]. Within 1 year, it
was reported that the expression of KISS1 did indeed suppress metas-
tasis in human breast carcinoma cells [19]. The peptide encoded by
KISS1 was first isolated in 2001 from human placenta. It was named
metastin by one research group to reflect its metastasis-suppressing
properties [20]. A second research group named the peptide KISS1

as it belonged to the kisspeptins [21]. G protein-coupled receptor 54
(GPR54; renamed KISS1 receptor, KISS1R) had been discovered in
1999 as an orphan receptor in the rat brain [22]. In 2001, KISS1
was shown to bind to KISS1R (Table 1). Two years later in 2003,
natural mutations in the KISS1R gene were found to be associated
with idiopathic hypothalamic hypogonadism and impaired puberty
in humans (Table 1). At the same time, targeted mutations of the
KISS1R gene disrupted puberty in mice [23, 24]. The findings for
KISS1R in humans and mice focused attention on the role of KISS1
in reproduction. Within a short period, it was established for rodents,
ruminants, and primates that KISS1 induced the secretion of GnRH
[25] and it had been shown that GnRH neurons expressed KISS1R
[11, 26, 27] (Figure 1). It was also shown that KISS1 neurons in the
brain expressed the receptor for leptin in mice [28] and sheep [29].
The latter led to the concept that KISS1 acts as a mediator in brain
pathways that link metabolic status to reproductive function [29–
39]. KISS1 neurons also express estrogen receptor α, further linking
KISS1 to the reproductive neuroendocrine axis [40, 41] (Figure 1).

There is evidence that leptin can influence KISS1 neurons by indi-
rect pathways that do not involve classical binding to the KISS1R.
For example, selective deletion of KISS1R from hypothalamic KISS1
neurons had no apparent deleterious effect on puberty or fertility
in female mice [42]. Also, intracellular signal transduction from the
KISS1R typically involves the transcription factor, signal transducer
and activator of transcription 3 (STAT3) [43], and STAT3 was shown
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Table 1. Chronology of the discovery of kisspeptin (KISS1) and G protein-coupled receptor 54 (GPR54, renamed KISS1R).

Year Event Reference

1996 KISS1 gene expression demonstrated in human nonmetastatic melanoma cells, suggesting that KISS1
expression conferred the nonmalignant phenotype in melanoma cells

[18]

1997 KISS1 expression shown to suppress metastasis in human breast carcinoma cells [19]
1999 Discovery of orphan receptor GPR54 in rat brain [22]
2001 Metastin/KISS1 isolated from human placenta as products of the KISS1 gene [20, 21]
2001 KISS1 shown to bind to orphan receptor GPR54 [20, 21, 210–212]
2003 Natural mutations in GPR54 shown to be associated with idiopathic hypothalamic hypogonadism and

impaired puberty in humans
[213–217]

2003 Targeted mutation of GPR54 gene disrupted puberty in mice [23, 24]
2004 KISS1R expression demonstrated on GnRH neurons [11, 26, 27]
2004 KISS1 expression demonstrated in trophoblast giant cells in rats [157]
2004 KISS1 shown to act as trophoblast repressor in women [147]
2005 KISS1 shown to stimulate GnRH release through GPR54 [218]
2005 KISS1 shown to have a fundamental role in the onset of puberty in mice, subsequently shown in other species [14, 27, 219]

to be absent from KISS1 neurons in mice [44, 45], rats [46], and
sheep [47]. However, it was reported for mice that while STAT3 is
required for the action of leptin in metabolic homeostasis and energy
expenditure, STAT3 may not be obligatory for the effects of leptin
on reproduction [48–50]. The above reports for rodents indicate
that leptin can act at multiple sites, and through different pathways,
within the brain to influence metabolism and reproduction [42, 44,
51, 52]. A further level of complexity in leptin action within the
brain is the colocalization and interaction with neurokinin B (NKB)
and dynorphin (Dyn) neurons, collectively termed KNDy neurons [7,
53–56]. The latter has been demonstrated particularly in the arcuate
nucleus (ARC) in rodents [57, 58], sheep [59, 60], and cattle [61].
Interaction between KISS1, NKB, and Dyn in the ARC is associated
with the regulation of both metabolic and reproductive functions
[12, 62]. The metabolic actions of KISS1 within the brain also
involve interaction with agouti-related peptide (AgRP)/neuropeptide
Y neurons and proopiomelanocortin neurons of the ARC [63].

KISS1 belongs to the Arg-Phe-NH2 (RF-amide) peptide
superfamily [64, 65]. The kisspeptin group includes kisspeptin-54
(KISS1), kisspeptin-14, kisspeptin-13, and kisspeptin-10 [21, 10,
66] (Figure 2). KISS1 has an RF-amide motif (humans, nonhuman
primates) or RY-amine motif (livestock, rodents) at the C-terminal,
which is required for binding to KISS1R [67–69]. Natural sequence
KISS1 undergoes rapid proteolytic degradation [70], and agonists
have been developed, which have an extended half-life in circulation
and high biological potency [71–74]. KISS1 antagonists have also
been developed to study the effect of blocking KISS1 action [71, 72,
76–78]. KISS1 agonists and antagonists have been used primarily to
study the role of KISS1 within the brain to regulate GnRH secretion
[72, 73, 79–82]. The potential to use KISS1 analogs to study the
action of KISS1 at other reproductive tissues (e.g. ovary, trophoblast,
uterus) is discussed below.

The action of KISS1 at peripheral reproductive tissues (ovary,
trophoblast, uterus) has emerged as an important component of the
cellular and molecular processes associated with embryo survival,
implantation, and the establishment of a pregnancy. The period
leading to a pregnancy is a critical time for embryos, and recent
reviews have highlighted how failure of the embryo to achieve
attachment and implantation is a major cause of reproductive loss in
ruminant livestock [39, 83–85]. Despite these reviews, more remains
to be discovered about mechanisms associated with the interaction of
the embryonic trophoblast with the uterine endometrial epithelium

during attachment and implantation. In support of this conclusion,
there have been many advances in the in vivo and in vitro production
of embryos; yet, the capacity of embryos to survive, implant, and
establish a pregnancy has remained essentially unchanged at around
30–50% for ruminant livestock [39, 83, 84, 86] and 20–30% for
human in vitro fertilization (IVF) embryos [87]. Undoubtedly, there
are maternal factors involved in pregnancy establishment [88–90].
However, embryo signaling is fundamental to the initiation of events
that lead to implantation and pregnancy. This review looks at how
the action of KISS1 at peripheral reproductive tissues contributes to
the processes that support embryonic development and implanta-
tion. The review first describes the distribution of KISS1 in peripheral
tissues, and it then considers local actions (autocrine, paracrine)
of KISS1 in reproductive processes. The information is used to
support the argument that the local action of KISS1 at peripheral
reproductive tissues needs to be considered when KISS1 is utilized
in assisted reproduction. The present review builds on articles that
have looked at the broader role of KISS1 in reproduction beyond
the brain [80, 91–94]. While the review is directed at the action of
KISS1 at peripheral reproductive tissues, it would be incomplete if it
did not include some seminal papers on the discovery of KISS1 and
the classical role of KISS1 in the regulation of GnRH secretion. This
is why a consolidated history of KISS1 is provided at the beginning
of the review and the action of KISS1 at the brain is also presented.
The review brings together in one article the biology of KISS1 and
the current and potential future applications of KISS1 in assisted
reproduction.

Distribution and function of KISS1 and KISS1R

in the brain and reproductive tissues

Studies on the localization of KISS1 and KISS1R protein using
immunohistochemistry, and KISS1and KISS1R mRNA using in situ
hybridization, have predominantly utilized antibodies and PCR
primers, respectively, generated against human, mouse, and rat
proteins and DNA sequences. The reader should consult specific
articles for details on the methodology employed in studies where
antibodies and PCR primers have been used for comparative studies
in species other than humans and rodents. This level of detail
is outside the scope of the review, but it may explain some of
the apparent discrepancies across studies on KISS1 and KISS1R
localization [95].
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Figure 2. Diagrammatic representation of prepro-kisspeptin, which is the precursor for kisspeptins, KISS-54 (Kp54, KISS1), KISS-14 (Kp14), KISS-13 (Kp13), and

KISS-10 (Kp10) [15]. The kisspeptins belong to the Arg-Phe-NH2 (RF-amide) peptide superfamily and have the RF-amide or RY-amide motif at the C-terminal,

which is required for binding to KISS1R (GPR54) [64]. Figure adapted from the literature including Pinilla et al. [9]

Brain

The localization of KISS1 neurons within the brain has been exten-
sively reviewed for rodents, primates, and production animals [25,
96, 97] (Figure 1). KISS1 neurons are concentrated in the ARC,
anteroventral periventricular nucleus (AVPV), and preoptic area
(POA) [98–103] (Figure 1). There are species differences in where
KISS1 neuron cell bodies are concentrated [25]. In mice, KISS1
neuron cell bodies are located primarily in the ARC and AVPV
[104–107]. In cattle [82, 108], buffalo [109–112], sheep [7, 25, 99,
100, 113–118], and primates [119], KISS1 cell bodies are found
in the ARC and POA (Figure 1). In a recent report, KISS1 mRNA
expression was found in the amygdala in female rats and was shown
to be associated with puberty [78, see also 120]. Axonal projections
of KISS1 neurons have synaptic terminals in the vicinity of GnRH
neuron cell bodies in the hypothalamus [73, 108, 121] and GnRH
neuron axons in the vicinity of the median eminence [115, 122, 123]
(Figure 1). KISS1 is released at synaptic terminals and binds to KISSR
on GnRH neurons [121] (Figure 1).

Ovaries

The expression of KISS1 and KISS1R genes, and the presence of
KISS1 and KISS1R protein, has been demonstrated in follicles,
oocytes, and corpora lutea in the rat [124–126], mouse [127],
Siberian hamster [128], rabbit [16], cat [129], dog [130], goat [131],
sow [132, 133], and human and nonhuman primates [134, 135]. In
rats, KISS1 and KISS1R expression was low in prepubertal animals
and expression increased in the theca cells of follicles and luteal
tissue in response to treatment with gonadotropin [124, 125]. In
dogs, KISS1R protein, but not KISS1 protein, was present in ovaries
of prepubertal animals [130]. In rats, ovarian KISS1 and KISS1R
showed constant expression, whereas KISS1 protein increased during
the preovulatory period, suggesting a role for KISS1 in ovulation
[124]. Similarly, in the Siberian hamster, KISS1 and KISS1R protein
levels were highest at proestrus and estrus [128]. The Siberian
hamster is a photoperiodic long-day breeder, and ovarian KISS1 and

KISS1R levels were higher during long days than in short days [128].
Follicular KISS1 and KISS1R mRNA have been localized in both
granulosa cells (dog [130]; cat [129]; human [135]) and theca cells
(rat [124]; human and marmoset [134]; cat [129]). The expression of
KISS1 and KISS1R in follicles (granulosa, theca, oocyte) and corpora
lutea, together with the presence of KISS1 and KISS1R proteins, pro-
vides strong evidence that local KISS1 has important autocrine and
paracrine actions in ovarian function [138] (Figure 3). In support of
this, KISS1 mRNA increased around 80-fold during the attainment
of meiotic competence in mouse oocytes [137]. Also, oocyte-specific
KISS1R knockout mice failed to ovulate, suggesting an important
role for KISS1 action on oocytes in ovulation [138]. Furthermore,
KISS1R−/− mutant mice showed arrested follicular development,
even with normal gonadotrophin secretion [139]. In addition, KISS1
increased both the basal and human chorionic gonadotropin-induced
progesterone production when added to cultured rat luteal cells
[125]. It is feasible that ovarian KISS1 may have an endocrine action,
particularly at the ipsilateral uterus through counter current transfer
in the ovarian–uterine vasculature. The latter could potentially com-
plement trophoblastic KISS1 in preparing the uterine endometrial
epithelium for trophoblast attachment and implantation.

There is evidence that the receptor, neurotrophic receptor tyro-
sine kinase 2 (NTRK2), and its ligand, brain-derived neurotrophic
factor (BDNF), are expressed in rodent follicles and interact with
KISS1R to influence follicular development [140–143] (Figure 3).
Oocyte-specific deletion of NTRK2 was associated with disorga-
nized follicles and oocyte death in mice [142]. BDNF mRNA and
BDNF protein were also reported in buffalo follicles and influenced
both oocyte maturation and early embryonic development [144].
The putative interaction between NTRK2 and KISS1R in follicular
function and embryo development provides yet another example of
the emerging complexity in molecular mechanisms associated with
embryo survival, implantation, and pregnancy. As argued earlier in
this review, this complexity requires a deeper understanding before
the next step change can be achieved in embryo survival and the
efficiency of assisted reproductive technology.
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Figure 3. Diagrammatic representation of the putative autocrine and paracrine actions of kisspeptin (KISS1) in ovarian follicles and corpus luteum. KISS1 and

KISS1 receptor (KISS1R) proteins are found in granulosa cells, theca cells, oocytes, and corpus luteum. Granulosa KISS1 is thought to influence thecal cells,

the oocyte, and corpus luteum, while theca KISS1 is thought to influence the oocyte. Oocytes also have NTRK2 receptors that appear to act cooperatively with

KISS1R. In response to luteinizing hormone (LH), granulosa cells produce BDNF, which stimulates receptor NTRK2 on oocytes, and BDNF may be a mechanism

associated with puberty. Oocytes that lack NTRK2 do not respond to gonadotropin to activate PI3K/AKT, which is required for oocyte survival and the acquisition

of oocyte developmental competency and the ability to form a blastocyst [141, 142, 220]. These putative actions of KISS1 may not be universal and species

differences are likely to exist.

Trophoblast and placenta

As noted above, KISS1 gene expression and KISS1 protein were first
demonstrated in human placenta [18]. It was subsequently shown
that the expression of KISS1 and KISS1R was highest early in
placentation in women, and this led to the suggestion that KISS1 was
involved in early trophoblast implantation [145]. It was also shown
that KISS1 expression was localized to villous trophoblast tissue
while KISS1R expression occurred in both villous trophoblast and
extravillous trophoblast [145–147]. The latter finding led to the sug-
gestion that trophoblast-derived KISS1 may have both autocrine and
paracrine actions during early implantation [146–148] (Figure 4).
There is now strong evidence in women that KISS1 produced by
the trophoblast regulates the infiltration of the uterine epithelium
by the syncytiotrophoblast early in implantation [91, 94, 148–153]
(Figure 4). Systemic levels of KISS1 were related to the likelihood
of implantation in women undergoing assisted reproduction and
embryo transfer [154]. In a seminal paper on KISS1 [20], it was pro-
posed that KISS1 influences trophoblast implantation through inter-
action with cell–cell adhesion molecules and extracellular matrix
proteins (see also 155). The fundamental importance of adhesion
molecules in trophoblast attachment to the uterine epithelium was
reviewed recently [84]. KISS1R expression by the uterus in preg-
nant rats and mice coincided with the period of implantation,
suggesting a role for trophoblast KISS1 in rodents that is similar
to the role in women [92, 147, 156–158]. A role for KISS10 and
KISS1R in the interaction between the trophoblast and uterus has
also been proposed in dogs [159]. The functional role of KISS1
during implantation is to regulate the rate of syncytiotrophoblast

cell invasion and angiogenesis, which helps to ensure that early
placentation is a sequential and controlled process [146, 147, 160].
KISS1, therefore, has an analogous role in the repression of cell
migration both in early pregnancy and tumor metastasis [147]. In
contrast to the information in humans, mice with mutant KISS1 and
KISS1R developed an apparently normal placenta and supported
implantation and pregnancy [161]. Further studies are required to
elucidate what would appear to be species differences in the absolute
requirement for KISS1 signaling in reproductive tissues in females.

The role of the KISS1–KISS1R system during implantation has
received less attention in livestock compared with rodents and
humans. The interaction of the trophoblast with the uterine endome-
trial epithelium, implantation, and placentation is notably differ-
ent events across species [162–165]. In rodents and humans, the
trophoblast aggressively infiltrates [166] the endometrial epithelial
cells to achieve implantation (hemochorial placentation), whereas,
in livestock, implantation is a less invasive process (epitheliochorial
placentation—pig; synepithelialchorial placentation—cow, goat, and
sheep) [167–169] (Figure 4). Also, implantation appears to have a
narrower window in rodents and humans compared with livestock
[170]. These differences in type of placentation could mean that,
while the KISS1-KISS1R system has an important role in implanta-
tion in rodents and humans, the same system may have a lesser role
in livestock. Notwithstanding, cultures of bovine cotyledon epithelial
cells derived from first-trimester pregnant cows expressed KISS1R
[171]. The addition of KISS-10 to the cultures both stimulated and
suppressed epithelial cell proliferation in two separate cell lines
[171]. Stimulation of cell proliferation occurred in the cell line that

Downloaded From: https://complete.bioone.org/journals/Biology-of-Reproduction on 10 Jun 2025
Terms of Use: https://complete.bioone.org/terms-of-use



1162 M. J. D’Occhio et al., 2020, Vol. 103, No. 6

Figure 4. Diagrammatic representation of trophoblast attachment and implantation. In synepithelialchorial placentation in ruminants, (A) the trophoblast does

not penetrate the basal lamina and uterine stroma but forms villi-like projections into the uterine endometrial epithelium that include binucleate cells [167–
169]. In hemochorial placentation in rodents and humans, (B) the syncytiotrophoblast infiltrates the uterine endometrial stroma [166; see also 163]. Illustrated

are proposed autocrine and paracrine actions of trophoblast KISS 1 at the trophoblast and uterus, respectively. The different types of placentation could be

associated with different actions for trophoblast-derived KISS1 at the uterine KISS1R. Trophoblast KISS1 may influence the initial attachment of the trophoblast

to the uterine endometrial epithelium (A and B) by interaction with cell–cell adhesion molecules and extracellular matrix proteins [20, 155].

showed upregulation of KISS1R mRNA [171]. A strong case can be
made that the KISS1–KISS1R system should be further investigated
in livestock, given that the failure of embryo implantation remains
the major cause of reproductive wastage, particularly in ruminants
[39, 83, 84].

Application of KISS1 in assisted reproduction

in livestock

Control of GnRH secretion

The most common use of KISS1 in assisted reproduction is to control
GnRH and gonadotropin secretion in order to influence gonadal
function, particularly in livestock [13, 73, 81, 172–183]. Treatment

with either human or mouse KISS-10 was associated with LH secre-
tion and better synchronization of ovulation compared with GnRH
in crossbred dairy heifers [175] and crossbred Hereford beef heifers
and cows [82]. Bovine KISS-53 likewise induced LH section and
growth of the dominant follicle in Japanese Black beef cows [184].
KISS1 administered by osmotic minipump for 48 h during proestrus
improved follicle growth and ovulation rate in anestrous Nelore (Bos
indicus) cows [179]. However, single treatment with mouse KISS1
(3 mg, i.m.) at the time of fixed-time artificial insemination (AI) did
not improve the fertility outcome in prepubertal Nelore heifers [185].

The KISS-10 agonist C6 induced fertile ovulations in ewes that
had been pretreated with progesterone [79]. The same agonist
advanced puberty in female mice when administered daily for
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5 days [73, see also 27]. The latter finding led to the suggestion
that KISS1 agonists may have potential in the management of
puberty in livestock. In this regard, KISS-10 induced gonadotropin
secretion and influenced ovarian function in prepubertal buffalo
[183], cattle [180], sheep [186, 187], and pigs [177, 188]. KISS-10
also induced gonadotropin secretion and ovulation in seasonally
anestrous ewes [189, 190] and synchronized ovulation in goats [79].
KISS-10 (10 μg/kg live weight) additionally stimulated LH secretion
in both the breeding and nonbreeding seasons in buffalo cows [181]
and ewes [117]. Hence, treatment with KISS1 can stimulate quiescent
GnRH neurons in both prepubertal and seasonally anestrous
females. While KISS1 has mainly been used in vivo to influence
hypothalamic GnRH neurons, human KISS-10 was reported to
stimulate LH secretion in cultured anterior pituitary cells derived
from prepubertal male Holstein calves [191]. The action of KISS1
at the pituitary is outside the scope of this review but needs to be
considered within the broader biology of KISS1 in reproduction in
rodents, primates, and livestock [192–196].

Control of ovarian function

The local role of KISS1 in ovarian function is less well researched
compared with the effects on GnRH secretion. As noted above,
KISS1 and KISS1R have been localized in granulosa, theca, and
oocytes, and KISS1 is present in follicular fluid. These findings
have led to the suggestion that follicular KISS1 has autocrine and
paracrine actions within follicles, including the effects on the oocyte
(Figure 3). KISS1 is expressed by the cumulus–oocyte complex
(COC) in mice [127] and was reported to be necessary for ovulation
in this species [138].

A role for KISS1 in oocyte maturation has been informed by IVF
studies. In sheep, the proportion of oocytes that showed cumulus
expansion and extrusion of the first polar body at the end of in vitro
culture (IVC) was highest when KISS1 was included in the culture
media [197]. In cattle, the addition of KISS1 during IVC and IVF
increased the proportion of blastocysts relative to gonadotropins
[198]. Similar beneficial effects of KISS1 on IVF oocyte maturation
and developmental competence have been reported in buffalo [199]
and pigs [132, 200]. The addition of KISS1 to cultured pig COCs
improved oocyte maturation and increased the blastocyst formation
rate [132]. After hatching, however, blastocysts had reduced tro-
phoblast outgrowths in the presence of KISS1 [132]. Also in the
pig, KISS1 enhanced embryo development in parthenogenetically
activated oocytes [200]. In women, systemic injection of KISS-54
induced oocyte maturation [201].

KISS1 and KISS1R single-nucleotide polymorphisms

and fertility

Single-nucleotide polymorphisms (SNPs) occur in the KISS1 and
KISS1R genes, and in some studies, these SNPs have been linked
with fertility in livestock. In goats, KISS1 SNPs were associated
with differences in prolificacy between Boer, Guanzhong, and Saanen
breeds [202]. However, KISS1 and KISS1R SNPs were not associated
with prolificacy between prolific Jintang and nonprolific Tibetan
goat breeds [131]. In the latter study, KISS1 expression in the
pituitary was greater for Jintang goats, and it was suggested that
this could be linked with prolificacy. KISS1 SNPs were associated
with acrosome integrity and fertility in Holstein Friesian (Bos taurus)
and Khillari (B. indicus) bulls [203]. Given the peripheral action of
KISS1 at reproductive tissues, the discovery and validation of KISS1
and KISS1R SNPs have potential for their inclusion in genomic

selection indices for fertility in livestock. Other SNPs have been
associated with the function of the endometrium and capacity to
support embryo development and pregnancy in crossbred beef cows
[89], and future studies may discover relationships between these
SNPs and KISS1 and KISS1R.

Integration of KISS1–KISS1R in follicular function

and embryo development

The basic and applied literature reviewed above makes a strong case
that KISS1 and KISS1R are fundamentally involved in the peripheral
regulation of ovarian function, early embryo development, implanta-
tion, and placentation (Figure 5). The interaction of KISS1–KISS1R
with NTRK2 [140–143] and cell–cell adhesion molecules [20] shows
that KISS1 does not act in isolation at reproductive tissues. Rather,
KISS1 is integrated with other molecular mechanisms that influence
ovarian function and embryo development. The largest body of
literature supporting peripheral KISS1–KISS1R action is for women
and rodents. While not as voluminous, there is sufficient evidence
to conclude that the local action of KISS1–KISS1R at reproductive
tissues is also important in livestock [91, 93]. The failure of assisted
reproductive technology to make any meaningful advance in the
proportion of embryos that survive and establish a pregnancy has
led to a renewed focus on the biology of early embryo development,
implantation, and pregnancy establishment. Recent reviews have
considered the role of the transforming growth factor-beta (TGFβ)
superfamily and interferon tau [83], cell–cell adhesion molecules
[84], and melatonin [204]. These and other recent reviews have
highlighted the complexity of local molecular mechanisms [205–
208]. The present review has sought to further embed KISS1–KISS1R
in this area of biology. The argument is made that a deeper under-
standing of local mechanisms is needed in order to better inform
the next phase of assisted reproductive technology, which seeks to
improve embryo survival and pregnancy. Further research is required
during the periods of proestrus/estrus, early embryo development,
and trophoblast attachment and implantation (Figure 5).

Conclusions

There is compelling evidence that the KISS1–KISS1R receptor system
participates in the local regulation of ovarian function, early embryo
development, implantation, and placentation. While the evidence is
strongest for humans and rodents, there is sufficient information for
livestock to conclude that the peripheral KISS1–KISS1R system is
also important in production animals. Interesting features of KISS1
are as follows: (1) it acts within the brain and at the periphery
and (2) it is associated with metastasis and reproduction. KISS1
shares these features with melatonin (brain and periphery [204])
and cell–cell adhesion molecules (metastasis and reproduction [84]).
This review has made the case that both the brain and peripheral
actions of KISS1 need to be considered when KISS1 is utilized in
assisted reproduction. It is possible that when KISS1 is used to
regulate GnRH and gonadotropin secretion to control follicular
growth and ovulation, it may also impact oocyte maturation and
early embryo development. The control of ovulation with KISS1
typically involves acute treatment to cause an immediate release
of GnRH and LH. It is likely that chronic treatment with KISS1
will be required for beneficial effects on follicles and oocytes, and
early embryo development and implantation. These processes occur
over a longer time than the release of GnRH and LH. Longer-term
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Figure 5. Diagrammatic representation of windows during which longer-term treatment with kisspeptin (KISS1) may be beneficial to follicle and oocyte

maturation (Window 1), early embryo development (Window 2), and trophoblast development, attachment, and implantation (Window 3). KISS1 and KISS1

receptor (KISS1R) gene expression and KISS1 and KISS1R proteins occur in the respective reproductive tissues in each window. The days relative to ovulation

and fertilization are for cattle.

treatments with KISS1 will utilize agonists that have an extended
half-life in circulation and high biological potency. The potential
to downregulate KISS1R with longer-term use of KISS1 agonists
will need to be studied. As noted above, a deeper understanding
of the biology of early embryo development and implantation is
necessary for the next step change improvement in embryo survival
and pregnancy in assisted reproduction. The interesting path taken
by the field of KISS1 research is that it started with the placenta and

cancer, it moved to the brain and reproduction, and then it returned
to the placenta and reproduction.
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